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Abstract

We investigate the behaviour of a reaction described by Michaelis-Menten kinetics in an
immobilised enzyme reactor (IER). The IER is treated as a well-stirred flow reactor, with the
restriction that bounded and unbounded enzyme species are constrained to remain within
the reaction vessel. Our aim is to identify the best operating conditions for the reactor.
The cases in which an immobilised enzyme reactor is used to either reduce pollutant
emissions or to synthesise a product are considered. For the former we deduce that the
reactor should be operated using low flow rates whereas for the latter high flow rates are
optimal. It is also shown that periodic behaviour is impossible.

1. Introduction

Immobilised enzyme technology (IET) is attractive to process industries in which
either the enzymes (biocatalysts) involved are expensive or a large throughput of sub-
strate is required. We investigate a model for an enzyme-catalysed reaction, obeying
Michaelis-Menten kinetics, occurring in an immobilised enzyme reactor (IER).

The Michaelis-Menten scheme is

E + S^ [E-S]^ E + P. (1.1)

The process represented by (1.1) is the conversion of a substrate species (5) to a
product species (P). The first step of this conversion is the reversible formation
of a bounded enzyme species, an enzyme-substrate complex, ([£ — 5]). The final
step is the irreversible decay of the the bounded enzyme species to give unbounded
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enzyme ([£]) and the product. We interpret this process as representing either the
removal of a pollutant from a feed stream or the synthesis of a desired chemical
species.

The Michaelis-Menten mechanism is widely used in modelling studies because it
has been shown to provide a useful interpretation of kinetic data from many enzyme-
catalysed reactions [2]. This study is motivated by its use for modelling the production
of hydrolysed lactose, a product in great demand by consumers who are lactose-
intolerant, in a batch reactor [4].

1.1. Interpretation of the model A bioreactor is a vessel in which biological
reactions are carried out by microorganisms or enzymes contained within the reactor
itself. A membrane bioreactor is a vessel integrating membrane separations with
biological transformation. In this paper we have in mind a membrane bioreactor
in which the membrane walls constrain the freely-floating immobilised enzyme to
remain within the reactor. However, our model applies equally well to bioreactors
in which active enzyme groups are attached to the vessel walls through techniques
such as adsorption, chemical bonding, polymer lattice entrapment etc. Although the
models for these two types of IER are equivalent, there are some differences in the
interpretation of the rate constants and the species concentrations between the two
reactors. For instance, in the flow reactor the concentration of the species [E] is
measured in units of mol m~2, because the enzyme is dispersed over the surface of
the reactor, and a new constant, As, the surface area over which the enzyme may be
immobilised, is introduced.

2. Equations

We model the IER as a continuously stirred tank reactor. The substrate (5) flows
through the IER whilst the reaction products are discharged from it — the retention of
an immobilised enzyme within a zone of a flow reactor is one of the main advantages of
IET. However, the unbounded and bounded enzyme are constrained to remain within
the reactor. Thus there are no flow terms in Equations (2.1) and (2.3), such as -q[E]
and — q[E - S]. We further assume that there are no enzyme complexes initially
present in the reactor, Equations (2.5) and (2.6).

2.1. Dimensional equations The model equations for the kinetic scheme (1.1)
occurring in an IER are
unbounded enzyme concentration:

= V (*_,[£ - 5] - Jfc,[E]S + k2[E - S]), (2.1)
at

substrate concentration:
dS

V— = q (So - S) + V (*_,[£ - S] - jfc,[£]5), (2.2)
at
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concentration of bounded enzyme:
,,d[£-S]

d/
product concentration:

V
At

initial conditions:

= V (*,[£]S - *_,[£ - 5] - k2[E - S]), (2.3)

= -qP + Vk2[E-S] and (2.4)

[E](t = 0) = £0, (2.5)

S(t =0) = [E- S](f = 0) = P{t = 0) = 0. (2.6)

We have assumed that enzyme species neither flow into nor out of the membrane biore-
actor, a key feature of such a vessel. Furthermore, enzyme concentration is conserved
by kinetic scheme (1.1) and therefore on physical grounds the total concentration of
enzyme species ([£] + [E — 5]) must equal its initial value (£0). Mathematically, this
follows from adding (2.1) and (2.3) and integrating to obtain

[£](0 + [E- S](t) = [E]o. (2.7)

This relationship therefore enables the elimination of one of the enzyme species ([£],
[£—5]) from the model. We choose to eliminate the unbounded enzyme species ([£]).

