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The major problem with which this paper is concerned is determining criteria that
allow one to decide whether the subsemigroup generated by a subset B of a group G is
all of G. Motivations for considering this problem arise from at least two sources.

The first source concerns the program to develop a Lie theory of semigroups. Given a
closed subsemigroup S of Lie group G, one defines the tangent object of S in the Lie
algebra L(G) by

L(S) = {xeL(G):exp(tx)eS for all t^O}.

It turns out that US) is a cone or wedge [14] US) + US)<^US) and M+L(S)Q]J(S); we
prefer to call these tangent objects wedges to emphasize the crucial role played by the
maximal subspace H(L(S)) = L(S) n —L(S) contained in L(S). The wedges turn out to be
Lie wedges, i.e., wedges that are invariant under the action of e?*x for each x e H(L(S)).
Conversely given a Lie wedge, there is at least a local semigroup for which it is the
tangent wedge (see [15, 16, 10 and 21] for these developments). However, unlike the
group case, there need not exist global semigroups having a given Lie wedge as tangent
object. As part of a program of trying to identify precisely those Lie wedges W that are
the tangent objects of some global semigroup, it is important to ascertain whether or
not exp(W) generates all of G or not.

The second source where this problem arises is in connection with certain problems
concerning accessibility in non-linear geometric control theory. These problems can
frequently be transferred to the question of whether the points accessible from the
identity of a Lie group along a given set A of invariant vector fields consists of all of G.
Again this is the question of whether the subsemigroup generated by exp(R+/t) is all of
G. The problem has been considered for Lie groups which are the semidirect produce of
a vector group and a compact group [1], semisimple groups [19, 7], nilpotent groups
[11], and semidirect products of nilpotent and compact groups [8]. The results of this
paper encompass all these cases except the semisimple. We refer to these papers for the
method of interpreting and applying such results to non-linear systems.

If A^L(G) generates L(G) as a Lie algebra, then it is a basic result (see e.g. [25]) that
the semigroup generated by e\p(U+A) has non-empty (indeed dense) interior. We show
in Section 5 that it must then lie in a closed maximal subsemigroup with interior if the
semigroup is proper. Our approach is then to try to classify the closed maximal
subsemigroup and their tangent wedges. Then exp(U+A) generates all of G if and only if
A is not contained in the tangent set of some maximal subsemigroup. (See Section 5 for
more details.)
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A distinctive feature of the approach taken here is the consideration of maximal
semigroups with interior instead of maximal open subsemigroups (as in [29, 8]). This
allows the application of the algebraic machinery of maximal semigroups. Even this
seems not to have been considered in the literature, and we include here those aspects
which are germane to our purposes (see Sections 3 and 8).

Somewhat surprisingly, the theory of invariant comes into play from Section 9
onwards, with the crucial Invariant Wedge Theorem. These have been studied by
Vinberg [27], Olshanskii [20, 21], and Paneitz [22, 23], the subject having its origins in
the physical theory of causality and cone preserving transformations.

We should mention that there is significant contact with the work of Dobbins [5] on
semigroups with group boundaries (see Section 6), although our results require an
independent development. In the solvable case (the original focus of this paper) for the
class of closed semigroups with non-empty interior, those that are maximal, those that
are total, and those that have group boundaries all coincide (see Sections 6 and 11), and
modulo a normal subgroup of the boundary fall into one of two classes.

Section 12 extends the results to the case of the extension of a solvable group by a
compact group, and Section 13 suggests future lines of investigation. The reader is
referred to [17] for basic Lie group theory and to [14] for basic Lie theory of
semigroups.

1. Algebraic generalities

Throughout this paper G denotes a group with identity e and multiplication denoted
by juxtaposition. A subset S^G is a subsemigroup if SS^S. A submonoid is a
subsemigroup which contains e. A non-empty subset / of a subsemigroup S is called a
left (resp. right) ideal of S if S / S / (resp. /SsS). An ideal of S is a subset / which is both
a left and right ideal.

Proposition 1.1. Let S be a submonoid ofG. Then

is a subgroup of G which contains all other subgroups in S. If S=fcH(S), then S # =S\H(S) is
an ideal of S which contains all proper left (resp. right resp. two-sided) ideals of S.

Proof. Since H(S) is the intersection of two submonoids, it is a submonoid. It is
clearly closed under inversion, so is a subgroup.

If X £ S is a subgroup, then K = KnK~1^SnS'1 = H(S), so H{S) contains all
subgroups contained in S.

Let seS, teS* and suppose steH(S). Then t~1s~1=(st)~1eH(S). Hence t~l =
(t~1s~l)seS; but this last assertion contradicts t£H(S). Thus steS*, i.e., S* a left ideal.
Similarly it is a right ideal.

If a left ideal L meets H(S), then eeH(S)L^L, and hence S = Se^SL^L, i.e. L=S. It
follows that S* contains every proper left ideal. •

Terminology 1.2. The subgroup H(S) is called the group of units of S. The
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complement S\H(S), denoted S#, is called the maximal ideal of S. A non-empty subset
A E G is invariant or normal if gAg~1 = A for all gsG.

Proposition 13. Let S be a submonoid of G.

(i) The largest invariant submonoid of G contained in S is given by

SN = (){gSg-l:geG}.

(ii) The largest normal subgroup of G contained in S is given by

Core(S) = fl {gH(S)g-1 :geG} = H(SN).

Proof, (i) The set SN is a submonoid since it is the intersection of submonoids. Since
inner automorphisms distribute over intersections, SN is invariant. If T is invariant,
T^S, then

T=f]{gTg-1:geG}^f]{gSg-1:geG}=SN.

(ii) Core(S) is the intersection of groups, hence a group. As in (i), Core(S) is the
largest invariant set contained in H(S). Since by Proposition 1.1, H(S) contains every
subgroup of S, it follows that Core(S) contains every normal subgroup of S. Since H(SN)
is normal, H(SN)£Core(S). But since Core(S)eS,v, by Proposition 1.1 COK(S)^H(SN).

a
Definition 1.4. We say that a submonoid S is reduced in G if Core(S) = {e}.

Proposition 1.5. IfS is a submonoid ofG, then S/Core(S) is reduced in G/Core(S).

Proof. Let $:G-»G/Core(S) be the natural homomorphism. If K^<f>(S) is a normal
subgroup, then ^'^{K) is a normal subgroup of G, and </>"1(X)s</>~1</>(S) =
S-Core(S)<=S. Thus <t>-l(K)<=CoK{S) by (ii) of Proposition 1.3. So K = 4>(t>'1(K)^
<£(Core(S)), i.e., K is trivial. O

Definition 1.6. Let S be a submonoid of G. The reduction of the pair (G, S) is the
pair (GR,SR) where GR = G/Core(S) and SR = S/Core(S).

2. Semigroups and order

We review without proofs some elementary properties concerning the close relation
between orders on G and subsemigroups of G (see, e.g., [6]). These will be implicit in
later developments.

