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Abstract

It is well known that a system of homogeneous second-order ordinary differential equations (spray) is
necessarily isotropic in order to be metrizable by a Finsler function of scalar flag curvature. In our
main result we show that the isotropy condition, together with three other conditions on the Jacobi
endomorphism, characterize sprays that are metrizable by Finsler functions of scalar flag curvature.
We call these conditions the scalar flag curvature (SFC) test. The proof of the main result provides
an algorithm to construct the Finsler function of scalar flag curvature, in the case when a given spray is
metrizable. Hilbert’s fourth problem asks to determine the Finsler functions with rectilinear geodesics.
A Finsler function that is a solution to Hilbert’s fourth problem is necessarily of constant or scalar
flag curvature. Therefore, we can use the constant flag curvature (CFC) test, which we developed in
our previous paper, Bucataru and Muzsnay [‘Sprays metrizable by Finsler functions of constant flag
curvature’, Differential Geom. Appl. 31 (3)(2013), 405–415] as well as the SFC test to decide whether or
not the projective deformations of a flat spray, which are isotropic, are metrizable by Finsler functions of
constant or scalar flag curvature. We show how to use the algorithms provided by the CFC and SFC tests
to construct solutions to Hilbert’s fourth problem.
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1. Introduction

Second-order ordinary differential equations (SODEs) are important mathematical
objects because they have a large variety of applications in different domains of
mathematics, science and engineering [4]. A particularly interesting class of SODE
is the one which can be derived from a variational principle. The inverse problem
of the calculus of variations (IP) consists of characterizing variational SODEs, which
means to determine whether or not a given SODE can be described as the critical point
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318202, by TÉT-12-RO-1-2013-0022 and by TÁMOP-4.2.2.C-11/1/KONV-2012-0010 project.
c© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 $16.00

27

https://doi.org/10.1017/S1446788714000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000111


28 I. Bucataru and Z. Muzsnay [2]

of a functional. The most significant contribution to this problem is the famous paper
of Douglas [19] in which, using Riquier’s theory, he classifies variational differential
equations with two degrees of freedom. Generalizing his results to higher-dimensional
cases is a hard problem because the Euler–Lagrange system is an extremely over-
determined partial differential equation (PDE), so in general it has no solution. The
integrability conditions of the Euler–Lagrange PDE can be very complex and can
change case by case [3, 11, 18, 21, 25, 26, 28]. Therefore, it seems to be impossible to
obtain a complete classification of variational SODE in the n-dimensional case, unless
we restrict the problem to particular classes of sprays with special curvature properties
[6–8, 13, 15, 30].

A special and very interesting problem, within the IP, is known as the Finsler
metrizability problem. Here the Lagrangian to search for is the energy function of
a Finslerian or a Riemannian metric [24, 27, 32]. Of course, in this problem the
given system of SODE must be homogeneous or quadratic. If the corresponding
metric exists, then the integral curves of the given SODE are the geodesic curves
of the corresponding Finslerian or Riemannian metric. Since the obstructions to the
existence of a metric for a given SODE are essentially related to curvature properties
of the associated canonical nonlinear connection, it seems to be reasonable to consider
SODEs with special curvature properties. Obvious candidates to investigate are Finsler
structures with constant or scalar flag curvature. It is therefore natural to formulate the
following problem.

Provide the necessary and sufficient conditions that can be used to decide whether or
not a given homogeneous system of SODEs represents the Euler–Lagrange equations
of a Finsler function of constant flag curvature or scalar flag curvature, respectively.
In [13] we solved the first part of the problem by giving a characterization of sprays
that are metrizable by Finsler functions of constant flag curvature. We will refer to
the conditions of [13, Theorem 4.1] as to the constant flag curvature test, or CFC test
for short. In the present paper we consider the second part of the problem and solve it
completely by giving a coordinate free characterization of sprays metrizable by Finsler
functions of scalar flag curvature. Our main result can be found in Section 3, where
we provide the necessary and sufficient conditions, as tensorial equations on the Jacobi
endomorphism, which can be used to decide whether or not a given homogeneous
SODE represents the geodesic equations of a Finsler function of scalar curvature. The
first necessary condition for a spray to be metrizable by a Finsler function of scalar flag
curvature refers to the isotropy, see [29, Lemma 8.2.2]. In Theorem 3.1 we provide
three other conditions, which together with the isotropy condition, will characterize
the class of sprays that are metrizable by Finsler functions of scalar flag curvature.
We will refer to these conditions as to the scalar flag curvature test, or SFC test for
short. The proof of Theorem 3.1 offers, in the case when the SFC test is affirmative, an
algorithm to construct the Finsler function of scalar flag curvature that metricizes the
given spray. In all of the examples that we provide, we show how to use the proposed
algorithm to construct such Finsler functions. The importance of characterizing sprays
metrizable by Finsler functions of scalar flag curvature for constructing all systems of
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ordinary differential equations (ODEs) with vanishing Wilczynski invariants has been
discussed recently in [14].

