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Abstract

In the study of the reliability of technical systems in reliability engineering, coherent
systems play a key role. In this paper we consider a coherent system consisting of n

components with independent and identically distributed components and propose two
time-dependent criteria. The first criterion is a measure of the residual lifetime of live
components of a coherent system having some of the components alive when the system
fails at time t . The second criterion is a time-dependent measure which enables us
to investigate the inactivity times of the failed components of a coherent system still
functioning though some of its components have failed. Several ageing and stochastic
properties of the proposed measures are then established.
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1. Introduction

Reliability properties of coherent systems have been discussed quite extensively in the
literature. By definition, a technical structure consisting of n components is said to be a
coherent system if there is no irrelevant component in the system (a component is said to be
irrelevant if its performance does not affect the performance of the system) and it is monotone
with respect to each component (that is, when a failed component in the system is replaced by
a working one, the system cannot get any worse). Some important special cases of coherent
systems of order n are (n − k + 1)-out-of-n systems, k = 1, 2, . . . , n, in which the cases k = 1
and k = n correspond to the series and parallel systems, respectively.

Several authors have studied the residual lifetime and inactivity time of the coherent systems
in different scenarios. See, for example, Bairamov et al. [6], Asadi and Bayramoglu [2], Asadi
and Bayramoglu [3], Khaledi and Shaked [8], Asadi and Goliforushani [5], Li and Zhang [11],
Navarro and Hernandez [15], Samaniego et al. [22], and Zhang [26]. The inactivity times of a
component or a system have also been discussed by Navarro et al. [17], Asadi and Berred [4],
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Asadi [1], Tavangar and Asadi [24], Khaledi and Shaked [8], Li and Zhao [13], Li and Zhang
[11], [12], Navarro et al. [20], and Gertsbakh et al. [7].

In the study of the reliability of coherent systems, a useful tool is the concept of ‘signature’.
The signature vector of a system enables one to represent the distribution function of the
lifetime of a coherent system in terms of the distribution functions of ordered lifetimes of its
components. Consider a coherent system consisting of n components with independent and
identically distributed (i.i.d.) lifetimes X1, X2, . . . , Xn which are distributed according to a
common continuous distribution F . Let T = T (X1, X2, . . . , Xn) be the system’s lifetime.
The signature of the system is defined to be a probability vector s = (s1, s2, . . . , sn) in which

si = P(T = Xi:n), i = 1, 2, . . . , n,

where Xi:n denotes the ith ordered lifetime of the components. It is well known that the
signature vector s does not depend on the underlying distribution function F . This fact leads to
the following theorem, which shows that the distribution function of the system lifetime can be
represented as a mixture of the distribution functions of the ordered lifetimes of its components
where the mixing distribution is the probability vector s (see [9] and [21]).

Theorem 1.1. If F̄T (t) denotes the survival function of the system lifetime then

F̄T (t) =
n∑

i=1

si F̄Xi:n(t),

where F̄Xi:n(t) denotes the survival function of Xk:n.

Recently, the reliability properties of a coherent system based on the properties of its signature
have been extensively discussed. For some recent developments on this subject, we refer the
reader to [9], [16], [17], [18], [19], [22], and [25].

In this paper we consider coherent systems for which the signature vector is of one of the
following forms.

(A) s = (s1, . . . , si , 0, . . . , 0), where sk > 0 for k = 1, 2, . . . , i, i = 1, 2, . . . , n − 1.

(B) s = (0, . . . , 0, si+1, . . . , sn), where sk > 0 for k = i + 1, i + 2, . . . , n, i = 1, 2, . . . , n.

A coherent system with signature of the form (A) has the property that, upon failure of the
system at time t , components of the system with lifetimes Xk:n, k = i +1, i +2, . . . , n are still
alive. Hence, after the failure of the system, they can be removed from the system and used for
other testing purposes. Thus, the study of the reliability properties of such components may
be of interest for engineers and system designers. On the other hand, a coherent system with
signature vector of the form (B) has the property that, when the system fails at time t , it has to
be due to the failure of one of the components with lifetime Xk:n, k = i + 1, i + 2, . . . , n.

In the sequel, we define two conditional probabilities. Assuming that the signature vector
of the system is of the form (A), we define

Pj,T (t, x) = P(Xj :n − t > x | T < t < Xj :n), x, t > 0, j = i + 1, i + 2, . . . , n.

(1.1)

In an analogous manner, for the system having a signature vector of the form (B), we define

P ∗
j,T (t, x) = P(t − Xj :n > x | Xj :n < t < T ), x, t > 0, j = 1, 2, . . . , i. (1.2)
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The conditional probability in (1.1) gives the reliability of the residual lifetime of a live
component with lifetime Xj :n, k = i+1, i+2, . . . , n, when the system has failed before time t

while the component with lifetime Xj :n is still alive at time t . The conditional probability in
(1.2) gives the survival function of the inactivity time of a component with lifetime Xj :n, j =
1, . . . , i, under the condition that the system is functioning at time t but the component with
lifetime Xj :n has already failed in the system. A system with signature vector of the form (B)
can be considered as a ‘black box’ in the sense that, when the system is functioning, upon the
failure of Xj :n, j = 1, 2, . . . , i, the failure time of that component is unknown. Hence, the
study of the conditional probability in (1.2) is important for system designers to get some useful
information on the inactivity times of the failed components.

The rest of this paper is organized as follows. In Section 2 we concentrate on the conditional
probability in (1.1). We begin by obtaining the functional form of Pj,T (t, x) and show that it can
be represented as a mixture of the residual lifetimes of the live components of the system with
simpler structures. Among the results in this section, we prove that when the common hazard
rate of the components of the system is increasing, then Pj,T (t, x) is a decreasing function of
time. We also prove that when two coherent systems with the same structure have components
with distribution functions F and G, respectively, for which the hazard rates of the components
are ordered, then the corresponding residual lives of the systems are also ordered. In Section 3
we focus on the reliability function P ∗

j,T (t, x) defined in (1.2). We prove that if in a coherent
system with signature vector of the form (B) the reversed hazard rate of the components of
the system is decreasing in time, then P ∗

j,T (t, x) is an increasing function of time. Stochastic
comparisons between the inactivity times of the failed components of two different systems are
also made under the condition that the components of the systems are ordered in terms of their
reversed hazard rates.

Before proceeding to present the main results, we recall some stochastic order definitions
for two nonnegative random variables X and Y having distribution functions F and G and
probability density functions f and g, respectively.