Given a subsemigroup S^G, we define a relation

<;s by x^sy if yx'^S.
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This relation satisfies

(i) x^y, y^z implies x^z (transitivity),
(ii) x^y implies xz^yz (right compatibility).

Furthermore, the equality S = {x:e^sx} allows one to recover S as the set of positive
elements.

Conversely given a transitive, right-compatible relation ^ on G, the set P(£) =
{xsG.e^x} of positive elements is a subsemigroup, and the original order ^ is equal
to the induced order ^ P. Thus the mutually inverse constructions of passing from S to
g s and from f£ to P(^) yield a bijection between subsemigroups of a group and
transitive, right-compactible relations.

Proposition 2.1. Let S be a subsemigroup of G.

(i) eeS if and only if ^ s is reflexive;
(ii) ^ s is antisymmetric if and only if H(S) = S n S~* £ {c};

(iii) g s is a/so left compatible if and only ifS is invariant.

Note that traditionally ordered groups are assumed to satisfy (ii). However, that will
rarely be the case in our approach.

Definition 2.2. We say that S £ G is total if G = S u S~1.

Proposition 2.3. Let S be a subsemigroup of G. Then S is total if and only if given
x,yeG, either x^y or y^x.

3. Maximal semigroups

In this section we develop the algebraic machinery necessary for the later
developments.

Definition 3.1. A subsemigroup M of a group G is called a maximal subsemigroup of
G if (i) the only subsemigroups containing M are M and G, and (ii) M is not a
subgroup. (Condition (ii) is a technical convenience, insuring the existence of the
maximal ideal M*=M\H(M).)

Remark 3.2. If M is a maximal subsemigroup of G, then eeM (otherwise consider
{e}uM).

Lemma 33. Let M be a maximal subsemigroup of G, and T a submonoid with
. If MT~x £ T"lM, then T~lM = G.

Proof. We have T-lMT'xM^T~lT-lMM^T-lM, so T~lM is a subsemigroup
containing T~1 (since eeM) and M. By maximality of M, G = T~ 1M. •

Although elementary in nature, the next proposition is crucial in the theory of
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maximal semigroups. It is often applied by showing that S cannot meet M "deeply"
(condition (i)), and hence M "swallows" S"1.

Proposition 3.4 (The Swallowing Lemma). Let M be a maximal subsemigroup of G
and S a subsemigroup with MS"1 zS~iM (which is the case if S or M is normal). Then
either

(i) Snl=fc0 for every left ideal I of M, or
(ii) S'^M.

Proof. Suppose S~1&M. Then we show (i) holds. Let T=Su{e}. Then
MT-i^T-iM B y Lemma 3.3, T~lM = G.

Let / be a left ideal of M. Pick xeM* and yel. Then z = xyeM* nl. Since
T~lM = G, z~l = s~lm for some seT, meM. Hence s = mzeMI£/. Also s=f=e since
zeM* implies z~l$M. Thus seS, and S n / ^ 0 . •

Corollary 3.5. / / M is a maximal subsemigroup of G and H is a normal torsion
subgroup, then H<^M.

Proof. Suppose Hc\M*±0. Let geHr\M*. Then {g":n^l}^M*. Since H is
torsion, g"=e for some n. Thus eeM* = M\H(M), a contradiction. Hence H = H~l^M
by the Swallowing Lemma 3.4. •

Lemma 3.6. Let S be a subsemigroup of the integers (Z, +) containing both a positive
number and a negative number. Then S is a subgroup of Z.

Proof. Suppose the maximal ideal S*=S\H(S) is non-empty. Let m be the number
in S* closest to 0, and let neS be the number closest to 0 of opposite sign. Then
m + neS* and closer to 0 than one of m or n, a contradiction. •

Proposition 3.7. Let M be a maximal subsemigroup of G and let xeG satisfy
cMx. Then xeMuM"1.

Proof. Let T={x":n^l}. Since Q = {y:yM^My} is a subsemigroup, T^Q. Hence
TM^MT. Similarly Mx~l^x'lM implies MT~l^T~lM.

If T^M or T~l^M, the proof is complete. If neither of these hold, then by
the Swallowing Lemma (and its dual), TnM*j=0 and T~lnM* £0. Let
S = {meZ:xmeM*}. It is immediate that S is a semigroup and S contains both positive
and negative numbers. By Lemma 3.6, OeS. Hence e=x°eM*, a contradiction. Thus
this final case cannot occur. " •

Corollary 3.8 Let M be a maximal subsemigroup of G. Let Z(G) denote the centre of
G. Then MnZ{G) is total in Z(G).

Proof. MnZ{G) is total in Z(G) if and only if Z(G)£MuM~1. The latter follows
from Proposition 3.7. •
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Corollary 3.9 A maximal subsemigroup of an abelian group is total.

Corollary 3.10. Let M be a maximal subsemigroup of G. If M is invariant, then M is
total.

We consider now the interaction of maximal subsemigroups with normal abelian
subgroups.

Proposition 3.11 (The Purity Lemma). Let M be a maximal subsemigroup of G, let H
be a normal abelian subgroup, and let xeH. If x"eM for some n> 1, then xeM.

Proof. Suppose x^M. Then the subsemigroup generated by Mu{x} is all of G (by
maximality of M). Note that since 1 e M, any member of G is either in M or has a
representation m1xm2x...mk-lxmk (since such products together with M form a
semigroup containing x and M). Let geM* r\H (the Swallowing Lemma 3.4). Then for
some mu...,mksM,

g~i=m1x...xmk = (ml ...mk)x
m2—"*... xmt=my

(where zw = w~1zw and m = m1 ...mk). Since H is normal and xeH, we conclude yeH.
Thus m=g~ly~leH. So m commutes with y. Hence

g~n = mny" = m"~ lm(x")mi-mk... (x")mk = m"~ 1m1xnm2x"... x"mkeM

since x"eM. But geM* implies g"eM*. Therefore e=gng~"eM*M^M*, a
contradiction. •

We close this section with an elementary, but useful, lemma.

Lemma 3.12 (The Reduction Lemma). Let (f>:G-*H be a homomorphism onto H, and
let S be a submonoid of H. Then S is maximal (resp. total resp. invariant) in H if and only
if<f>~i(S) is maximal (resp. total resp. invariant) in G.

Proof. Suppose S is maximal in H. Then 4>~l(S) is not a group since S is not a
group. If T is a subsemigroup containing <f> ~ l(S), then T contains the kernel of <j>, so
T=<t>-\<t>(T)). Since Sc<f>(T), <f>(T) = S or <f>{T) = H. Thus T=(j)-i4>(T) = (f)-1(S) or
T=ip-1(l)(T) = (f>-l(H) = G. Hence ^"'(S) is maximal.

The remaining arguments are all similarly straightforward. •

Note that since Core(S)^S, we have S = (f>~1(<f>(S)) = <l>~1(SR), where <f>:G-^GR.

Corollary 3.13. Let S be a submonoid in G. Then S is maximal in G if and only if SR

is maximal in GR = G/Core(S).