In Section 4 we show that our results for characterizing metrizable sprays lead to
a new approach for Hilbert’s fourth problem. This problem asks to construct and
study the geometries in which the straight line segment is the shortest connection
between two points, [1]. Alternatively, one can reformulate the problem as follows:
‘given a domain Ω ⊂ Rn, determine all (Finsler) metrics on Ω whose geodesics are
straight lines’, [29, page 191]. Yet another reformulation of the problem requires us
to determine projectively flat Finsler metrics [16]. Projectively flat Finsler functions
have isotropic geodesic sprays and therefore have constant or scalar flag curvature.
Such Finsler metrics, of constant flag curvature where studied in [8, 30]. We use the
CFC test, as well as the SFC test, to study when the projective deformations of a flat
spray are metrizable. Using these conditions, we show how to construct examples that
are solutions to Hilbert’s fourth problem, given by Finsler functions of constant and
scalar flag curvature, respectively.

In Section 5 we give working examples to show how to use Theorem 3.1 to test
whether or not some other sprays are Finsler metrizable, and in the affirmative case
how to construct the corresponding Finsler function. By relaxing a regularity condition
of Theorem 3.1, we show that we can also characterize sprays that are metrizable by
conic pseudo or degenerate Finsler functions.

2. The geometric framework for Finsler metrizability

In this section we present the geometric setting for addressing the Finsler
metrizability problem [12, 24, 27, 29, 31]. This geometric setting, which includes
connections and curvature, can be derived directly from a given homogeneous SODE
using the Frölicher–Nijenhuis formalism (see [9], [21, Ch. 2] and [23, Section 30]).

2.1. Spray, connections and curvature. We consider M a smooth, real and n-
dimensional manifold. In this work, all geometric structures are assumed to be smooth.
We denote by C∞(M) the set of smooth functions on M, by X(M) the set of vector fields
on M and by Λk(M) the set of k-forms on M.

For the manifold M, we consider the tangent bundle (T M, π, M) and (T0M =

T M \ {0}, π, M) the tangent bundle with the zero section removed. If (xi) are local
coordinates on the base manifold M, the induced coordinates on the total space T M
will be denoted by (xi, yi).

The tangent bundle carries some canonical structures, very useful to formulate
our geometric framework. One structure is the vertical subbundle VT M = {ξ ∈
TT M, (Dπ)ξ = 0}, which induces an integrable, n-dimensional distribution V : u ∈
T M → Vu = VT M ∩ TuT M. Locally, this distribution, which we will refer to as the
vertical distribution, is spanned by {∂/∂yi}. Two other structures, defined on T M, are
the tangent structure, J, and the Liouville vector field, C, locally given by

J =
∂

∂yi ⊗ dxi, C = yi ∂

∂yi .
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If L is a vector valued l-form on T M, we will denote by iL and dL the derivations of
degree (l − 1) and l, respectively, connected by

dL = [iL, d] = iL ◦ d − (−1)l−1d ◦ iL.

For two vector values forms K and L on T M, of degrees k and l, we consider the
Frölicher–Nijenhuis bracket [K, L], which is the vector valued (k + l)-form uniquely
determined by

d[K,L] = [dK , dL] = dk ◦ dL − (−1)kldL ◦ dK .

For a brief introduction to Frölicher–Nijenhuis theory of derivations we refer to [21,
Ch. 2], and for various commutation formulae within this we will use Appendix A of
the same book.

The main object of this work is a system of n homogeneous, SODEs, whose
coefficients do not depend explicitly on time,

d2xi

dt2 + 2Gi
(
x,

dx
dt

)
= 0. (2.1)

For the functions Gi(x, y) we assume that they are positively 2-homogeneous, which
means that Gi(x, λy) = λ2Gi(x, y), for all λ > 0. By Euler’s theorem, the homogeneity
condition of the functions Gi is equivalent to C(Gi) = 2Gi.

The system (2.1) can be identified with a special vector field S ∈ X(T0M) that
satisfies JS = C and the homogeneity condition [C, S ] = S . Such a vector field is
called a spray and it is locally given by

S = yi ∂

∂xi − 2Gi(x, y)
∂

∂yi . (2.2)

If we reparameterize the second-order system (2.1), by preserving the orientation of the
parameter, we obtain a new system and hence a new spray S̃ = S − 2PC (see [4, 29]).
The function P ∈ C∞(T0M) is 1-homogeneous, which means that it satisfies C(P) = P.
The two sprays S and S̃ are called projectively related, while the function P is called
a projective deformation of the spray S .