The classical formulation of Michaelis-Menten kinetics applies a stationary state
approximation to Equation (2.3), that is, it assumes that d[£ - 5]/d/ « 0 for all t,
and uses (2.7) to obtain the approximation

f •
This expression, containing a saturating effect in the substrate concentration (S), is
then substituted into (2.1), (2.2) and (2.4). We do not need to make the stationary state
approximation for our analysis.

2.2. Dimensionless equations We non-dimensionalise the enzyme species using
the conserved quantity [£]0 by defining

a n d ^ =

where 8 and 6S are the proportion of unbounded and bounded enzyme respectively.
Equation (2.7) becomes

0(0 + 05(O = 1.

The concentrations of liquid-phase species (5 and P) are non-dimensionalised
using the inflow substrate concentration (50) and time is non-dimensionalised using
the reaction-rate constant k-\.
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The dimensionless model equations are then

dS* E*
— = q\\ - S*) + -£0S - E'0(l - 9S)S\ (2.8)

d9s

-^ = 5*(1 - 8S)S* - (1 + k\)9s, (2.9)

The initial conditions are S*(t* = 0) = 9s(t* = 0) = P*(t* = 0) = 0. In these
equations q*, a dimensionless flow rate, is the experimentally controllable parameter.

Observe that the product concentration (P*) does not appear in (2.8) and (2.9).
Thus the variables 5* and 9S can be solved directly from the two-dimensional system
comprised of Equations (2.8) and (2.9).

3. Results

The generation of periodic solutions by biochemical systems has been a matter of
considerable experimental and theoretical interest. In Section 3.1 we establish that
our model does not exhibit periodic solutions. In Section 3.2 we show that the system
has a unique steady-state solution.

3.1. Non-existence of periodic solutions In this section we show that the system
defined by (2.8) and (2.9) does not exhibit periodic solutions. In general it is very
difficult to prove that a given system of ordinary differential equations does not
exhibit periodic behaviour. However, the geometric constraints imposed upon solution
trajectories in two-dimensional systems allow a powerful technique to be applied to
obtain the desired result.

The non-existence proof proceeds in two parts.

(1) We first show that the region (E) in (S*, 9S) space defined by

0 < 9 < 1 and 0 < S* < 1 +

is invariant. This means that for any initial condition in £ the associated solution of
the model remains in S. This result is established in Appendix A.
(2) We use the bounds 5* > 0 and 9E < 1, established above in conjunction with

the choice B = 1 in Dulac's theorem, to prove that Equations (2.8) and (2.9) cannot
exhibit periodic solutions for any initial condition in the set E. This is proven in
Appendix B.
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3.2. Steady-state analysis From (2.9) the steady-state substrate concentration is
given by

The steady-state bounded enzyme concentration is given by the solution of the equation

Equation (3.2) has a positive root inside the invariant region E with 0 < Bs < 1 and a
physically meaningless root outside the invariant region with 1 < 0s < oo. Thus the
steady-state solution for the fractional coverage is given by

P, , g*( l+*; + S0*)l /[-, , q'(l+kj + ^y\2 4q*S*0

\ k*F* V k*F* k*F*
. (3.3)

As we established in Section 3.1 that periodic solutions are impossible in E we
conclude that the unique steady-state solution in E is attracting for all initial conditions
within the invariant region.

Note that the steady-state corresponding to 9S > 1 has, from (3.1), 5* < 0. It is
therefore non-physical.

4. Discussion

The steady-state product concentration is obtained from (2.10) and (3.3) and is
given by

1 1 / 2g*(l+*2*-S0*)
2S0* I k'2E* % q]) * £ ( * £ ) ]

(4.1)

From (4.1) it follows that

(1) In the limit of small flow rates (q* « ; 1) we have

(2) In the limit of high flow rates (q* » I) we have

2 d +k'2)k'2E*(
1 + k*2 + S*o W (1 +

k'2)k'2E* ± \ ( ± \

+ So)2 q*2) W J '
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(4.2)

Thus the product concentration decreases from 1 to 0 as the flow rate increases.
Figure 1 shows the product concentration as a function of the flow rate.

0.2 0.4 0.6 0.8 1
Dimensioniess flow rate

FIGURE 1. The dependence of the dimensionless product concentration (/»*) on the dimensionless flow
rate {q'). Equation (4.1). Enzyme concentration: (1) EQ = 10, (2) EJ = 1 and (3) £„ = 0.1. Parameter
values: substrate concentration, SJ = 1; reaction rate constant, k\ = 1.