Corollary 3.13 shows that all maximal subsemigroups arise as inverse images of
reduced ones. It is then the latter that we seek to characterize.
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4. Reversibility

Although the material of this section is not needed later, it appears worthwhile to
amplify some ideas implicit in the preceding section.

Definition 4.1. For non-empty A,B^G, the pair (A, B) is called a right-reversing pair
if AbnBa=fc0 for all as A, beB. A subsemigroup S of G is called right-reversible if
SxnSyj=0 for a\\x,yeS.

Note that (A, B) is a right-reversing pair if and only if (B, A) is.
The following lemma gives frequently used conditions for a pair to be right-reversing

(cf. Lemma 3.3 and Proposition 3.4).

Lemma 4.2. Let A,B^G be non-empty. Then (A,B) is right-reversing if and only if
BA~lZA~lB. This happens if A or B is invariant.

Proof. Suppose (A,B) is right-reversing. Then for aeA, beB, there exist ueA, veB
such that ub = va. Then ba~1 = u~1veA~1B. Thus BA~1^A~1B. The equivalence
follows since the steps are reversible.

If A is invariant, AB~i = B~1A. Taking inverse we obtain BA~l = A~1B. •

The process of embedding the natural numbers into the integers extends to right-
reversible cancellable semigroups. Indeed a semigroup S embeds isomorphically in a
group of left quotients (i.e. S~1S = G) if and only if S is cancellable and right-reversible.
These are called Ore's conditions (see Section 1.10 of [4]). Note that Lemma 3.3 realizes
G as a certain set of left quotients.

Proposition 4.3. Let M be a maximal subsemigroup of G. Then either

(i) GR contains no non-trivial normal abelian subgroup, or
(ii) M is right-reversible, and M~lM = G.

Proof. Suppose GR contains a normal abelian subgroup H=f={e). Let x,yeMR. Since
H£MR (otherwise MR is not reduced in GR), by the Swallowing Lemma H r\MRxj=0
and HnMRy^0 (since by Lemma 3.12 MR is maximal). Let hl=mlxeHnMRx and
let h2 = m2yeH n MRy. Then hlh2 = mlxm2yeMRy and h2hl=m2ymlxeMRx. Since
hih2 = h2h1, MRxn MRy=fc0. Thus MR is right-reversible.

Now let a,beM. Then MRdn MR5=fc0, where a resp. 5 is the image of a resp. b in
GR. So gmia = m2b for some geCore(M), ml,m2eM. Thus Man Mb=f=0. Hence M
is right-reversible. By Lemmas 3.3 and 4.2, M~lM = G.

Corollary 4.4. Let M be a maximal subsemigroup of a solvable group G. Then M is
right-reversible and G = M~1M.

Proof. Since G is solvable, so is GR. Thus GR has a non-trivial normal abelian
subgroup. The corollary follows from Proposition 4.3. •

E.M.S.-G
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5. Topological generalities

Throughout this section G denotes a locally generated topological group (i.e., G is the
only subgroup containing a neighborhood of the identity e). We recall the elementary
fact that every connected topological group is locally generated.

Lemma 5.1. Let U j=0 be an open set, l /£S, where S is a proper subsemigroup of G.
ThenSnU~1 = 0.

Proof. Suppose seSnU^1. Then s'^U^S, and thus e = ss~lesU^sS^S. Thus S
contains the open neighborhood sU of e, and hence S = G, contradiction. •

Proposition 5.2. Let S be a proper (open) subsemigroup of G with int(S)=/=0. Then S
is contained in a maximal (open) subsemigroup.

Proof. Let Ji be a maximal tower of proper (open) subsemigroups of G containing S,
and let M be their union. If C/ = int(S), then by Lemma 4.1 TnU'1 = 0 for all TeM.
Hence Mr\U~l = 0 , so M is proper and also not a group. Clearly M is a maximal
(open) subsemigroup. •

We pause to consider the aims of this paper. A central purpose is to develop criteria
that allow one to determine whether the subsemigroup generated by an arbitrary subset
B of G is all of G or not. Proposition 5.2 points to our approach.

Corollary 5.3. Suppose B £ G has the property that the semigroup it generates has non-
empty interior in G. If B is not contained in a maximal subsemigroup with non-empty
interior, then the subsemigroup generated by B is all of G.

Thus if we can specify the maximal subsemigroups with non-empty interior, we need
only check whether B is a subset of one of these maximal subsemigroups.

We remark also that the approach adopted here differs slightly (but significantly)
from most earlier approaches, where maximal open subsemigroups were considered in
the topological setting. Our approach allows the use of the machinery of Section 3, since
we work with genuinely maximal subsemigroups.

Proposition 5.4. / / M is a maximal subsemigroup and int M =/= 0, then M is closed.

Proof. Let t/ = intM. By Lemma 5.1 MnU~l=0, so MnU~1 = 0. Thus M is a
proper subsemigroup containing M, so by maximality, M = M. •

Proposition 5.5. / / S is a closed subsemigroup of G, then H(S) and Core(S) are closed.

Proof. Core(S) is the intersection of all gH(S)g~i (see Proposition 1.3) and hence
closed, since H(S) = SnS~l is closed. •

Remark 5.6. If S is a subsemigroup of G with int(S)^0, then int(S) is an ideal of S
(by openness of translation).
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Proposition 5.7. Let M be a maximal subsemigroup of G with int(M)=£0. / / H is a
compact subgroup, then Hn'mt(M) = 0. If H is compact and normal, then HsCore(M).

Proof. Suppose //nint(M)=/=0. Since tfnint(M) is an open subsemigroup of the
compact group if , it is a compact open subgroup (see e.g. [28]). Hence leintM, so
M = G, a contradiction. Then by the Swallowing Lemma H^M if H is normal. It
follows that //cCore(M) in this case, since Core(M) is the largest normal subgroup
of M. •

Proposition 5.8. / / M is a maximal subsemigroup of G and H(M) n (int M) ~ =/=0 (in
particular, if ee(intM)~), then intM is a maximal open subsemigroup and M = (intM)~.

Proof. Let 7 = intM. By Remark 5.6, / is an ideal of M, so / is an open
subsemigroup. Then 7 s M = Af (Proposition 5.4). Conversely if geH(M)n(intM)~, then

If T^G is an open subsemigroup containing I, then M = TzT and Tj=G (Lemma
5.1) imply M=T. Thus T £ int T=intM. Thus intM is a maximal open
subsemigroup. •

6. Total semigroups

Corollaries 3.9 and 3.10 gave sufficient conditions for a maximal subsemigroup to be
total. In this section we consider this situation in more detail and relate it to known
results. Throughout G denotes a locally generated topological group.

Proposition 6.1. Let M be a closed total subsemigroup of G. Then M is maximal.

Proof. Suppose x$M. Let U = G\M. Then V is open, and U^M~l (since G =
MuM"1). Thus U~l^M. The subsemigroup T generated by {x}uM contains xU"1,
an open set containing e. Thus T=G (by local generation). •

The next proposition derives basic properties of such semigroups.