An important geometric structure that can be associated to a spray is that of
nonlinear connection (horizontal distribution, Ehresmann connection). A nonlinear
connection is defined by an n-dimensional distribution H : u ∈ T M → Hu ⊂ TuT M
that is supplementary to the vertical distribution: TuT M = Hu ⊕ Vu. It is well known
that a spray S induces a nonlinear connection with the corresponding horizontal and
vertical projectors given by [20]

h = 1
2 (Id − [S , J]), v = 1

2 (Id + [S , J]).

Locally, the above two projectors can be expressed as follows

h =
δ

δxi ⊗ dxi, v =
∂

∂yi ⊗ δy
i

where
δ

δxi =
∂

∂xi − N j
i (x, y)

∂

∂y j , δy
i = dyi + N i

j(x, y) dx j, N i
j(x, y) =

∂Gi

∂y j (x, y).
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Alternatively, the nonlinear connection induced by a spray S can be characterized in
terms of an almost complex structure,

F = h ◦ [S , h] − J =
δ

δxi ⊗ δy
i −

∂

∂yi ⊗ dxi.

It is straightforward to check that F ◦ J = h and J ◦ F = v.
The horizontal distribution H is, in general, nonintegrable. The obstruction to its

integrability is given by the curvature tensor (or the Nijenhuis tensor)

R =
1
2

[h, h] =
1
2

Ri
jk
∂

∂yi ⊗ dx j ∧ dxk, Ri
jk =

δN i
j

δxk −
δN i

k

δx j . (2.3)

A spray S is said to be R-flat if the curvature tensor R, in formula (2.3), vanishes. The
terminology was proposed by Shen in [29].

Owing to the homogeneity condition of a spray S , curvature information can be
obtained also from the Jacobi endomorphism

Φ = v ◦ [S , h] = Ri
j
∂

∂yi ⊗ dx j, Ri
j = 2

∂Gi

∂x j − S (N i
j) − N i

kNk
j . (2.4)

The two curvature tensors are related by

3R = [J,Φ], Φ = iS R. (2.5)

Owing to the above properties, it follows that a spray S is R-flat if and only if the
Jacobi endomorphism, Φ, vanishes.

As we will see in this work, important geometric information about the given spray
S are encoded in the Ricci scalar, ρ ∈ C∞(T0M) (see [6] and [29, Definition 8.1.7]),
which is given by

(n − 1)ρ = Ri
i = Tr(Φ). (2.6)

Definition 2.1. A spray S is said to be isotropic if there exists a semi-basic 1-form
α ∈ Λ1(T0M) such that the Jacobi endomorphism can be written as follows

Φ = ρJ − α ⊗ C. (2.7)

Owing to the homogeneity condition, for isotropic sprays, the Ricci scalar is given
by ρ = iSα. Using formulae (2.5) and (2.7), it can be shown that the class of isotropic
sprays can be characterized also in terms of the curvature R of the nonlinear connection
[11, Proposition 3.4],

3R = (dJρ + α) ∧ J − dJα ⊗ C. (2.8)

To complete the geometric setting for studying the Finsler metrizability problem of a
spray, we will use also the Berwald connection. It is a linear connection on T0M, for
X,Y ∈ X(T0M), it is given by

DXY = h[vX, hY] + v[hX, vY] + (F + J)[hX, JY] + J[vX, (F + J)Y].
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Locally, the Berwald connection is given by

Dδ/δxi
δ

δx j =
∂Nk

i

∂y j

δ

δxk , Dδ/δxi
∂

∂y j =
∂Nk

i

∂y j

∂

∂yk .

D∂/∂yi
δ

δx j = 0, D∂/∂yi
∂

∂y j = 0.

The Berwald connection provides two covariant derivations, the h- and v-covariant
derivations. In this work we will use the h-covariant derivation, whose action on vector
fields is given by

Dh
XY = DhXY = v[hX, vY] + (F + J)[hX, JY], ∀X,Y ∈ X(T0M)

The Berwald connection has two curvature components. One is the Riemann curvature
tensor and it is directly related to the curvature tensor R and the Jacobi endomorphism
Φ. Another one is the Berwald curvature [29, Sections 7.1 and 8.1].

A spray S is said to be flat if the two curvature components of the Berwald
connection vanishes.

The action of the Berwald connection in the direction of the given spray S provides
a tensor derivation on T0M, which is called the dynamical covariant derivative
[10, Section 3.2]. This is a map ∇ : X(T0M)→ X(T0M), given by

∇X = h[S , hX] + v[S , vX], ∀X ∈ X(T0M).

We set ∇ f = S f , for all f ∈ C∞(T0M). By using the Leibniz rule and the requirement
that ∇ commutes with the tensor contraction, we can extend the action of ∇ to arbitrary
tensor fields and forms on T0M (see [9]).

2.2. Finsler spaces. In this section, we briefly recall the notion of Finsler functions,
as well as some generalizations: conic pseudo-Finsler functions and degenerate Finsler
functions. The variational problem for the energy of a Finsler function determines a
spray, which is called the geodesic spray. The Finsler metrizability problem requires
to decide if a given spray represents the geodesic spray of a Finsler function.