Equation (4.2) shows that product yield decreases with increasing flow rate. Sup-
pose that the substrate species is a pollutant and that the immobilised enzyme reactor
is a cleansing technology. If a maximum allowable substrate concentration leaving
the reactor is specified, perhaps by legislation, then there exists a maximum flow rate
at which the reactor can be operated: if the reactor is operated above this flow rate
the emission of pollutant exceeds the specified value. This maximum flow rate can
be obtained from (4.1). Thus if the aim is to minimise the emission of a pollutant
the reactor must be operated at sufficiently 'low' flow rates. For a simple chemical
mechanism such as Michaelis-Menten this is unsurprising: the lower the flow rate the
longer that the substrate remains in the reactor, on average molecules have much more
time to react.

Assume now that the membrane reactor is being used to synthesise a commercially
viable product from the substrate. As the flow rate increases, the product-yield
decreases. Do we again conclude that the reactor should be operated at low flow rates?
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Consider a situation in which the parameter values are those of line (1) in Figure 1.
When the flow rate is q* = 1 the product concentration is P* = 0.8211 whereas
for a flow rate q* = 2 the product concentration is P* = 0.6834. Thus, although
the product concentration has decreased, the steady-state reactor productivity per unit
time, which is R* = q*P*, has increased, from 0.8211 to 1.2668.

Hence if the reactor is being used to synthesise a product the appropriate quantity
to consider is not the product concentration but rather the reactor productivity, which
is given by

-q r -

From (4.3) it is possible to deduce that

(1) In the limit of small flow rates (q* <£ 1) we have

(2) In the limit of high flow rates (q* » 1) we have

~l+k*2+S*0\ (l+k*2+S*0)*q*J W2)-

(3) For q* € (0, oo)

dR*
—- > 0 .
dq*

Thus the reactor productivity increases monotonically from zero as the flow rate
increases, with limiting maximum value

Thus immobilised enzyme reactors should be operated at the highest possible flow
rate (theoretically at an infinite flow rate) to maximise reactor productivity. Figure 2
shows the reactor productivity as a function of the flow rate for the same parameter
values used in Figure 1. Note that saturation of the reactor productivity function,
Equation (4.3), may occur at relatively low values of the flow rate, such as line (3)
in Figure 2. In practice it may be desirable to operate at lower flow rates and accept
a reduced reactor productivity. For instance, if there are significant costs associated
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with the separation of the substrate and product species it may be more economical
to maximise product yield, minimising substrate concentration in the outflow, rather
than to maximise the reactor productivity. Operational considerations may impose
restrictions on the maximum allowable flow rate, for example the stability of the
immobilised enzyme is usually adversely effected at high flow rates.

0 0.2 0.4 0.6 0.8 1
Dimensionless flow rate

FIGURE 2. The dependence of the dimensionless reactor productivity (q'P*) on the dimensionless flow
rate (<?*), Equation (4.3). Parameter values are the same as for Figure 1.

Equation (4.4) shows that the maximum reactor productivity is a linear function of
the initial enzyme concentration. Very efficient enzymes have a high turnaround of
substrate into product, corresponding to a large value for k^. Equation (4.4) shows
that the productivity of such enzymes is limited by their initial concentration.

5. Conclusion

We have examined the behaviour of the Michaelis-Menten mechanism in an immo-
bilised enzyme reactor. We have established that periodic behaviour is impossible and
that the system has a unique steady-state solution. We have shown that the product
concentration inside the reactor is a monotonic decreasing function of the flow rate
whilst the reactor productivity is a monotonic increasing function of the flow rate; in
the limit that the flow rate becomes infinite the product concentration approaches zero
and the reactor productivity obtains a non-zero maximum given by (4.4). Thus if the
aim is to reduce the emission of a pollutant, low flow rates are required. Conversely,
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if the aim is to maximise reactor productivity high flow rates should be used; this is
not an obvious conclusion.

In future work we aim to extend the Michaelis-Menten mechanism to include
product competitive inhibition and decomposition of the product via a side reaction.
These mechanisms have been used to model the production of hydrolysed lactose in a
batch reactor [4]. The ultimate intention of this analysis is to aid future experimental
investigations in predicting efficient production techniques for hydrolysed lactose and
other enzyme-based products.

Appendix A. Proof of invariant region

DEFINITION 1 (from [1]). Let E be a domain enclosed by a simple curve 3 £ .
Then D is an invariant set for the two-component system du/df = f (u) if any solution
of the system with initial conditions in £ remains in £ for all / > 0.