• X is said to be less than Y in the stochastic order, denoted by X ≤st Y , if F̄ (x) ≤
Ḡ(x), x > 0, where F̄ = 1 − F and Ḡ = 1 − G.

• X is said to be less than Y in the hazard order, denoted by X ≤hr Y , if F̄ (x)/Ḡ(x) is
a decreasing function of x. If the densities of X and Y exist, X ≤hr Y is equivalent to
saying that h1(t) ≥ h2(t), where h1(t) = f (t)/F̄ (t) and h2(t) = g(t)/Ḡ(t) denote the
hazard rates of X and Y , respectively.

• X is said to be less than Y in the reversed hazard order, denoted by X ≤rh Y , if F(x)/G(x)

is a decreasing function of x. If the densities of X and Y exist, X ≤rh Y is equivalent
to saying that r1(t) ≤ r2(t), where r1(t) = f (t)/F (t) and r2(t) = g(t)/G(t) denote the
reversed hazard rates of X and Y , respectively.

• X is said to be less than Y in the likelihood ratio order, denoted by X ≤lr Y , if f (x)/g(x)

is a decreasing function of x.

2. Residual lifetimes of the live components

Let T be the lifetime of a coherent system of order n, and let X1, X2, . . . , Xn be the lifetimes
of its components. We assume that X1, X2, . . . , Xn are i.i.d. according to a common underlying
continuous distribution F . Furthermore, we assume that the signature of the system has the
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Table 1: Coherent systems with four components and signatures of the form (2.1).

T = T (X1, X2, X3, X4) Signature

X2:2 = min(X1, X2) (2-series) ( 1
2 , 1

3 , 1
6 , 0)

min(X2, max(X1, X3)) (consecutive 2-out-of-3 : F) ( 1
4 , 5

12 , 1
3 , 0)

min(X1, max(X2, X3), max(X3, X4)) ( 1
4 , 7

12 , 1
6 , 0)

min(X1, max(X2, X3, X4)) (3-parallel) ( 1
4 , 1

4 , 1
2 , 0)

min(X1, X2, X3) ( 3
4 , 1

4 , 0, 0)

max(min(X1, X2, X3), min(X2, X3, X4)) (consecutive 3-out-of-4 : F) ( 1
2 , 1

2 , 0, 0)

min(X2:3, X4) ( 1
4 , 3

4 , 0, 0)

X1:4 = min(X1, X2, X3, X4) (series) (1, 0, 0, 0)

form
s = (s1, . . . , si , 0, . . . , 0), 1 ≤ i < n. (2.1)

Some examples of systems with signatures of the form given in (2.1) are presented in Table 1.
Based on the structure of the system, it is clear that the components with lifetimes Xk:n, k =
i + 1, i + 2, . . . , n, would never cause the failure of the system. That is,

P(T = Xk:n) = 0, k = i + 1, i + 2, . . . , n.

In what follows, we assume that the system has failed by time t . We are then interested in the
following conditional probability:

Pj,T (t, x) = P(Xj :n − t > x | T < t < Xj :n), x, t > 0, j = i + 1, i + 2, . . . , n.

Evidently, this conditional probability represents the residual lifetimes of the components that
could never fail in the system, under the condition that the system has failed by time t . In what
follows, we first derive the form of Pj,T (t, x). For j ≥ i + 1 and all x, t ≥ 0, we have

P(T < t, Xj :n > t + x) =
i∑

k=1

P(T = Xk:n, T < t, Xj :n > x + t)

=
i∑

k=1

P(T = Xk:n, Xk:n < t, Xj :n > x + t)

=
i∑

k=1

P(T = Xk:n) P(Xk:n < t, Xj :n > x + t | T = Xk:n)

=
i∑

k=1

sk P(Xk:n < t, Xj :n > x + t),

where sk = P(T = Xk:n), k = 1, . . . , i, and the last equality is due to the fact that the events
{T = Xk:n} and {Xk:n < t, Xj :n > x + t} are independent. Therefore, for all x, t > 0, we
have

Pj,T (t, x) = P(T < t, Xj :n > t + x)

P(T < t, Xj :n > t)
=

i∑
k=1

pk(t)γj,k,n(t, x),
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where γj,k,n(t, x) = P(Xj :n − t > x | Xk:n < t < Xj :n),

pk(t) = sk
P(Xk:n < t < Xj :n)

P(T < t < Xj :n)
= P(T = Xk:n | T < t < Xj :n),

and the last equality follows from [14]. The vector

p(t) = (p1(t), . . . , pi(t), 0, 0, . . . , 0)

can be regarded as the conditional signature of the system in which the element pk(t) is the
probability that the component with lifetime Xk:n causes the failure of the system given that
the system has failed but the components with lifetimes Xk:n, k = i + 1, i + 2, . . . , n, are still
alive.

Before presenting the main results, we examine some properties of pk(t). The following
lemma shows that pk(t) can be represented in terms of the ratio φ(t) = F(t)/F̄ (t).

Lemma 2.1. For k = 1, . . . , i and i < j , we have

pk(t) = skWj,k(t)∑i
m=1 smWj,m(t)

, (2.2)

where

Wj,m(t) =
j−1∑
l=m

(
n

l

)
(φ(t))l . (2.3)

Proof. We have

pk(t) = sk
P(Xk:n < t < Xj :n)

P(T < t < Xj :n)

= sk
P(Xk:n < t) − P(Xj :n < t)∑i

m=1 sm{P(Xm:n < t) − P(Xj :n < t)}

= sk
∑j−1

l=k

(
n
l

)
(F (t))l(1 − F(t))n−l

∑i
m=1 sm

∑j−1
l=m

(
n
l

)
(F (t))l(1 − F(t))n−l

= sk
∑j−1

l=k

(
n
l

)
(φ(t))l∑i

m=1 sm
∑j−1

l=m

(
n
l

)
(φ(t))l

,

as required.

Theorem 2.1. We have

(a) limt→0 p(t) = (1, 0, . . . , 0, 0);

(b) limt→∞ p(t) = s.