Definition 2.2. A continuous function F : T M → R is called a Finsler function if it
satisfies the following conditions:

(i) F is smooth and strictly positive on T0M, F(x, 0) = 0;
(ii) F is positively homogeneous of order 1 in the fibre coordinates, which means

that F(x, λy) = λF(x, y), for all λ > 0 and (x, y) ∈ T0M;
(iii) the 2-form ddJF2 is a symplectic form on T0M.

In this work we will allow for some relaxations of the above conditions, regarding
the domain of the function as well as the regularity condition (iii). See [4, Sections
1.1.2 and 1.2.1], [8] and [22] for more discussions about the regularity conditions and
their relaxation for a Finsler function.
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If the function F is defined on some positive conical region A ⊂ T M and the three
conditions of Definition 2.2 are satisfied on A ∩ T0M, then we call F a conic pseudo-
Finsler metric. Moreover, if we replace the regularity condition (iii) by a weaker
condition, rank(ddJF2) ∈ {1, . . . , 2n − 1} on A ∩ T0M, we call F a degenerate Finsler
metric [22].

Definition 2.3. A spray S is called Finsler metrizable if there exists a Finsler function
F such that

iS ddJF2 = −dF2. (2.9)

We will also use the metrizability property in a broader sense by calling a spray
S conic pseudo or degenerate Finsler metrizable if there exist a conic pseudo or
degenerate Finsler function F such that (2.9) is satisfied. If a spray S satisfies (2.9),
we call it the geodesic spray of the (conic pseudo or degenerate) Finsler function F.
It is well known that S is the geodesic spray of such function if and only if satisfies
following equation:

dhF2 = 0. (2.10)

Consider S the geodesic spray of some (conic pseudo or degenerate) Finsler function
F and let Φ be the Jacobi endomorphism.

Definition 2.4. The Finsler function F is said to be of scalar flag curvature if there
exists a function κ ∈ C∞(T0M) such that

Φ = κ(F2J − FdJF ⊗ C). (2.11)

Using the formulae (2.7) and (2.11) it follows that for a Finsler function F, of scalar
flag curvature κ, its geodesic spray S is isotropic, with the Ricci scalar ρ = κF2 and the
semi-basic 1-form α = κFdJF.

Conversely, it can be shown that if an isotropic spray S is metrizable by a Finsler
function F, then F is necessarily of scalar flag curvature. See [29, Lemma 8.2.2] or
the first implication in [13, Theorem 4.2] for an alternative proof. One can conclude
the above considerations as follows.

Remark. For a Finsler function, its geodesic spray is isotropic if and only if the Finsler
function is of scalar flag curvature.

3. Sprays metrizable by Finsler functions of scalar curvature

The problem we want to address in this paper is the following: provide the necessary
and sufficient conditions for a sprays S to be metrizable by a Finsler function of scalar
flag curvature. The discussion from the end of the previous section restricts the class
of sprays to start with to the class of isotropic sprays. Alternative formulations of the
conditions we use in the next theorem were proposed first in [21, Theorem 7.2], in the
analytic case, to decide when a nonflat isotropic spray is variational, by discussing the
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formal integrability of an associated partial differential operator. However, the next
theorem, will provide an algorithm to construct the Finsler function that metricizes a
given spray, in the case when such spray is variational. Moreover, the differentiability
assumption we use in the next theorem is weaker, all geometric structure we use are
smooth, not necessarily analytic. Next theorem extends the CFC test of Theorem 4.1
in [13], where we characterize sprays metrizable by Finsler functions of constant flag
curvature.

Theorem 3.1 (SFC test). Consider S a spray of nonvanishing Ricci scalar. The spray
S is metrizable by a Finsler function F, of nonvanishing scalar flag curvature, if and
only if:

(i) S is isotropic;
(ii) dJ(α/ρ) = 0;
(iii) Dh(α/ρ) = 0;
(iv) d(α/ρ) + 2iFα/ρ ∧ α/ρ is a symplectic form on T0M.

Proof. We assume that the spray S is metrizable by a Finsler function F of scalar flag
curvature κ and we will prove that the four conditions (i)–(iv) are necessary.

Since the Jacobi endomorphism Φ is given by formula (2.11), as we discussed
already, it follows that S is isotropic, and hence condition (i) is satisfied.

The semi-basic 1-form α and the Ricci scalar ρ are given by

α = κFdJF, ρ = κF2. (3.1)

It follows that α/ρ = dJF/F and therefore dJ(α/ρ) = 0, which means that the condition
(ii) is satisfied.

Since S is the geodesic spray of the Finsler function F, it follows from first formula
(2.10) that dhF = 0. Therefore, DhXF = (hX)(F) = (dhF)(X) = 0 and DhXdJF = 0. It
follows that Dh(α/ρ) = 0 and hence the condition (iii) is also satisfied.