Proposition 6.2. Let M be a closed subsemigroup of G. Then M is total iff
G = M*uH(M)u(M*)'1. In this case M*=intM, M is the closure of M*, and

= Bd(M#)(=(M#)-\intM#).

Proof. The equivalence follows from the equality

If M is total, then since M = M*KJH(M) and Mn(M*)~l = 0, (M*)~l = G\M is open,
and hence M* is open. Thus M* sintM. Since intM is an ideal (Remark 5.6) and M*
is the largest ideal (Proposition 1.1), int MsM*. Hence M* =intM.

If M*=(M*)~, then (M*)"1 is also closed, so H(M) is open. But then G is not
locally generated. Hence there exists geH(M)n(M#)~. Then by Proposition 5.8
M = [M*y. Thus Bd(M#) = M\M#=#(M). •
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Closed total subsemigroups are maximal, but the converse does not hold in general.
We are interested in determining sufficient conditions to insure the converse. We begin
with two important special examples where we can calculate all closed maximal
subsemigroups.

Proposition 6.3. Let M be a maximal closed subsemigroup of (R, +). Then either
M = R+ = {xeR:x^0} or M=-U+.

Proof. Let yeM, y>0. By the Purity Lemma (3.11), (l/n)yeM for all positive
integers n. Thus (m/n)yeM for all positive rationals. Since M is closed, R + £ M . Since
IR+ is closed and total, by Proposition 6.1 it is maximal. Hence U+ =M. Similarly if M
contains a negative number, M= — U+. •

Note that the preceding argument could be applied to any subgroup of U that was
n-divisible for some n (e.g., the rationals).

We next determine the closed reduced maximal subsemigroups of the unique two
dimensional non-abelian connected Lie group. This group may be thought of as the
component of the identity in the group of affine motions on R; hence we denote it Aff+.
We show that the closed maximal subsemigroups are the half-spaces with boundary
some one-dimensional subgroup. These are all isomorphic to Aff++, the semigroup of
affine motions with translation term non-negative.

Alternately Aff+ may be identified with the multiplicative matrix group {[j$ \y.x>0},
or with order pairs {(x,y):x>0) with multiplication (w,v)(x,y)=(ux,uy + v). Aff++ then
has j>^0.

Lemma 6.4. Let G be the group of positive reals under multiplication. Given s,teG
with 0 < s < 1 < r, e > 0 , and a positive integer N, there exists positive integers j,k with
jTzN such that \shk— l | < e .

Proof. Consider first the additive group R and positive real numbers x and y. The
set {nx:w^l} is a cyclic semigroup in the compact group U/Zy. Hence its closure
is a compact semigroup, and thus a compact group. So the elements nx cluster to
the identity of U/Zy. Hence there exists j^N such that \jx — ky\<e for some k>0, i.e.
\j( — x) + ky\ <e. The lemma now follows from this derivation by applying the exponential
function from the additive reals to the multiplicative positive reals. •

Proposition 6.5. Let G = Aff+ be the {unique) Lie group with Lie algebra the two-
dimensional non-abelian Lie algebra. If a closed semigroup M is maximal, then there exists
a one-dimensional group such that M is the union of this group and one of the two
components of its complement. In particular, M is total.

Proof. We identify G as {(x, y):x>0, yeU} with multiplication (M, V)(X, y) =
(ux,uy + v). Then G has identity e = (l,0) and the one-dimensional groups are the straight
lines through e, i.e., all (x, y) such that y = mx—m for some fixed m. The vertical line
H = {(1,y):yeU} is the only non-trivial normal subgroup. The sets H+ = {(l,y):y^0} and
H~ = {(l,y).y^0} are invariant subsemigroups.
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By the Swallowing Lemma either # £ M or M # n / / ^ 0 . Suppose H^M. Then G/H
is isomorphic to the multiplicative positive reals, which in turn is isomorphic to (U, +),
and M/H is a closed maximal subsemigroup. By Proposition 6.3 M/H corresponds
either to (0,1] or [l,oo). Then M = {(x,y):0<xfL 1} or M = {(x,y):l<Lx}. In either case
M is a "half-space" of the desired type with boundary H.

The more complicated case is M* r\Hj=0. Let us assume ( l j J e M * for some y>0.
By the Purity Lemma (3.11) (l,(l/n)y)eM for all positive n, (\,{m/ri)y)eM by the
semigroup property for m/n>0, and so H+ ^M since M is closed. Since H+ is total in
H and hence maximal and since H&M (since M* r\H^0), then Mr>H = H*.

Since H~ is normal, H~M is a subsemigroup properly containing M. Hence H~M = G.
Since multiplying any element of G on the left by (l,y) shifts the element y units
vertically, it must be the case that ({x} x U)r\Mj=0 for all x>0.

Let (s,ms—m), (t,iit — n)eM with 0 < s < l < t . Using the fact that the straight lines
through (1,0) are subgroups or by direct computation, one obtains that the powers of
these elements are given by (si,msi—m) and (tk,fitk—fi). The product is again in M and
is given by

-m)= {sitk, jx(sV - 1) + (m - nKs* -1")).

If _/, fe are chosen as in Lemma 6.4, we see that this product can be made arbitrarily
close to (I, fi—m), which must thus be a member of M. Hence \i—m^.0, i.e. m^/x.

From the preceding paragraph it follows that

a = sup{m:(s,ms—m)eM for s o m e s<l}^inf{fi:(t,fit — fi)eM for s o m e t>l} = b.

If d is chosen so that a^d^b, then it follows that the region above the straight line of
slope d through (1,0) contains M. •

Note that in Proposition 6.2 the open semigroup M* has boundary a subgroup. This
situation has been explored in the literature and we mention a highly non-trivial
converse that has been established by Dobbins [5] with important contributions by that
paper's referee, Hofmann, and the finishing touches added by Poguntke [24].
Unfortunately the results are not directly applicable to maximal semigroups. Although
we derive analogous results, the techniques are quite different.

Theorem 6.6. Let S be a proper open subsemigroup of a locally compact connected
group G such that Bd(S) is a group. Then S is total in G, and (GR,S^) falls into one of the
following three cases up to topological isomorphism:

(i) GR=U,SR=U+;

(ii) GR = Aff+,SR = Aff + + ={(x,y)eAff +
 : > ; ^0} ;

(iii) GR = SL(Z, U), the simply connected covering groups of SL(2, IR), SR = the closure
of one of the components of SL(2,K\exp(H), where H = {\_% _£):x,yelR} and
exp:s/(2,R)->SL(2,(R) is the exponential mapping for SL(2,M).
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In light of Proposition 6.2 and Theorem 6.6 the closed total subsemigroups can be
characterized as extensions of groups by one of the three semigroups of Theorem 6.6. (It
would be of interest to know whether there was a more direct proof that an open
semigroup with a group boundary has closure which is total.) Note that SL{2, U) is the
only simple Lie group admitting total subsemigroups. Further information on maximal
semigroups in SL(2, U) and SL{2, U) may be found in [9].