Proof. To obtain limt→∞ pk(t) and limt→0 pk(t), since φ(t) is an increasing function of t

and limt→∞ φ(t) = ∞ and limt→0 φ(t) = 0, without loss of generality, it is sufficient to find
limt→∞ gk(t) and limt→0 gk(t), respectively, where

gk(t) = sk
∑j−1

l=k

(
n
l

)
t l∑i

m=1 sm
∑j−1

l=m

(
n
l

)
t l

.
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However,

gk(t) = sk
∑j−1

l=k

(
n
l

)
t l∑j−1

l=1

(∑min(l,i)
m=1 sm

)(
n
l

)
t l

= sk
(
n
k

)
tk + sk

(
n

k+1

)
tk+1 + · · · + sk

(
n

j−1

)
tj−1

(∑min(1,i)
m=1 sm

)(
n
1

)
t + (∑min(2,i)

m=1 sm
)(

n
2

)
t2 + · · · + (∑min(j−1,i)

m=1 sm
)(

n
j−1

)
tj−1

= sk
(
n
k

)
tk + sk

(
n

k+1

)
tk+1 + · · · + sk

(
n

j−1

)
tj−1

s1
(
n
1

)
t + (∑min(2,i)

m=1 sm
)(

n
2

)
t2 + · · · + (∑i

m=1 sm
)(

n
j−1

)
tj−1

.

Now, we have

lim
t→0

gk(t) = lim
t→0

sk
(
n
k

)
tk + sk

(
n

k+1

)
tk+1 + · · · + sk

(
n

j−1

)
tj−1

s1
(
n
1

)
t + (∑min(2,i)

m=1 sm
)(

n
2

)
t2 + · · · + (∑i

m=1 sm
)(

n
j−1

)
tj−1

=

⎧⎪⎨
⎪⎩

s1
(
n
1

)
s1

(
n
1

) = 1, k = 1,

0, k > 1,

which completes the proof of part (a). Next, we have

lim
t→∞ gk(t) = lim

t→∞
sk

(
n
k

)
tk + sk

(
n

k+1

)
tk+1 + · · · + sk

(
n

j−1

)
tj−1

s1
(
n
1

)
t + (∑min(2,i)

m=1 sm
)(

n
2

)
t2 + · · · + (∑i

m=1 sm
)(

n
j−1

)
tj−1

= sk
(

n
j−1

)
(∑i

m=1 sm
)(

n
j−1

)
= sk,

which completes the proof of part (b).

Theorem 2.2. Let p(t) be a vector of coefficients with pk(t) as in (2.2). Then, p(t1) ≤st p(t2)

for all 0 ≤ t1 ≤ t2 and p(t) ≤st s for all t ≥ 0.

Proof. To prove the required result, we need to show that, for all i ≥ u ≥ 1, we have∑i
k=u pk(t1) ≤ ∑i

k=u pk(t2), or, equivalently, that
∑i

m=1
∑i

k=u sksm{Wj,m(t2)Wj,k(t1) −
Wj,m(t1)Wj,k(t2)} ≤ 0, where Wj,n(t) is as defined in (2.3). We have

i∑
m=1

i∑
k=u

sksm{Wj,m(t2)Wj,k(t1) − Wj,m(t1)Wj,k(t2)}

=
u−1∑
m=1

i∑
k=u

sksm{Wj,m(t2)Wj,k(t1) − Wj,m(t1)Wj,k(t2)}

+
i∑

m=u

i∑
k=u

sksm{Wj,m(t2)Wj,k(t1) − Wj,m(t1)Wj,k(t2)}

=
u−1∑
m=1

i∑
k=u

sksm{Wj,m(t2)Wj,k(t1) − Wj,m(t1)Wj,k(t2)}.
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Now, for m < k, we have

Wj,m(t2)Wj,k(t1) − Wj,m(t1)Wj,k(t2)

=
j−1∑
l1=m

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t2))

l1(φ(t1))
l2 −

j−1∑
l1=m

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t1))

l1(φ(t2))
l2

=
k−1∑
l1=m

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t2))

l1(φ(t1))
l2 −

k−1∑
l1=m

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t1))

l1(φ(t2))
l2

+
j−1∑
l1=k

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t2))

l1(φ(t1))
l2 −

j−1∑
l1=k

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t1))

l1(φ(t2))
l2

=
k−1∑
l1=m

j−1∑
l2=k

(
n

l1

)(
n

l2

)
(φ(t2))

l1(φ(t1))
l1 [(φ(t1))

l2−l1 − (φ(t2))
l2−l1 ]

≤ 0,

where the last inequality holds since φ(t) is an increasing function of t . This completes the
proof.

In what follows, we focus on the conditional probability

γj,k,n(t, x) = P(Xj :n − t > x | Xk:n < t < Xj :n),
where x, t > 0 and 1 ≤ k < j ≤ n. It is clear that γj,k,n(t, x) represents the residual lifetime
of the live components in an (n − k + 1)-out-of-n system when the system has failed by time t

and k of the components have failed. Note that γj,k,n(t, x) can be represented as

γj,k,n(t, x) = P(Xj :n − t > x, Xk:n < t < Xj :n)
P(Xk:n < t < Xj :n)

=
∑j−1

l=k P(Xj :n − t > x, Xl:n < t < Xl+1:n)
P(Xk:n < t < Xj :n)

=
j−1∑
l=k

Bj,l,n(t, x)Kn
l,j,k(t),

where Bj,l,n(t, x) = P(Xj :n − t > x | Xl:n < t < Xl+1:n) and

Kn
l,j,k(t) = P(Xl:n < t < Xl+1:n)

P(Xk:n < t < Xj :n)

=
(
n
l

)
(F (t))l(1 − F(t))n−l

∑j−1
m=k

(
n
m

)
(F (t))m(1 − F(t))n−m

=
(
n
l

)
(φ(t))l∑j−1

m=k

(
n
m

)
(φ(t))m

, 1 ≤ k ≤ l < j ≤ n. (2.4)

Remark 2.1. The above results readily yield the following representation for Pj,T (t, x):

Pj,T (t, x) =
i∑

k=1

pk(t)γj,k,n(t, x) =
i∑

k=1

pk(t)

j−1∑
l=k

Bj,l,n(t, x)Kn
l,j,k(t). (2.5)
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Lemma 2.2. For n ≥ j > l, we have

(Xj :n − t | Xl:n < t < Xl+1:n)
d= Xt

j−l:n−l ,

where Xt
j−l:n−l denotes the (j − l)th order statistic among n − l i.i.d. random variables with

a left-truncated distribution with survival function F̄ (x|t) = F̄ (t + x)/F̄ (t) for x, t > 0.