We check now the regularity condition (iv). Using dhF = 0 and J ◦ F = v, we obtain

iF
α

ρ
= iF

1
F

dJF =
1
F

dvF =
1
F

dF.

Therefore, using the regularity of the Finsler function F, it follows that

d
(
α

ρ

)
+ 2iF

α

ρ
∧
α

ρ
= d

(dJF
F

)
+

2
F2 dF ∧ dJF =

1
2F2 ddJF2

is a symplectic form on T0M.
Let us prove now the sufficiency of the four conditions (i)–(iv).
Consider S a spray that satisfies all four conditions (i)–(iv). First condition (i) says

that the spray S is isotropic, which means that its Jacobi endomorphism Φ is given by
formula (2.7). Next three conditions (ii)–(iv) refer to the semi-basic 1-form α and the
Ricci scalar ρ, which enter into the expression (2.7) of the Jacobi endomorphism Φ.

From condition (ii) we have that the semi-basic 1-form α/ρ is a dJ-closed 1-form.
Since the tangent structure J is integrable, it follows that [J, J] = 0 and hence 2d2

J =

d[J,J] = 0. Therefore, using a Poincaré-type Lemma for the differential operator dJ ,
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it follows that, locally, α/ρ is a dJ-exact 1-form. It follows that there exists a
function f , locally defined on T0M, such that

1
ρ
α = dJ f =

∂ f
∂yi dxi. (3.2)

Note that this function f is not unique, it is given up to an arbitrary basic function
a ∈ C∞(M). We will prove that using this function f and a corresponding basic
function a, we can construct a Finsler function F = exp( f − a), of scalar flag curvature,
which metricizes the given spray S .

Using the commutation rule for iS and dJ , see [21, Appendix A], we have

C( f ) = iS dJ f = iS
α

ρ
= 1. (3.3)

Using the condition (ii) of the theorem, and the form (2.8) of the curvature tensor R,
we obtain

3dR f = (dJρ + α) ∧ dJ f − C( f )dJα

= (dJρ + α) ∧
α

ρ
− dJα = −ρdJ

(
α

ρ

)
= 0. (3.4)

The condition (iii) of the theorem can be written locally as follows

Dδ/δxi
∂ f
∂y j =

∂

∂y j

(
δ f
δxi

)
= 0, (3.5)

which means that the componentsωi = δ f /δxi are independent of the fibre coordinates.
In other words

ω = dh f =
δ f
δxi dxi, (3.6)

is a basic 1-form on T0M. Using formula (3.4) we have

0 = dR f = d2
h f = dh(dh f ) =

1
2

(
∂ωi

∂x j −
∂ω j

∂xi

)
dxi ∧ dx j = d(dh f ). (3.7)

It follows that the basic 1-form dh f ∈ Λ1(M) is closed and hence it is locally exact.
Therefore, there exists a function a, which is locally defined on M, such that

dh f = da = dha. (3.8)

We will prove now that the function

F = exp( f − a), (3.9)

locally defined on T0M, is a Finsler function of scalar flag curvature, whose geodesic
spray is the given spray S . Depending on the domain of the two functions f and a, the
function F might be a conic pseudo-Finsler function.
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From formula (3.3), we have that C(F) = exp( f − a)C( f ) = F, which means that F
is 1-homogeneous. Using formula (3.8), we obtain that

dhF = exp( f − a)dh( f − a) = 0. (3.10)

The semi-basic 1-form α/ρ, which is given by formula (3.2), can be expressed in
terms of the function F, given by formula (3.9), as follows

α

ρ
=

dJF
F

.

We use now formula (3.10) and obtain

d
(
α

ρ

)
+ 2iF

α

ρ
∧
α

ρ
=

1
F2 ddJF2. (3.11)

The last condition of the theorem assures that ddJF2 is a symplectic form and hence F
is a Finsler function. Owing to formula (3.10), we obtain that S is the geodesic spray
of the Finsler function F.

To complete the proof, we have to show now that F has nonvanishing scalar flag
curvature. Since the Finsler function F is given by formula (3.9), we have that F > 0
on T0M and we may consider the function

κ =
ρ

F2 . (3.12)

It follows that the semi-basic 1-form α is given by

α =
ρ

F
dJF = κFdJF. (3.13)

Since the Ricci scalar does not vanish, it follows that the function κ has the same
property. The last two formulae (3.12) and (3.13) show that the Jacobi endomorphism
Φ, of the geodesic spray S of the Finsler function F, is given by formula (2.11).
Therefore, the Finsler function F has nonvanishing scalar flag curvature κ. �

We can replace the regularity condition (iv) of Theorem 3.1 by a weaker condition
and require that rank(d(α/ρ) + 2iFα/ρ ∧ α/ρ) , 0 on some conical region in T0M. In
this case the theorem provides a characterization for sprays metrizable by conic pseudo
or degenerate Finsler function. We consider two examples of such sprays in Section 5.