Note that case (i) of Theorem 6.6 is the only reduced case where the semigroup is
invariant. We show later that maximal subsemigroups are also total in the solvable
group case and give rise to case (i) or case (ii).

Finally we remark that Theorems 6.2 and 6.6 relate to a theorem of Sophus Lie
himself. Let G be a connected Lie group with a closed total subsemigroup S. Then a
total order is induced on G/H(S), G/H(S) is order and topological isomorphic to the
reals (indeed this can easily be deduced from Theorem 6.6 since Core S £//(£)), and G
acts on G/H(S). This induces an infinitesimal action of L{G) on G/H(S)^U, and one
of Lie's theorems was that the only such actions that were "effective" were ones by

= U, L(Aff+), and

7. Invariant maximal semigroups

We recall a useful lemma (Lemma 3.9 from [5]).

Lemma 7.1. Let G be a connected locally compact group and H a closed normal
subgroup. If G/H is simply connected, then H is connected.

The following theorem overlaps with case (i) of Theorem 6.6 and much of the locally
compact case could be derived from it. It also parallels results in Section 1 of [30]. Here
it follows directly from the results of previous sections.

Theorem 7.2. Let G be a connected topological group which is either locally compact
or locally connected, and let M be a closed subsemigroup. The following are equivalent:

(1) M is maximal and invariant;
(2) M is total and invariant;
(3) M is total and H(M) = Core(M), i.e., H(M) is normal;
(4) M is maximal and GR is topologically isomorphic to the additive reals. (In this case

the topological isomorphism must carry MR to U+ or — U+.)

Furthermore, in the locally compact case these conditions imply H(M) is connected.

Proof. The equivalence of (1) and (2) follows from Proposition 6.1 and Corollary
3.10. If M is invariant, then H(M) = MnM~1 is normal, and thus H(M) = Core(M) (see
Proposition 1.3). Thus (2) implies (3).

We show (3) implies (4). In this case GR = G/H(M) is a totally ordered (see
Propositions 2.1 and 2.3) connected topological group which is locally compact or
locally connected (since the quotient mapping is open) and with a closed set MR of
elements greater than or equal to 0. Note the GR\{e) is the disjoint union of the
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relatively closed sets MR\{e} and (M^~l\{e}, and is hence not connected. By Exercise 4
of Chapter V, §3 of Bourbaki's Topologie Generate [2], GR is abelian and topologically
isomorphic to (U, +). The image of MR in U is a closed maximal subsemigroup, hence
equal to (R+ or — IR+ (Proposition 6.3). This completes the proof of (4) and the
parenthetical remark.

If (4) holds, then we have just seen the parenthetical remark holds. Thus MR is total
and invariant. It follows that M is total and invariant (see the Reduction Lemma 3.12).
Thus (2) holds.

That H(M) is also connected in the locally compact case follows from Lemma 7.1.

•
Note that for topological vector spaces one obtains a type of geometric Hahn-Banach

Theorem. If K is a convex body with interior missing 0, then the rays through K form
an additive semigroup. Extending this semigroup to a maximal one (Proposition 5.2)
and forming the reduction gives a continuous linear functional into U (by the preceding
proposition) carrying the interior of the convex set into the positive reals. For a whole
theory of maximal subsemigroups in the setting of abelian topological groups together
with several such applications, see [29].

8. Nilpotent groups

In a group G denote by [g, h] the commutator g~1h~lgh. If H is a subgroup of G, let
[G,H~\ denote the subgroup generated by the set {[g,h]:geG,heH). Define recursively
Gn by G0 = G, Gn+l = [G,Gn~]. The group G is nilpotent if Gn+1 = {e} for some n. Note
that if Gn+1 = {e}, then Gn is contained in the centre of G.

Lemma 8.1. Suppose G is a group, M is a maximal subsemigroup of G, and g,heG are
such that [g, h] is in the centre of G. Then \jg,h~\, [g, K] ~' e M.

Proof. Let w = [g, h]. If w = e, then the lemma is trivial (see Remark 3.2). By
Corollary 3.8 weM or w"1 eM. We suppose (without loss of generality) that weM and
show that also w~ieM.

Suppose on the contrary that w~l£M. Let S = {w~":n^0}. Then SM is a semigroup
containing M and w'1; by maximality of M, SM = G. Thus g = w~"u, h = w~mv,
g~l = wkx, h~l=w~py for some n,m,k,p^0 and u,v,x,yeM. Thus w"g = ueM and
similarly wmh,wkg~l,wph~leM. Thus w*g,wqh,wqg~l, w'/i"1 eM where q = n + m + k + p
since w e M by assumption.

Now gh = hg[g,h]. Since [g,h] is central, an easy induction yields for any n>0 that
gnti' = hnga[jg,h~\n\ i.e. gnhn[g,hynl = hngn. Then for z = W>, we have
(zg~ x)n{zh)n(zg)"(zh~l)neM for all n ^ 1 and

Since for large n, 4nq — n2<0 and since weM, we conclude w~leM, a contradiction.
This completes the proof. •
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Proposition 8.2. Let M be a maximal subsemigroup of G which is reduced in G. Then
G/Z(G) has trivial centre.

Proof. Suppose not. Let <p be the natural homomorphism from G to G/Z(G).
Then there exists geG such that </>(g) is in the centre of G/Z(G), but 4>(g) is not the
identity. Since g£Z(G), there exists heG such that gh^hg. Then g~lh~ighj=e. But
<Mg~lh~lgh) = 4>(g-'Mh-l)<j>{g)<t>{h) = <f>(g-lWg)cj>{h-l)<l>(h) = <f>{e). Thus [g, h]eZ(G).
By Lemma 8.1 [g,h], [g,h] ' e M . Since [g,K]eZ(G), the subgroup it generates is
normal. But this contradicts the assumption that M is reduced in G. •

Theorem 8.3. Let M be a maximal subsemigroup of a nilpotent group G. Then M is
total and invariant in G and [G, G] £ H(M). Hence GR = G/H(M) is abelian and totally
ordered.

Proof. Let (GR, MR) be the reduction of (G, M). By the Reduction Lemma (3.12) MR

is maximal in GR. Since the quotient of a nilpotent group is nilpotent, any quotient of
GR is nilpotent, hence has non-trivial centre if it is non-trivial. By Proposition 8.2 it
follows that GR must be abelian. Thus [G, G]sCore(M). By Corollary 3.9 MR is total,
and by the Reduction Lemma M is total. Since [G, G] £ H(M) ZM, M and H(M) are
invariant (since g~lmgm~i, msM imply g'lmgeM). Thus Core(M) = //(M). •

Corollary 8.4. Let G be a connected, nilpotent topological group which is locally
compact or locally connected. Let M be a maximal subsemigroup with int M =/= 0 . Then
(GR,MR) is topologically isomorphic to (R, R+). Hence Core(M) = H(M) is a closed
normal subgroup, which is also connected in the locally compact case.

Proof. By Theorem 8.3 M is total and invariant, and by Proposition 5.4 M is closed.
The rest now follows from Theorem 7.2. •

Corollary 8.4 may be viewed as an alternate statement of one of the main results of
[11], when it is re-interpreted at the Lie algebra level for nilpotent Lie groups.