Proof. We have

Bj,l,n(t, x) = P(Xj :n > t + x, Xl:n < t < Xl+1:n)
P(Xl:n < t < Xl+1:n)

=
( n−l∑

m=n−j+1

n!
l! (n − l − m)! m!F

l(t)[F(x + t) − F(t)]n−l−m[1 − F(x + t)]m
)

×
((

n

l

)
(F (t))l(1 − F(t))n−l

)−1

=
n−l∑

m=n−j+1

(
n − l

m

)
(F̄ (x|t))m(1 − F̄ (x|t))n−l−m,

where F̄ (x|t) = F̄ (x + t)/F̄ (t). This establishes the required distributional result.

Remark 2.2. It should also be noted that

(Xj :n − t | Xl:n < t < Xl+1:n)
d= (Xj−l:n−l − t | X1:n−l > t),

since

P(Xj−l:n−l − t > x | X1:n−l > t) = P(Xj−l:n−l − t > x, X1:n−l > t)

P(X1:n−l > t)

=
∑n−l

m=n−j+1

(
n−l
m

)[F(x + t) − F(t)]n−l−m[F̄ (x + t)]m
(F̄ (t))n−l

=
n−l∑

m=n−j+1

(
n − l

m

){
F̄ (x + t)

F̄ (t)

}m{
1 − F̄ (t + x)

F̄ (t)

}n−l−m

=
n−l∑

m=n−j+1

(
n − l

m

)
(F̄ (x|t))m(1 − F̄ (x|t))n−l−m.

Lemma 2.3. Under the assumption that the underlying distribution function is absolutely
continuous, for j > l ≥ m, we have

(Xj :n − t | Xl:n < t < Xl+1:n) ≤lr (Xj :n − t | Xm:n < t < Xm+1:n).

Proof. It is well known (see Theorem 1.C.37 and Corollaries 1.C.38 and 1.C.39 of [23]) that

Xk−1:m−1 ≤lr Xk:m for k = 2, 3, . . . , m

and
Xk:m−1 ≥lr Xk:m for k = 1, 2, . . . , m − 1.
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Hence, we have
Xt

j−l:n−l ≤lr Xt
j+1−l:n−l+1 =lr Xt

j−(l−1):n−(l−1),

which means that

(Xj :n − t | Xl:n < t < Xl+1:n) ≤lr (Xj :n − t | Xl−1:n < t < Xl:n),

as required.

Lemma 2.4. If F is absolutely continuous then, for k ≤ m, we have

(Xj :n − t | Xk:n < t < Xj :n) ≥lr (Xj :n − t | Xm:n < t < Xj :n).

Proof. Let us denote the densities of (Xj :n − t | Xk:n < t < Xj :n) and (Xj :n − t | Xl:n <

t < Xl+1:n) by f
j,k,n
t (x) and fj,l,n,t (x), respectively. Then, we have

f
j,k,n
t (x) =

k−1∑
l=j

fj,l,n,t (x)Kn
l,j,k(t).

To prove the claimed result, we need to show that the function

f
j,k,n
t (x)

f
j,k+1,n
t (x)

is increasing in x, that is, we need to show that, for x1 < x2,

∑j−1
l=k fj,l,n,t (x1)K

n
l,j,k(t)∑j−1

l=k+1 fj,l,n,t (x1)K
n
l,j,k+1(t)

≤
∑j−1

l=k fj,l,n,t (x2)K
n
l,j,k(t)∑j−1

l=k+1 fj,l,n,t (x2)K
n
l,j,k+1(t)

.

This is equivalent to showing, by using (2.4), that

∑j−1
l=k fj,l,n,t (x1)

(
n
l

)
(φ(t))l∑j−1

m=k+1 fj,m,n,t (x1)
(
n
m

)
(φ(t))m

≤
∑j−1

l=k fj,l,n,t (x2)
(
n
l

)
(φ(t))l∑j−1

m=k+1 fj,m,n,t (x2)
(
n
m

)
(φ(t))m

,

or

j−1∑
l=k

j−1∑
m=k+1

(
n

l

)(
n

m

)
(φ(t))l+m{fj,l,n,t (x1)fj,m,n,t (x2) − fj,l,n,t (x2)fj,m,n,t (x1)} ≤ 0.

We can easily verify that this inequality holds if and only if the following inequality holds:

j−1∑
m=k+1

(
n

k

)(
n

m

)
(φ(t))k+m{fj,k,n,t (x1)fj,m,n,t (x2) − fj,k,n,t (x2)fj,m,n,t (x1)} ≤ 0. (2.6)

However, for m > k, we know from Lemma 2.3 that (Xj :n − t | Xk:n < t < Xk+1:n) ≥lr
(Xj :n − t | Xm:n < t < Xm+1:n), which is equivalent to

fj,k,n,t (x1)fj,m,n,t (x2) − fj,k,n,t (x2)fj,m,n,t (x1) ≤ 0.

This leads to the inequality in (2.6), completing the proof.
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We now present the main result of this section.

Theorem 2.3. Let p1(t) and p2(t) for a fixed t > 0 be the vectors of coefficients in represen-
tation (2.5) of two coherent systems of order n, both based on components with i.i.d. lifetimes
having a common continuous distribution function F . Denote by T1 and T2 the respective
lifetimes of the two systems with signatures of type (A). Then, for j > i, we have the following
orderings.

(a) If p1(t) ≤st p2(t) then (Xj :n − t | T1 < t < Xj :n) ≥st (Xj :n − t | T2 < t < Xj :n).

(b) If p1(t) ≤hr p2(t) then (Xj :n − t | T1 < t < Xj :n) ≥rh (Xj :n − t | T2 < t < Xj :n).

(c) If p1(t) ≤lr p2(t) then (Xj :n − t | T1 < t < Xj :n) ≥lr (Xj :n − t | T2 < t < Xj :n),
when the parent distribution F is absolutely continuous.

Proof. Orderings (a)–(c) follow readily from the above mixture representations, Lemma 2.4,
and properties of mixtures given in [23].

2.1. Ageing properties of the live components

In this subsection we examine some ageing properties of Pj,T (t, x). We show that when
the components of the system are IFR (increasing failure rate), then Pj,T (t, x) is a decreasing
function of time. To this end, we need the following lemmas.

Lemma 2.5. If h(t) = f (t)/F̄ (t) is increasing (i.e. F is IFR) then

H
j
n (t, x) = P(Xj :n − t > x | X1:n > t) for j ≥ 1

is decreasing in t for all x ≥ 0.