LEMMA 1 (from [1]). If f(u) • n(u) < 0for all n(u) € 3£ , where n(u) is the unit
outward normal at u 6 3D, then X! is an invariant set.

Lemma 1 can be applied to domains containing points where f • n = 0 or where
the normal vector n is undefined provided that at these points the direction of the
derivative vector does not point out of the invariant set.

CLAIM 1. Using the coordinate system (5*, #5), the rectangle defined by

(0 < s* < 1 + -%, 0 < es < 1)

is invariant for the system defined by (2.8) and (2.9).

It is a straightforward calculation to determine whether the given region is invariant.
Note that a unit outward normal is not defined at the corners of the region. At these
points it is sufficient to show that the direction of the derivative vector does not point
out of the invariant set.

We provide a sample calculation for one side of the rectangle to demonstrate the
technique. Consider the edge 0 < S* < 1 -I- (Eyq*SQ) with 9S = 0. The unit outward
normal is the vector ( 0 , - 1 ) and we have

f(u) • n(u) = -S*(l - 0S)S* + (1 + k*2)9s

= —S0S* as 9S = 0 by assumption

< 0 by the assumption that 5* > 0 except at the point S* = 0.
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We must now consider the direction of the derivative vector at the point (5*, 0s) =
(0,0). At this point we have (5*, 6S) = (q*, 0) which points along the boundary of
the invariant set. Thus it does not point out of the invariant set. The remaining sides
and edge points can be similarly checked.

Appendix B. Dulac's Theorem

DEFINITION 2. Consider two coupled ordinary differential equations

^-=f(x,y) and (B.I)

at
^ = «(*, y). (B.2)

The Dulac function & is defined as

^ d(Bf) f d(Bg)
dx + dy '

where B(x, y) is a function having continuous first partial derivatives.

THEOREM 1 (from [3]). If the Dulac function Si never changes sign (and is not
identically zero) in a simply connected region £ then the system defined by (B.I) and
(B.2) does not have a closed orbit (for example, periodic solutions) entirely within the
region S.

CLAIM 2. The system defined by (2.8) and (2.9) does not exhibit periodic solutions.

To prove this result we take the function B above to be the constant function B = 1
and use the bounds 6S < 1 and S* > 0 that were established in Appendix A.

We have

_3_d5^ 3 dfl5
~ 35' dt* +Ws'dF
= -q' - £*(1 - 6S) - S*S* - (1 + k'2)

< -q* - S*S* - (1+ k*2) as 0S < 1

< - < 7 * - ( l + * * ) a s 5 * > 0

< - 1 as q* > 0 and it* > 0.

Thus the Dulac function is always of one sign in the invariant region E and periodic
solutions are therefore impossible in this region.
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[E] Concentration of immobilised enzyme
[E]o Concentration of immobilised enzyme at time t = i

Ofc,/*_,)Eo
[E]Q Dimensionless concentration of immobilised enzyme at

time t* = 0
[E — 5] Concentration of immobilised species E — S
P Concentration of the product species
P* Dimensionless product concentration P* = P/So

P(0) Concentration of the product species at time t = 0:
P(0) = 0

R The rate of production of the product R = (k2Eo/So)Os
R* The dimensionless production rate of the product R* —

5 Concentration of substrate
5* Dimensionless substrate concentration 5* = S/So

5(0) Concentration of substrate at time t = 0: 5(0) = 0
5*(0) Dimensionless substrate concentration at time t = 0:

5*(0) = 5(0)/50

50 Concentration of the substrate 5 in the inflow
5g Dimensionless concentration of the substrate in the inflow

C* (h IU \O

V Volume of the membrane reactor
&i Forward reaction-rate constant
k-i Backwards reaction-rate constant
k2 Reaction-rate constant
*2 Dimensionless reaction-rate constant k$ -
q Flow rate
q* Dimensionless flow rate q* = q/k^\ V
t Time
t* Dimensionless time t* = k-Xt
6 Proportion of the enzyme present in the form of unbounded

enzyme 6 = [E - S]/[E]0

6 (0) Proportion of the enzyme present in the form of unbounded
enzyme at time / = 0: 9(0) -[E- 5](0)/[£]0

8S Proportion of bounded enzyme present 6S = [E - 5 ] / [£] 0

(molm 3)
(mol m~3)

(mol m~3)
(mol m~3)

(—)
(mol m~3)

(mol m"3)

(mol m~3)

(molm~3)

(m3)
(m'mor's-1

(s-1

(mV)

(s)
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