Proposition 8.5. Let H be a locally generated normal nilpotent subgroup of a locally
generated topological group G and let M be a maximal subsemigroup with intM^=0.
Then [# , / / ] sCore(M).

Proof. We first show [H, //] n int M = 0. Suppose not. Since e £ int M (otherwise
M = G), int M n H is a proper subsemigroup of H with interior in H. By Proposition 5.2
there exists a maximal subsemigroup S of H containing int MnH. By Theorem 8.3
[W,H]cS. If ge[J/,H]nintM, then g~lelH^niinlMy^SniintM)-1; this
contradicts Lemma 5.1 applied to H (with U = int M n H). Thus [//, H] n int M = 0 .

By Remark 5.6 and the Swallowing Lemma [/ / ,H]sM (since H normal implies
[//, H] is normal). Thus [H, //] <= Core(M). •

Corollary 8.6. Let G be a locally generated nilpotent group. If Ac.G and
int A n [G, G] =£ 0 , then the subsemigroup generated by A is all of G.
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Proof. Let S be the subsemigroup generated by A. If S=fcG, then S is contained in a
maximal semigroup M by Proposition 5.2. By Proposition 8.5 [G, G]£Core(M). But by
hypothesis 0=fcint An[G, G]sintMn[G, G], a contradiction since //(Af)nintM = 0 .
Thus S = G. •

Note that in Corollary 8.6 we have used the techniques of maximal semigroups to
reach conclusions about which subsets of a group are generating.

9. Invariant wedges

Throughout this section G denotes a connected Lie group with Lie algebra L(G). For
geG, the inner automorphism Ig:G-*G defined by h-^ghg"1 induces an automorphism
Ad g:L(G)->L(G) such that the following square commutes:

- G
exp ( exp

Thus exp{Adg(x))=gexp(x)g~l. We recall also the basic property that if
ad x:L(G)->L(G) is defined by y->[x,>>], then

= l+adx+—(adx)2+ •

It follows that the subgroup generated by the image of an ideal is normal and that a
subalgebra of L{G) is invariant under all Ad g if and only if it is an ideal.

Theorem 9.1. (The Invariant Wedge Theorem). Let G be a connected Lie group, let
exp:L(G)-+G be the exponential mapping, and let I be an abelian ideal of Ufi). If M is a
maximal subsemigroup of G with int(Af)=f 0 , then W={xe/:exp(x)eM} is a closed
wedge in Ufi) which is invariant under the adjoint action of G, and W—W = I.

Proof. Since / is an abelian ideal, exp(/) is a normal subgroup. If exp(/)sM, we are
finished, since / is an ideal, hence invariant under the adjoint action.

If exp(/)£M, then by the Swallowing Lemma, exp(/)nint(M)=/=0. pick Ji = exp(_y),
he'mt(M), ye I.

Since M is closed (Proposition 5.4) and exp is continuous, VF = exp~1(M)n/ is closed.
Since M is a subsemigroup and exp restricted to / is a group homomorphism (since / is
abelian), W is closed under addition. By the Purity Lemma (3.11) applied to H=exp/,
we conclude that W is closed under scalar multiplication by l/n. Hence W is closed
under scalar multiplication by positive rationals. Thus U+ WcW=W; it follows that
W is a wedge. Since exp(y)6int(M), there exists a neighborhood of y mapping into M.
Thus the wedge W has interior in / and y is an interior point.

Let x be any other interior point. Then nx = y + zn for some zneW for all sufficiently
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large n. (To see this, let U be open in /, x £ U £ W. Then (l/n)y ex — U for all large n.
Thus (\/n)y + un =• x, i.e. y + zn = nx where zn = nun e W)

Since hemi(M), there exists an open set N = N~l, eeN, with Nhzint(M). Let geN
and let x be an interior point of W. For large n, pick zn e W such that nx = y + zn. Let
a=exp(x), bn = exp(zn). We have

exp [(Ad g){nx) + y] = exp [(Ad g)nx] exp y

=g(exp nx)g~lh=g(exp(y + zn))g~ lh

=ghb&~ ^heNh-M-Nh^M.

Thus (Adg)(nx) + ye W for large n; since W is a wedge, (Adg)(x) + (l/n)ye W for large «.
Since W is closed, (Adg)(x)e W. Thus Adg carries the interior of W into W; because the
interior is dense, (Adg)(W)z W. This is true for all geN, and since N generates G (by
connectivity), it is true for all g (since Ad(gt...gm) = Adgt o- • -o Adgm). •

10. Frobenius—Perron groups

In this section we let V denote a finite dimensional vector space over U. Let G be a
group, and let n:G-*GL(V) be a continuous homomorphism. Then n gives rise to a
continuous linear action of G defined by g • v = n(g)(v). E. B. Vinberg has shown that if G
is connected and solvable and preserves a pointed cone in V, then G has a common
eigenvector in the cone (see Lemma 1 of [27]). Indeed a stronger version occurs in the
remarks following this lemma (for a more complete presentation, see Section 1.7 of
[12]).

Theorem 10.1 (Vinberg). Let G be a Lie group, S a solvable analytic subgroup, and K
a compact connected subgroup which normalizes S. If C is a pointed cone invariant under
the action of G, then there exists veC with K-v = v and S• v£R+v.

Theorem 10.1 motivates the following definition:

Definition 10.2. A topological group G is called a Frobenius-Perron group if for
every continuous linear action of G on a finite dimensional vector space V (over R) that
leaves a pointed cone C invariant, there exists veC with G-vsU+v.

Let V* be the dual space of linear functionals from V into R, and define
< , ) : F * x F ^ R b y <a, v} = a(v). Given a wedge WsV, we define W* = {ae K*:<a,x>^0
for all xe W}. This defines a duality of wedges (with W** = W). Also the left action of G
on V gives rise to a unique right action on V* satisfying (a g, v} = (ct,g-v}. Via duality
each theorem about actions (together with the duality of left and right actions by
passing to inverses) gives rise to a dual theorem.

Now the dual of a pointed cone is a generating wedge (i.e., a wedge with interior)
W=fcV, and the dual of a ray R+i; is a half-space. The dual of an invariant wedge is an
invariant wedge (these assertions are all straightforward; see Chapter I of [12] for
details). Hence the dual version of Theorem 10.1 states
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Theorem 10.3. Let G be a Frobenius-Perron group with a continuous linear action on
a finite dimensional space V. If W=f=V is an invariant generating wedge in V, then W is
contained in a half-space invariant under the action of G.

11. Solvable groups

In this section we use the previously developed theory (principally the nilpotent case,
the Invariant Wedge Theorem, and Frobenius-Perron theory) to derive a major result
of this paper: maximal subsemigroups with interior of connected solvable Lie groups are
total.

A finite dimensional connected Lie group G has a unique maximal connected solvable
normal subgroup. It is denoted by Rad G.