Proof. Note that the random variable (Xj :n − t | X1:n > t) can be considered as the j th
order statistic in a random sample of size n from a left-truncated distribution with survival
function F̄ (t + x)/F̄ (t) for x, t > 0. Hence, the survival function H

j
n (t, x) is given by

H
j
n (t, x) =

j−1∑
m=0

(
n

m

){
1 − F̄ (t + x)

F̄ (t)

}m{
F̄ (t + x)

F̄ (t)

}n−m

=
∫ 1

1−F̄ (t+x)/F̄ (t)

n!
(j − 1)! (n − j)! t

j−1(1 − t)n−j dt. (2.7)

Since h(t) is increasing if and only if F̄ (t + x)/F̄ (t) is decreasing in t , from (2.7) we see that
H

j
n (t, x) is a decreasing function of t .

Lemma 2.6. Let h(t), the hazard rate of the components of the system, be increasing in t for
t > 0. Then γj,k,n(t, x) is a decreasing function of t .

Proof. Note that

d

dt
γj,k,n(t, x) =

j−1∑
l=k

(
d

dt
H

j−l
n−l (t, x)

)
Kn

l,j,k(t) +
j−1∑
l=k

H
j−l
n−l (t, x)

(
d

dt
Kn

l,j,k(t)

)
. (2.8)
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The first term on the right-hand side is negative by the assumption of the lemma and Lemma 2.5.
Hence, we just need to prove that the second term is negative. On taking Um(t) = (

n
m

)
tm, we

have
j−1∑
l=k

H
j−l
n−l (t, x)

(
d

dt
Kn

l,j,k(t)

)

=
∑j−1

l=k H
j−l
n−l (t, x)

{
U ′

l (t)
∑j−1

m=k Um(t) − Ul(t)
∑j−1

m=k U ′
m(t)

}
{∑j−1

m=k Um(t)
}2 .

After some algebraic manipulations, it can be shown that the numerator of the above expression
can be written as

j−1∑
l=k

j−1∑
m=k

U ′
l (t)Um(t){Hj−l

n−l (t, x) − H
j−m
n−m (t, x)}

=
j−1∑
l=k

l∑
m=k

U ′
l (t)Um(t){Hj−l

n−l (t) − H
j−m
n−m (t)}

+
j−1∑
m=k

m∑
l=k

U ′
l (t)Um(t){Hj−l

n−l (t) − H
j−m
n−m (t)}

=
k−1∑
l=j

l∑
m=j

{U ′
l (t)Um(t) − U ′

m(t)Ul(t)}{Hj−l
n−l (t, x) − H

j−m
n−m (t, x)}

=
k−1∑
l=j

l∑
m=j

(l − m)

{(
n

l

)(
n

m

)
t l+m−1

}
{Hj−l

n−l (t, x) − H
j−m
n−m (t, x)}

≥ 0,

where the last inequality follows from the fact that, for j > l ≥ m, we have

(Xj :n − t | Xl:n < t < Xl+1:n) ≤lr (Xj :n − t | Xm:n < t < Xm+1:n),

and, hence, H
j−l
n−l (t, x) ≤ H

j−m
n−m (t, x). This completes the proof.

Now we present the main result of this subsection.

Theorem 2.4. Let h(t), the hazard rate of the components of the system, be increasing in t for
t > 0. Then Pj,T (t, x) is a decreasing function of t .

Proof. Under the assumption that Pj,T (t, x) is differentiable in terms of t , we have

d

dt
Pj,T (t, x) =

i∑
k=1

(
d

dt
γj,k,n(t, x)

)
pk(t) +

i∑
k=1

γj,k,n(t, x)

(
d

dt
pk(t)

)
.

Based on the assumption of the theorem and the result in Lemma 2.6, the first term on the
right-hand side is negative and so it is sufficient to show that the second term is also negative.
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We have

i∑
k=1

γj,k,n(t, x)

(
d

dt
pk(t)

)

=
∑i

k=1 γj,k,n(t, x)
{
skW

′
j,k(t)

∑i
m=1 smWj,m(t) − skWj,k(t)

∑i
m=1 smW ′

j,m(t)
}

{∑i
m=1 smWj,m(t)

}2 .

After some algebraic manipulations, we can show that the numerator of the above expression
can be rewritten as

i∑
k=1

i∑
m=1

sksmγj,k,n(t, x){W ′
j,k(t)Wj,m(t) − Wj,k(t)W

′
j,m(t)}

=
i∑

k=1

k∑
m=1

sksm{W ′
j,k(t)Wj,m(t) − Wj,k(t)W

′
j,m(t)}{γj,k,n(t, x) − γj,m,n(t, x)}. (2.9)

Since (Xj :n − t | Xk:n < t < Xj :n) ≥st (Xj :n − t | Xk+1:n < t < Xj :n), we have, for
m ≤ k, γj,k,n(t, x) − γj,m,n(t, x) ≤ 0. On the other hand,

W ′
j,k(t)Wj,m(t) − Wj,k(t)W

′
j,m(t)

=
{j−1∑

l=k

(
n

l

)
φl(t)

}′{j−1∑
l=m

(
n

l

)
φl(t)

}
−

{j−1∑
l=k

(
n

l

)
φl(t)

}{j−1∑
l=m

(
n

l

)
φl(t)

}′

= φ
′
(t)

j−1∑
l1=k

j−1∑
l2=m

l1

(
n

l1

)(
n

l2

)
φl1+l2−1(t) − φ

′
(t)

j−1∑
l1=k

j−1∑
l2=m

l2

(
n

l1

)(
n

l2

)
φl1+l2−1(t)

= φ
′
(t)

j−1∑
l1=k

k−1∑
l2=m

(
n

l1

)(
n

l2

)
φl1+l2−1(l1 − l2)(t)

≥ 0.

Hence, the expression on the right-hand side of (2.9) is negative, and, consequently, Pj,T (t, x)

is decreasing in t , which completes the proof.

2.2. Stochastic comparisons between the live components

In what follows, we consider two coherent systems having the same structure with i.i.d.
components distributed according to common distribution functions F and G, respectively.
Let T1 and T2 be the corresponding lifetimes of the two systems. We show that, under the
condition that the hazard rate of the components with system lifetime T1 is less than the hazard
rate of the components with system lifetime T2, the live components of the system with lifetime
T1 are more reliable than the live components of the system with lifetime T2. For this specific
purpose, we need the following lemmas.

Lemma 2.7. We have X ≤hr Y if and only if

(Xj :n − t | Xl:n < t < Xl+1:n) ≤st (Yj :n − t | Yl:n < t < Yl+1:n). (2.10)
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Proof. Let BX
j,l,n(t, x) be the survival function of P(Xj :n − t > x | Xl:n < t < Xl+1:n).