For dimensions greater than two, Theorem 3.1 does not address the Finsler
metrizability problem in its most general context. The cases that are not covered by
this theorem refer to nonisotropic sprays that are metrizable by Finsler functions.

However, in the two-dimensional case, the SFC test of Theorem 3.1 covers the
Finsler metrizability problem in the most general case. This is due to the fact that any
two-dimensional spray is isotropic and, therefore, the Finsler metrizability problem is
equivalent to the metrizability by a Finsler function of scalar flag curvature. For the
two-dimensional case, in [7], Berwald provides the necessary and sufficient conditions,
in terms of the curvature scalars, such that the extremals of a Finsler space are
rectilinear.
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Dimension two is also important due to Douglas’ work [19], where the inverse
problem of the calculus of variation for two degrees of freedom is solved completely.
For dimension two, our Theorem 3.1 corresponds to case II, in Douglas’ classification.
In order to see this aspect we make use of the modern reformulation of Douglas’
classification from [18]. For X = S = hS , the condition (iii) of Theorem 3.1 implies
∇(α/ρ) = 0. For an isotropic spray S , we write its Jacobi endomorphism as follows

Φ = ρ
(
J −

α

ρ
⊗ C

)
.

Using some properties of the dynamical covariant derivative, [10], ∇J = 0 and ∇C = 0,
it follows

∇Φ = S (ρ)
(
J −

α

ρ
⊗ C

)
=

S (ρ)
ρ

Φ.

The above formula shows that ∇Φ and Φ are linear dependent, which is case II in
Douglas’ analysis.

The importance of characterizing sprays that are metrizable by Finsler functions of
scalar flag curvature was discussed recently in [14] since it will allow to ‘construct all
systems of ODEs with vanishing Wilczynski invariants’.

4. Hilbert’s fourth problem

‘Hilbert’s fourth problem asks to construct and study the geometries in which the
straight line segment is the shortest connection between two points’ [1]. Alternatively,
the problem can be reformulated as follows: ‘given a domain Ω ⊂ Rn, determine all
(Finsler) metrics on Ω whose geodesics are straight lines’ [29, page 191]. These
Finsler metrics are projectively flat and can be studied using different techniques
[16, 17, 30]. All such Finsler functions have constant or scalar flag curvature.
Therefore, we can use the conditions of [13, Theorem 4.1] and Theorem 3.1 to test
when a projectively flat spray is Finsler metrizable. For such sprays we use the
algorithms provided in the proofs of [13, Theorem 4.1] and Theorem 3.1 to construct
solutions to Hilbert’s fourth problem.

We start with S 0, the flat spray on some domain Ω ⊂ Rn. A projective deformation
S = S 0 − 2PC leads to a new spray that is isotropic. In the case when the spray
S satisfies either the CFC test or the SFC test, then S is the geodesic spray of a
Finsler function of constant or scalar flag curvature. In this way we provide a method
to construct Finsler functions of constant or scalar flag curvature with rectilinear
geodesics.

Consider a domain Ω ⊂ Rn and let S 0 ∈ X(Ω × Rn) be the flat spray. We will study
now, when a projective deformation

S = S 0 − 2PC = yi ∂

∂xi − 2Pyi ∂

∂yi , (4.1)
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for a 1-homogeneous function P ∈ C∞(Ω × Rn \ {0}), leads to a metrizable spray S by
a Finsler function F of constant or scalar flag curvature. Such a Finsler function F will
be a solution to Hilbert’s fourth problem.

Using the formulae [12, (4.8)], the Jacobi endomorphism of the new spray S is
given by

Φ = (P2 − S 0P)J − (PdJP + dJ(S 0P) − 3dh0 P) ⊗ C. (4.2)

It follows that the spray S is isotropic, the Ricci scalar, ρ, and the semi-basic form α
are given by

ρ = P2 − S 0P, α = PdJP + dJ(S 0P) − 3dh0 P. (4.3)

From the above formula it follows that

dJα = −3dJdh0 P = 3dh0 dJP. (4.4)

Using formula [12, (4.8)], the corresponding horizontal projectors for the two sprays
S and S 0 are related by

h = h0 − PJ − dJP ⊗ C. (4.5)

We use that C(P2 − S 0P) = 2(P2 − S 0P) as well as the formulae (4.3) and (4.5) to
obtain

dhρ = dh0 (P2 − S 0P) − PdJρ − 2ρdJP. (4.6)

In Section 4.1 we will use the conditions of [13, Theorem 4.1] to test whether the spray
S , given by formula (4.1), is metrizable by a Finsler function of constant flag curvature.
In Section 4.2 we will use the conditions of Theorem 3.1 to test whether the spray S is
metrizable by a Finsler function of scalar flag curvature. In each subsection, we show
how to construct examples of sprays that are metrizable by such Finsler functions.