Theorem 11.1. Let G be a finite dimensional connected Lie group which is a
Frobenius-Perron group, and let M be a maximal subsemigroup which is reduced in G and
satisfies int M ̂  0 . Then one of the following holds:

(i) RadG = {e}, i.e., G is semisimple;
(ii) (RadG, Rad GnM) is topologically isomorphic to (U.,U+);
(iii) RadG is topologically isomorphic to Aff + .

Proof. If the radical R of G is trivial, then G is semisimple.
We consider the case R±{e), and show that either (ii) or (iii) results. The proof

consists of a series of reductions.

1. The nil radical N is abelian.

It is standard that the nil radical is the largest connected normal nilpotent subgroup.
The assertion then follows immediately from Proposition 8.5.

2. The radical R is metabelian (i.e. \_R, /?] is abelian).

Again it is standard that [/?, R] £ N, which is abelian.

3. dim[K,R] = l or [/?,/?] = {e}.

Let / be the Lie algebra for \_R, R~\. Since [R, K] is normal and abelian, / is an ideal in
L{G). Let W={xeI:exp{x)eM}. By the Invariant Wedge Theorem (9.1), W is an
invariant generating wedge. If W=I, then exp/= [/?,/?] (since / is abelian) is a normal
subgroup contained in M. Hence [R, J?] = {e}.

If W=f=I, then since G is a Frobenius-Perron group, there exists by Theorem 10.3
an invariant half-space Q 3 W. Then Q n — Q is an invariant hyperplane in /, so
F = exp(Qn — Q) is a normal subgroup. Now exp"'(int M)nIeint Wsin tQ^Q
\{Q^-Q)- Thus int M n F = 0 . By the Swallowing Lemma (3.4), F^M. Since F is
normal, F c core M = {e}. Thus Q n — Q = {0}, so / is one-dimensional, as is exp / = [_R, R].

4. / / [R, R] = {e}, then case (ii) obtains.

In this case R is abelian. Let J be the Lie algebra for R. We again obtain an invariant
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wedge W^J since M is reduced in G and we are not in case (i). Thus as before one
argues that J is one-dimensional.

5. If 1 = [L(R), L(/?)] is one-dimensional, then the annihilator of I in L{R) is I.

Since I is an ideal, its annihilator is easily verified to be an ideal. Hence A, the
intersection of the annihilator with L(R), is an ideal. Now [A, A~] £ [L(R), L(/?)] £ / ; thus
[A, [/4,/4]] £[,4,7] = {0}. Thus A is a nilpotent ideal, so expA is a normal nilpotent
group. It follows from Proposition 8.5 and the fact M is reduced that exp/1 is abelian.
Thus A is abelian. An argument completely analogous to that applied to / in step 3
yields A is one-dimensional. Since Is A, I = A.

6. / / / = [L(R), L(K)] is one-dimensional, then R is topologically isomorphic to Aff+.

Consider Ad z: L(R)->/ = Uz. By Reduction 5 the kernel of this mapping is /, which is
one-dimensional. Thus L(R) is two-dimensional. Since \_L(R), L(/?)] = /^{0}, L(R) must
be the unique non-abelian two-dimensional Lie algebra, so R = Att +. •

Corollary 11.2. Let G be a finite dimensional connected solvable Lie group, and let M
be a maximal subsemigroup satisfying int M£0. Then M is total and one of the following
holds:

(i) (GR, MR) is topologically isomorphic to (U, U+);

(ii) (GR, MR) is topologically isomorphic to (Aff +, Aff + +).

Proof. By Theorem 10.1 G is a Frobenius-Perron group. Now MR±{e) (since MR is
not a group), so case (ii) or (iii) of Theorem 11.1 must hold.

If LiGR) is the non-abelian two-dimensional Lie algebra, then MR does not contain
the one-dimensional normal subgroup (since MR is reduced in GR). By Proposition 6.5
M is total and must be a "half-space" semigroup with boundary a non-normal group,
and an inner automorphism then carries M to the upper half-space Aff + +. •

12. Extensions of solvable groups

In this section we consider extensions of solvable groups by compact groups.
Throughout this section G denotes a finite dimensional connected real Lie group.

Lemma 12.1. The following are equivalent:

(1) G/RadG is compact.
(2) The Levi subalgebras of L(G) are compact (i.e., are the Lie algebras of some

compact group).
(3) The analytic subgroups corresponding to the Levi subalgebras are compact.
(4) G contains a connected solvable normal subgroup H and a compact group K such

that G = HK.

Proof. (1)=>(2): The Levi subalgebras arise as cross-sections of the Lie algebra
homomorphism from L(G) to L(G/Rad G), and hence are isomorphic to L(G/Rad G).

https://doi.org/10.1017/S0013091500026870 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026870


MAXIMAL SUBSEMIGROUPS OF LIE GROUPS THAT ARE TOTAL 497

(2)=>(3): If one of the Lie groups associated with a semisimple Lie algebra is compact,
then they all are [17].

(3)=>(4): G = ( R a d G ) K where K is the analytic group associated with some Levi
factor.

(4)=>(1): Since RadG is closed and is the largest connected solvable normal subgroup,
H £ Rad G. Then the image of K in G/Rad G must be all of G/Rad G. •

We extend Corollary 11.2.

Theorem 12.2. Suppose G/Rad G is compact. If M is a maximal subsemigroup of G
with intM£0, then M is total, Core(M) is a normal, connected subgroup containing
every semisimple analytic subgroup, and one of the following holds:

(i) (GR, MR) is topologically isomorphic to (05, 05+),

(ii) (GR, MR) is topologically isomorphic to (Aff+, Aff + +).

Proof. If 4>:G^GR, then <£(RadG) = RadGR (see Proposition 24 of III.9.7 [3]) so
Gfl/RadGfl is homomorphic to G/Rad G, hence compact. By Lemma 12.1 if K is an
analytic semisimple subgroup corresponding to some Levi factor of L(GR), then K is
compact and normalizes RadGjj. By Theorem 10.1, GR is a Frobenius-Perron group.
Hence we may apply Theorem 11.1 to GR.

Case (i) is impossible, for then GR = K would be compact, an impossibility (see
Proposition 5.7). Suppose case (ii) obtains, i.e., RadGR is topologically isomorphic to 05.
Then K acts on 05 by inner automorphisms, and hence must act trivially (since K is
compact and connected). Thus elements of 05 and K commute, so K is normal (since
GR = UK). Then Proposition 5.7 implies K = {e] (since MR is reduced). So GR = RadGR.
Since the image of any analytic semisimple subgroup of G must be a semisimple
subgroup of 05, the image must be trivial. Theorem 11.1 implies the rest.

Suppose finally that the case Rad GR is topologically isomorphic to Aff + of Theorem
11.2 obtains. Again K must act on Aff+ by inner automorphisms. But Aut(Aff+) con-
tains no non-trivial compact connected subgroups. (Its identity component is again
topologically isomorphic to Aff+, since every derivation is inner (see [18]), and Aff+

contains no non-trivial compact subgroup.) Thus again K acts trivially, is thus normal,
and hence K = {e}. So GR = RadGR. Since MR is closed and maximal in GR, it must be
topologically isomorphic to Aff++ by Corollary 11.2.