Then from Lemma 2.2 we have

BX
j,l,n(t, x) =

n−l∑
m=n−j+1

(
n − l

m

)
(1 − Ft(x))m(Ft (x))n−l−m

= 1 −
n−j∑
m=0

(
n − l

m

)
(1 − Ft(x))m(Ft (x))n−l−m

= 1 − j

(
l

j

) ∫ 1

F̄ (t+x)/F̄ (t)

uj−1(1 − u)j−ldu.

However, the assumption that X ≤hr Y implies that F̄ (t + x)/F̄ (t) ≤ Ḡ(t + x)/ ¯G(t). Hence,
BX

j,l,n(t, x) ≤ BY
j,l,n(t, x), where BY

j,l,n(t, x) is the reliability function of (Yj :n − t | Yl:n < t <

Yl+1:n). This leads to the stochastic ordering in (2.10), completing the proof.

Lemma 2.8. Let X ≤hr Y . Then

(Xj :n − t | Xk:n < t < Xj :n) ≤st (Yj :n − t | Yk:n < t < Yj :n).

Proof. We have

γ X
j,k,n(t, x) − γ Y

j,k,n(t, x) =
j−1∑
l=k

BX
j,l,n(t, x)K

n,X
l,j,k(t) −

j−1∑
l=k

BY
j,l,n(t, x)K

n,Y
l,j,k(t)

=
∑j−1

l=k BX
j,l,n(t, x)

(
n
l

)
(φX(t))l∑j−1

m=k

(
n
m

)
(φX(t))m

−
∑j−1

l=k BY
j,l,n(t, x)

(
n
l

)
(φY (t))l∑j−1

m=k

(
n
m

)
(φY (t))m

=
{∑j−1

l=k BX
j,l,n(t, x)

(
n
l

)
(φX(t))l

}{∑j−1
m=k

(
n
m

)
(φY (t))m

}
{∑k−1

m=k

(
n
m

)
(φY (t))m

}{∑j−1
m=k

(
n
m

)
(φX(t))m

}

−
{∑j−1

l=k BY
j,l,t (t, x)

(
n
l

)
(φY (t))l

}{∑j−1
m=k

(
n
m

)
(φX(t))m

}
{∑k−1

m=k

(
n
m

)
(φY (t))m

}{∑j−1
m=k

(
n
m

)
(φX(t))m

} .

The numerator of the above expression can be rewritten as

j−1∑
m=k

(
n

m

) j−1∑
l=k

(
n

l

)
{(φX(t))l(φY (t))mBX

j,l,n(t, x) − (φX(t))m(φY (t))lBY
j,l,n(t, x)}

=
j−1∑
m=k

(
n

m

) j−1∑
l=k

(
n

l

)
(φX(t))l(φY (t))m{BX

j,l,n(t, x) − BY
j,l,n(t, x)}

+
j−1∑
m=k

(
n

m

) j−1∑
l=k

(
n

l

)
{(φX(t))l(φY (t))m − (φX(t))m(φY (t))l}BY

j,l,n(t, x). (2.11)

The assumption that X ≤hr Y implies, from Lemma 2.7, that BX
j,l,n(t, x) − BY

j,l,n(t, x) ≤ 0.
Hence, the first term on the right-hand side in the above expression is negative. Next, after
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performing some algebraic manipulations, it can be shown that the second term can be expressed
as

j−1∑
m=k

(
n

m

) m∑
l=k

(
n

l

)
{(φX(t))l(φY (t))m − (φX(t))m(φY (t))l}BY

j,l,n(t, x)

+
j−1∑
m=k

(
n

m

) j−1∑
l=m

(
n

l

)
{(φX(t))l(φY (t))m − (φX(t))m(φY (t))l}BY

j,l,n(t, x)

=
j−1∑
m=k

(
n

m

) m∑
l=k

(
n

l

)
(φX(t))m(φY (t))m{(φX(t))l−m − (φY (t))l−m}

× {BY
j,l,n(t, x) − B̄Y

j,m,t (x)}.

Now, since BY
j,l,t (t, x) − BY

j,m,t (t, x) ≥ 0 and (φX(t))l−m − (φY (t))l−m ≤ 0, the second term
on the right-hand side of (2.11) is also negative. This completes the proof.

The following theorem is the main result of this subsection.

Theorem 2.5. LetX ≤hr Y , and letT1 andT2 denote the lifetimes of two systems with signatures
of type (A). Then, for j > i, (Xj :n − t | T1 < t < Xj :n) ≤st (Yj :n − t | T2 < t < Yj :n).

Proof. Note that

P(Xj :n − t > x | T1 < t < Xj :n) =
i∑

k=1

pX
k (t)γ X

j,k,n(t, x),

P(Yj :n − t > x | T2 < t < Yj :n) =
i∑

k=1

pY
k (t)γ Y

j,k,n(t, x),

where

pX
k (t) = skW

X
j,k(t)∑i

m=1 smWX
j,m(t)

, pY
k (t) = skW

Y
j,k(t)∑i

m=1 smWY
j,m(t)

.

To prove the required result, we need to show that

i∑
k=1

pX
k (t)γ X

j,k,n(t, x) −
i∑

k=1

pY
k (t)γ Y

j,k,n(t, x)

=
i∑

k=1

skW
X
j,k(t)∑i

m=1 smWX
j,m(t)

γ X
j,k,n(t, x) −

i∑
k=1

skW
Y
j,k(t)∑i

m=1 smWY
j,m(t)

γ Y
j,k,n(t, x)

≤ 0.

This, in turn, is equivalent to showing that

i∑
k=1

i∑
m=1

smskW
X
j,k(t)W

Y
j,m(t)γ X

j,k,n(t, x) −
i∑

k=1

i∑
m=1

smskW
X
j,m(t)WY

j,k(t)γ
Y
j,k,n(t, x) ≤ 0.
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The left-hand side of the above inequality can be written as

i∑
k=1

i∑
m=k

sksm{WX
j,k(t)W

Y
j,m(t) − WX

j,m(t)WY
j,k(t)}{γ X

j,k,n(t, x) − γ X
j,k,n(t, x)}. (2.12)

From Lemma 2.8, for m ≥ k, we have γ Y
j,k,n(t, x) ≤ γ X

j,k,n(t, x). Moreover, it is not difficult
to show that

WX
j,k(t)W

Y
j,m(t) − WX

j,m(t)WY
j,k(t) ≤ 0.

So, the expression in (2.12) is negative, which completes the proof.