4.1. Solutions to Hilbert’s fourth problem by Finsler functions of constant flag
curvature. The projectively flat spray S , given by formula (4.1), is isotropic, the
Ricci scalar, ρ, and the semi-basic 1-form α are given by formulae (4.3). According
to [13, Theorem 4.1], the spray S is metrizable by a Finsler function of constant flag
curvature if and only if the following three conditions are satisfied:

(C1) dJα = 0;
(C2) dhρ = 0;
(C3) rank(ddJρ) = 2n.

We study now the first condition (C1). Since the spray S 0 is flat, it follows that
R0 = [h0, h0]/2 = 0 and therefore d2

h0
= 0. Using a Poincaré-type lemma for the

differential operator dh0 , and formula (4.4), it follows that the condition (C1) is satisfied
if and only if there exists a locally defined, 0-homogeneous, smooth function g on
Ω × Rn \ {0} such that

dJP = dh0 g. (4.7)
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From the above formula, by applying the inner product iS 0 to both sides, we obtain

P = C(P) = iS 0 dJP = iS 0 dh0 g = S 0(g). (4.8)

In view of this formula, we obtain that the Ricci scalar, ρ, in formula (4.3), can be
expressed as follows:

ρ = (S 0(g))2 − S 2
0(g). (4.9)

Using formula (4.6), as well as the above formulae, we obtain that the second condition
(C2) is satisfied if and only if

dh0ρ − S 0(g)dJρ − 2ρdh0 g = 0.

We can write above formula, which is equivalent to the condition (C2), as follows

dh0 (exp(−2g)ρ) + 1
2 S 0(exp(−2g))dJρ = 0. (4.10)

Remark. Each solution g of (4.10) determines a projectively flat Finsler metric F2 =

|(S 0(g))2 − S 2
0(g)|, of constant flag curvature, if and only if the regularity condition

(C3) is satisfied.

Next, we provide some examples of such functions g.

4.1.1. Example. Consider the open disk Ω = {x ∈ Rn, |x| < 1}, the function g(x) =

− ln
√

1 − |x|2, and the projectively flat spray S = S 0 − 2gcC ∈ X(Ω × Rn). The
particular form of the projective factor P(x, y) = gc(x, y) = S 0(g) = yi∂g/∂xi assures
that the function g is a solution of (4.7), which means that the condition (C1) is
satisfied.

For this spray S , the Ricci scalar given by formula (4.9) has the following
expression

ρ(x, y) = −
|y|2(1 − |x|2) + 〈x, y〉2

(1 − |x|2)2 . (4.11)

Since the function g is a solution of (4.10) it follows that the condition (C2) is satisfied.
It remains to check the regularity condition (C3). By a direct computation we have

ddJρ = 2gi jδyi ∧ dx j, where

gi j =
∂2g
∂xi∂x j −

∂g
∂xi

∂g
∂x j =

1
1 − |x|2

(
δi j +

xix j

1 − |x|2

)
, (4.12)

is the Klein metric on the unit ball, see [29, Example 11.3.1]. Therefore, we have that
the projectively flat spray S is the geodesic spray of the Klein metric,

F2(x, y) = −ρ(x, y) =
|y|2(1 − |x|2) + 〈x, y〉2

(1 − |x|2)2 , (4.13)

which has constant flag curvature κ = ρ/F2 = −1.
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4.1.2. Example. If we consider the function g(x) = − ln
√

1 + |x|2, a solution of
(4.10), we obtain that the spray S = S 0 − 2gcC ∈ X(Rn × Rn) is metrizable by the
following metric on Rn,

F2 = S 0(gc) − (gc)2 =
|y|2(1 + |x|2) − 〈x, y〉2

(1 + |x|2)2 , (4.14)

of constant curvature κ = 1 (see [29, Example 11.3.2]).

4.2. Solutions to Hilbert’s fourth problem by Finsler functions of scalar flag
curvature. In this subsection, we try to extend the question we addressed in the
previous subsection, from constant flag curvature to scalar flag curvature. Therefore,
we consider a domain Ω ⊂ Rn and let S 0 ∈ X(Ω × Rn) be the flat spray. We will provide
an example of a projective deformation S = S 0 − 2PC, for a 1-homogeneous function
P ∈ C∞(Ω × Rn), which will lead to a spray metrizable by a Finsler function of scalar
flag curvature. Such a projectively flat Finsler function will therefore be a solution to
Hilbert’s fourth problem.