Finally Lemma 7.1 implies that Core(M), the kernel of 4>, is connected. •

Remark 12.3. Theorem 12.2 actually extends to locally compact connected groups
which contain a compact normal subgroup K such that G/K is a Lie group with
<7/Rad G compact. (For by Proposition 5.7 it must be the case that /CsCore(M) for any
maximal subsemigroup M with int(M)=/=0. Then apply the theorem to G/K and M/K.)

Corollary 12.4. Suppose G/Rad G is compact. If G contains a subsemigroup Sj=G with
intS=£0, then one of the following holds:

(i) There exists a continuous homomorphism (f>:G-*U such that
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(ii) There exists a continuous homomorphism 0:G->Aff+ such that $(S) £ Aff++.

Proof. Extend S to a maximal subsemigroup M and apply Theorem 12.2. •

The next corollary gives a classification of maximal semigroups in terms of the Lie
algebra for the simply connected case.

Theorem 12.5. The maximal subsemigroups M with non-empty interior of a simply
connected Lie group G with G/Rad G compact are in one-to-one correspondence with their
tangent objects

= {xeL(G):exptxeM for t^

and the latter are precisely the closed half-spaces with boundary a subalgebra.
Furthermore, M is the semigroup generated by exp(L(M)).

Proof. Let M be maximal with int(M)=/=0. By Theorem 12.2 GR is either U or Aff+

and Core(M) is connected. Hence Core(M) is generated by the exponential image of its
tangent subalgebra. One verifies directly in each case that MR is (hence is generated by)
the exponential of its tangent set. It follows from commuting diagrams of Lie algebras
and groups that M is generated by exp of its tangent set. Also since MR has tangent set
a wedge with a bounding subalgebra of codimension 1, this property pulls back and
remains valid for M.

Conversely suppose G is simply connected and A is a half-space bounded by a
subalgebra Q of codimension 1. Then Q is an ideal or contains an ideal of codimension
2 or 3 (see [13] or [26]), and there exists a Lie algebra homomorphism H<j>) either onto
U with kernel Q or onto the non-abelian two-dimensional Lie algebra or onto si (2, R).
But the last case is impossible since than L(RadG) must necessarily map to {0}, and
then si (2, IR) would be the image of a compact Lie algebra (Lemma 12.1), hence
compact, a contradiction. Also L{<j))(A) will be a half-space in U or L(Aff+). Since G
is simply connected, there is a corresponding </>:G->R or 0:G->Aff+. Pulling back the
subsemigroups of IR or Aff+ corresponding to L(<p)(A), one obtains a maximal
subsemigroup M of G containing exp(A). Since A^L(M)j=L(G) and A is a half-space,
A = L(M). •

Corollary 12.6. Let Q generate (as a Lie algebra) L[G), the Lie algebra of G, where
G/Rad G is compact. If Q is not contained in any half-space with boundary a subalgebra,
then the semigroup generated by exp(IR+fi) is all of G. The converse holds if G is simply
connected.

Proof. Let S be the semigroup generated by exp(R+fi). Since fi generates Ufi), it is
standard that intS=^0 (see [25]). If S^G, extend S to a maximal subsemigroup M.
Then U+Cl^L(S)^L{M), and by Theorem 12.5 the latter is a half-space with bounding
subalgebra (simple connectivity was not used for this part of the proof). But this is a
contradiction, so S = G. The converse follows similarly using Theorem 12.5. •
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We remark that the finite dimensionality assumption is necessary in order to have a
Frobenius-Perron theory for solvable groups. One obtains in general such a theory for
compact groups, and hence a version of Theorem 12.2 (and the other theorems) could
be carried out for infinite-dimensional Lie groups for the case G was the product of a
compact group and a normal connected nilpotent Lie group.

13. Maximal semigroups of mixed type

Let G be a finite dimensional connected Lie group. The maximal subsemigroups of G
may be divided into three classes. We have those in which Core(M) contains one (and
hence all) of the maximal semisimple analytic subgroups. This is the case that arises in
the previous section. We have seen that M is total, is generated by the exponential
image of a half-space with a bounding subalgebra of codimension 1, and is the inverse
image of a maximal subsemigroup of a solvable group. We call M a maximal semigroup
of solvable type.

A second possibility is that G admits a continuous homomorphism onto a semisimple
Lie group E and that M is the inverse image of a maximal subsemigroup in E (and
hence maximal by the Reduction Lemma). Equivalently M (and hence Core(M))
contains Rad G. In this case M is called a maximal subsemigroup of semisimple type. To
study these, one needs a classification of maximal subsemigroups which are reduced in
semisimple Lie groups. Practically nothing is known in this case. Hilgert and Hofmann
[9] have characterized the maximal subsemigroups for groups associated with si (2, R),
and sufficient conditions are given in [19] for a subset of the Lie algebra to generate (as
a semigroup) the entire group. This is certaintly an area that should be given top
priority in the future study of maximal subsemigroups.

A third type of maximal subsemigroups are those of mixed type, where Core(M)
contains neither Rad(G) nor a maximal semisimple analytic subgroup. We give a
construction that gives rise to examples of mixed type.

Let V be a finite dimensional real vector space and let G be a connected Lie group
that acts linearly on V. We form the semidirect product V x G with multiplication
defined by (v1,g1)(v2,g2) = (vi +g1-v2,g1g2).

Proposition 13.1. Let W be a wedge in V with Wj= V, W- W= V. If W is a maximal
invariant wedge in V under the action of G, then S=W x G is a maximal subsemigroup of
VxG.

Proof. It is immediate that S is a closed subsemigroup with non-empty interior.
Hence it is contained in a maximal subsemigroup M (Proposition 5.2). We may identify
L(VxG) with V x L(G); then by the Invariant Wedge Theorem (9.1), MnV is an
invariant wedge. Clearly Mn V=f= V (otherwise M 2 V-S = V x G). Thus Mn V— W since
W^MnV and W is a maximal invariant wedge. If (v,g)eM, then (v,g)(0,g~l) =
(v, e) e M. Thus v e W and hence (v, g) e W x G = S. We conclude M = S, i.e., S is
maximal. •

Invariant cones for irreducible actions of semisimple Lie groups G have been studied
by Vinberg [27]. In particular it is shown that invariant cones exist in V if and only if
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there is a non-zero vector fixed by K, a maximal compact subgroup of G. In this case
every invariant cone is contained in a maximal invariant cone. Thus this construction
gives rise to many examples.

It is conjectural that the preceding construction should give rise to all maximal
semigroups with non-empty interior of mixed type for the case G is a connected Lie
group with Rad G nilpotent, and that some variant thereof should hold in general. The
theory of invariant cones as developed by Vinberg [27], Ol'shanskii [20, 21], and
Paneitz [23, 24] should play a crucial role in the theory of both maximal semigroups of
semisimple and mixed type.
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