3. Inactivity times of the failed components

In this section we study the properties of inactivity times of the components of a coherent
system that have failed in the system, but the system is still functioning at time t . Let T be the
lifetime of a coherent system of order n, and denote by X1, X2, . . . , Xn the i.i.d. lifetimes of
its components with the underlying distribution of the components being F . In what follows,
we suppose that the signature of the system has the form

s = (0, . . . , 0, si , si+1, . . . , sn), 1 < i ≤ n. (3.1)

Examples of coherent systems of order 4 with signature vector of the form (3.1) are presented
in Table 2.

In such coherent systems, we have

P(T = Xk:n) = 0 for k = 1, 2, . . . , i.

That is, a component with lifetime Xk:n, k = 1, 2, . . . , i, cannot cause the failure of the system
and, hence, when the system is working at time t , i.e. T > t , it is possible for such components
to have already failed in the system, i.e. Xk:n < t . Thus, the following conditional random
variable will be of interest for reliability and system designers:

(t − Xk:n | T > t, Xk:n < t).

This conditional random variable is in fact the inactivity time of the component with lifetime
Xk:n when the system is working at time t and the component with lifetime Xk:n has failed

Table 2: Coherent systems with four components and signatures of the form (3.1).

T = T (X1, X2, X3, X4) Signature

X2:2 = max(X1, X2) (2-parallel) (0, 1
6 , 1

3 , 1
2 )

max(X2, min(X1, X3)) (consecutive 2-out-of-3 : F) (0, 1
3 , 5

12 , 1
4 )

max(X1, min(X2, X3, X4)) (0, 1
2 , 1

4 , 1
4 )

max(X1, min(X2, X3), min(X3, X4)) (0, 1
6 , 7

12 , 1
4 )

X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1
4 , 3

4 )

max(X2:3, X4) (0, 0, 3
4 , 1

4 )

min(max(X1, X2, X3), max(X2, X3, X4)) (consecutive 3-out-of-4 : F) (0, 0, 1
2 , 1

2 )

X4:4 = max(X1, X2, X3, X4) (parallel) (0, 0, 0, 1)
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sometime before t , k = 1, . . . , i. In the sequel, we are interested in examining the ageing and
stochastic properties of the conditional probability

P ∗
j,T (t, x) = P(t − Xj :n > x | T > t, Xj :n < t) for j = 1, 2, . . . , i.

We now obtain the form of P ∗
j,T (t, x). Using the same steps as used to obtain the form of

Pj,T (t, x) earlier, we obtain, for j ≤ i − 1 and all x, y ≥ 0,

P(T > x, Xj :n < y) =
n∑

k=i

P(T = Xk:n, T > x, Xj :n < y)

=
n∑

k=i

sk P(Xk:n > x, Xj :n < y).

Therefore, for all x < t and t > 0, we have

P ∗
j,T (t, x) = P(t − Xj :n > x, T > t, Xj :n < t)

P(T > t, Xj :n < t)

=
n∑

k=i

p∗
k (t) P(t − Xj :n > x | Xk:n > t, Xj :n < t), (3.2)

where

p∗
k (t) = sk

P(Xk:n > t, Xj :n < t)

P(T > t, Xj :n < t)
= P(T = Xk:n | T > t, Xj :n < t).

Remark 3.1. As with pk(t) in Section 2, we can easily show that

p∗
k (t) = skW

∗
j,k(t)∑n

m=i smW ∗
j,m(t)

, (3.3)

where W ∗
j,m(t) = ∑m−1

l=j

(
n
l

)
(φ(t))l and φ(t) = F(t)/F̄ (t). Let p∗(t) = (p∗

1(t), . . . , p∗
n(t)).

Using the form in (3.3), we can show, similar to Theorem 2.1, that limt→0 p∗(t) = s and
limt→∞ p∗(t) = (0, . . . , 0, 1).

The following theorem can be established along the same lines as Theorem 2.2, and, hence,
its proof is omitted for the sake of brevity.

Theorem 3.1. Let p∗(t) = (0, 0, . . . , 0, p∗
i (t), . . . , p

∗
n(t)), where p∗

k (t) is as given in (3.3).
Then

(a) p∗(t1) ≤st p∗(t2) for all 0 ≤ t1 ≤ t2;

(b) p∗(t) ≥st s for all t ≥ 0.

In what follows, we present the main results of this section concerning some properties of
the random variable

(t − Xj :n | Xk:n > t, Xj :n < t) = (t − Xj :n | Xj :n < t < Xk:n) for 1 ≤ j < k ≤ n.

Let
γ ∗
j,k,n(t, x) = P(t − Xj :n > x | Xj :n < t < Xk:n).
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Then, by performing some algebra, it can be shown that

γ ∗
j,k,n(t, x) =

k−1∑
l=j

B∗
j,l,n(t, x)K∗n

l,j,k(t),

where
B∗

j,l,n(t, x) = P(t − Xj :n > x | Xl:n < t < Xl+1:n)
and

K∗n
l,j,k(t) = P(Xl:n < t < Xl+1:n)

P(Xj :n < t < Xk:n)

=
(
n
l

)
(F (t))l(1 − F(t))n−l

∑k−1
m=j

(
n
m

)
(F (t))m(1 − F(t))n−m

=
(
n
l

)
(φ(t))l∑k−1

m=j

(
n
m

)
(φ(t))m

, 1 ≤ j ≤ l < k ≤ n.

Remark 3.2. The quantity B∗
j,l,n(t, x) can easily be shown to equal

B∗
j,l,n(t, x) =

l∑
m=j

(
l

m

)
(Ft (x))m(1 − Ft(x))l−m, (3.4)

where Ft(x) = F(t − x)/F (t), 0 < x < t . Hence, from this equation we obtain the equality
in distribution

(t − Xj :n | Xl:n < t < Xl+1:n)
d= Xt

l−j+1:l ,

where Xt
l−j+1:l denotes the (l−j+1)th order statistic among l i.i.d. random variables distributed

as (t − X | X < t) with distribution function Ft(x) = F(t − x)/F (t).
It is well known (see Theorem 1.C.37 and Corollaries 1.C.38 and 1.C.39 of [23]) that

Xj :m ≤lr Xi:n, j ≤ i, m − j ≥ n − i,

Xk−1:m−1 ≤lr Xk:m, k = 2, 3, . . . , m,

Xk:m−1 ≥lr Xk:m, k = 1, 2, . . . , m − 1.

Hence, we have

Xt
l−j+1:l ≤lr Xt

l+1−j+1:l+1, Xt
l−j+1:l ≤lr Xt

l−j+1:l−1 = Xt
l−1−(j−1)+1:l−1.

This, in turn, implies that

(t − Xj :n | Xl:n < t < Xl+1:n) ≤lr (t − Xj :n | Xl+1:n < t < Xl+2:n),
(t − Xj :n | Xl:n < t < Xl+1:n) ≤lr (t − Xj :n | Xm:n < t < Xm+1:n), l ≤ m,

(t − Xj :n | Xl:n < t < Xl+1:n) ≤lr (t − Xj−1:n | Xl−1:n < t < Xl:n).

Remark 3.3. Asadi [1] showed that

P(t − Xj :l > x | Xl:l < t) =
l∑

m=j

(
l

m

)
(Ft (x))m(1 − Ft(x))l−m.
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Hence, from (3.4) we obtain

(t − Xj :n | Xl:n < t < Xl+1:n)
d= Xt

l−j+1:l
d= (t − Xj :l | Xl:l < t),

and so
(t − Xj :l | Xl:l < t) ≤lr (t − Xj :l+1 | Xl+1:l+1 < t),

(t − Xj :l | Xl:l < t) ≤lr (t − Xj :m | Xm:m < t), l ≤ m.

We now present a theorem that is useful for our subsequent derivations. The proof of the
theorem is similar to that of Theorem 2.4 and is therefore omitted for the sake of brevity.

Theorem 3.2. If k ≤ m then (t − Xj :n | Xj :n < t < Xk:n) ≤lr (t − Xj :n | Xj :n < t < Xm:n).

Theorem 3.3. Let p∗
1(t) and p∗

2(t) for a fixed t > 0 be the vectors of coefficients in represen-
tation (3.2), of two coherent systems of order n, both based on components with i.i.d. lifetimes
having a common continuous distribution function F . Let T1and T2 denote the respective
lifetimes of the two systems. We then have the following stochastic inequalities:

(a) if p∗
1(t) ≤st p∗

2(t) then (t − Xj :n | Xj :n < t < T1) ≤st (t − Xj :n | Xj :n < t < T2);

(b) if p∗
1(t) ≤rh p∗

2(t) then (t − Xj :n | Xj :n < t < T1) ≤rh (t − Xj :n | Xj :n < t < T2);

(c) if p∗
1(t) ≤lr p∗

2(t) then (t − Xj :n | Xj :n < t < T1) ≤lr (t − Xj :n | Xj :n < t < T2).

Proof. The theorem can be proved by using Theorem 1.B.12 of [23], and proceeding along
the same lines as those used to establish Theorem 2.3.

3.1. Ageing properties of the failed components

In this subsection we study some ageing properties of P ∗
j,T (t). First, we note that B∗

j,l,n(t, x)

can be rewritten as

H
∗j
l (t, x) =

l∑
m=j

(
l

m

)
(Ft (x))m(1 − Ft(x))l−m

=
∫ F(t−x)/F (t)

0
j

(
l

j

)
uj−1(1 − u)l−j du. (3.5)

Let r(t) = f (t)/F (t) be the reversed hazard rate of the components of the system. Then it
is easy to see that r(t) is decreasing if and only if F(t − x)/F (t) is an increasing function
of t, t > 0. Hence, from (3.5), r(t) is decreasing if and only if B∗

j,l,n(t, x) is an increasing
function of t for all x ≥ 0. The above discussion leads to the following lemma.

Lemma 3.1. Let r(t), the reversed hazard rate of the components of the system, be decreasing
in t for t > 0. Then, γ ∗

j,k,n(t, x) is an increasing function of t .

Proof. Note that

d

dt
γ ∗
j,k,n(t, x) =

k−1∑
l=j

(
d

dt
H

∗j
l (t, x)

)
Kn

l,j,k(t) +
k−1∑
l=j

H
∗j
l (t, x)

(
d

dt
Kn

l,j,k(t)

)
.

The assumption that r(t) is decreasing implies, from the discussion above, that the first term on
the right-hand side of the above equation is nonnegative. The second term can also be shown
to be nonnegative if we follow the same arguments as used to show that the second term on the
right-hand side of (2.8) (in Lemma 2.6) is nonnegative. This completes the proof.
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The following theorem extends the result of Lemma 3.1 to coherent systems. First, since

(t − Xj :n | Xj :n < t < Xk:n) ≤st (t − Xj :n | Xj :n < t < Xk+1:n),

we have

γ ∗
j,k,n(t, x) ≤ γ ∗

j,k+1,n(t, x). (3.6)

Theorem 3.4. Let r(t), the reversed hazard rate of the components of the system, be decreasing
in t for t > 0. Then, P ∗

j,T (t) is an increasing function of t .

Proof. Note that

d

dt
P ∗

j,T (t, x) =
n∑

k=i

(
d

dt
γ ∗
j,k,n(t, x)

)
p∗

k (t) +
n∑

k=i

γ ∗
j,k,n(t, x)

(
d

dt
p∗

k (t)

)
.

The first term on the right-hand side is nonnegative due to Lemma 3.1. The second term can also
be proved to be nonnegative by following similar lines to those used in the proof of Theorem 2.4
and by using inequality (3.6).

3.2. Stochastic comparison between the failed components

Let X and Y denote two continuous random variables with distribution functions F and G,
density functions f and g, and reversed hazard rates rF and rG, respectively. Consider two
coherent systems with the same signature as in (3.1), and assume that T1 and T2 denote the
lifetimes of the systems whose components are distributed as F and G, respectively. In this
subsection we prove that when the components of the system are ordered in terms of reversed
hazard rates, then the inactivity times of the failed components of the systems are stochastically
ordered. First, let Xi:n and Yi:n, i = 1, 2, . . . , n, denote the ordered lifetimes of the two
systems, respectively. From (3.5), it can be easily shown that X ≤rh Y if and only if

(t − Xj :n | Xl:n < t < Xl+1:n) ≥st (t − Yj :n | Yl:n < t < Yl+1:n).

If we follow the same arguments as those used to prove Lemma 2.8, we can show that if X ≤rh Y

then

(t − Xj :n | Xj :n < t < Xk:n) ≥st (t − Yj :n | Yj :n < t < Yk:n).

Finally, the steps that were used to prove Theorem 2.5 lead to the following theorem, which we
therefore present here without a proof for the sake of brevity.

Theorem 3.5. Let X ≤rh Y . Then (t −Xj :n > x | Xj :n < t < T1) ≥st (t −Yj :n > x | Yj :n <

t < T2).
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