As we have seen already, the spray S = S 0 − 2PC is isotropic, the Ricci scalar, ρ,
and the semi-basic 1-form α are given by formulae (4.3). Since the spray S is isotropic,
according to Theorem 3.1, it follows that S is Finsler metrizable, which is equivalent
to being metrizable by a Finsler function of scalar Flag curvature, if and only if the
following three conditions are satisfied:

(S1) dJ(α/ρ) = 0;
(S2) Dh(α/ρ) = 0;
(S3) the regularity condition (iv) of Theorem 3.1.

Next we provide an example of a projective factor P, which has a very similar form
with those considered in the previous two examples. However, for the function P in
the next example, the projectively flat spray S satisfies the conditions (S1), (S2) and
(S3) and hence will be metrizable by a Finsler function of scalar flag curvature.

4.2.1. Example. For the open disk Ω = {x ∈ Rn, |x| < 1} in Rn, we consider the
function g ∈ C∞(Ω × (Rn \ {0})), g(x, y) = ln

√
|y| + 〈x, y〉, and the projectively flat

spray S ∈ X(Ω × (Rn \ {0})), given by

S = S 0 − 2S 0(g)C = yi ∂

∂xi −
|y|2yi

|y| + 〈x, y〉
∂

∂yi . (4.15)

The projective factor P = S 0(g) is given by

P(x, y) =
1
2

|y|2

|y| + 〈x, y〉
.

Using the first formula (4.3) we obtain that the Ricci scalar is given by

ρ(x, y) = 3P2(x, y) =
3
4

|y|4

(|y| + 〈x, y〉)2 . (4.16)
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Using the above formula for ρ and the second formula (4.3) we obtain that the semi-
basic 1-form α is given by

α = −3(dh0 P + PdJP) =
3|y|2

4(|y| + 〈x, y〉)3 (yi|y| + xi|y|2) dxi. (4.17)

Using the formulae (4.16) and (4.17) it follows that the semi-basic 1-form α/ρ is
dJ-closed, since

α

ρ
=

1
|y| + 〈x, y〉

( yi

|y|
+ xi

)
dxi = dJ f , f (x, y) = ln(|y| + 〈x, y〉). (4.18)

From the above formula we have that the first condition (S1) is satisfied. As we have
shown in the proof of Theorem 3.1, the second condition (S2) is equivalent to the fact
that dh f is a basic 1-form on Ω. Using formula (4.5) for the horizontal projector h and
expression (4.18) for the function f , we have that dh f = 0. The regularity condition
(S3) is also satisfied and, hence, by formula (3.9), we obtain that

F(x, y) = exp f (x, y) = |y| + 〈x, y〉, (4.19)

is a Finsler function. The function F is a Finsler function of Numata type, see
[5, Section 3.9.B]. The Finsler function F has scalar flag curvature, which is given by
formula (3.12),

κ(x, y) =
ρ

F2 =
3
4

|y|4

(|y| + 〈x, y〉)4 . (4.20)

The geodesics of the Finsler function F, given by formula (4.19), are segments of
straight lines in the open disk Ω. As expected, from the recent result of Álvarez Paiva
in [2], the nonreversible Finsler function F is the sum of a reversible projective metric
and an exact 1-form.

5. Examples

In Example 4.2.1 we have studied a spray, in arbitrary dimension, which is
metrizable by a Finsler function of scalar flag curvature. We have tested the Finsler
metrizability of this spray using the SFC test of Theorem 3.1 and made use of the
algorithm provided by the theorem to construct the corresponding Finsler function.

In this section we will use again the conditions of Theorem 3.1 to test whether or
not some other examples of sprays are Finsler metrizable. We will also see that the
regularity condition (iv) of Theorem 3.1 can be relaxed and we can search for sprays
metrizable by conic pseudo-, or degenerate Finsler functions.

5.1. A spray metrizable by a conic pseudo-Finsler function. Consider the
following affine spray on some domain M ⊂ R2, where two smooth functions φ and
ψ are defined,

S = y1 ∂

∂x1 + y2 ∂

∂x2 − φ(x1, x2)(y1)2 ∂

∂y1 − ψ(x1, x2)(y2)2 ∂

∂y2 .
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Using formulae (2.4), the local components of the corresponding Jacobi endomor-
phism are given by

R1
1 = −φx2 y1y2, R1

2 = φx2 (y1)2, R2
1 = ψx1 (y2)2, R2

2 = −ψx1 y1y2.

According to formula (2.6), the Ricci scalar is given by

ρ = R1
1 + R2

2 = −y1y2(φx2 + ψx1 ).

The case when φx2 = −ψx1 , 0 has been studied in Example 8.2.4 from [29]. In this
case, we have that the Ricci scalar is ρ = 0 while Φ , 0 and, hence, S is not Finsler
metrizable.

We now pay attention to the case ρ , 0. In this case, using the four conditions of
Theorem 3.1, we will prove that S is Finsler metrizable if and only if there exists a
constant c ∈ R \ {0, 1}, such that

cφx2 = (1 − c)ψx1 . (5.1)

Since S is a spray on a two-dimensional manifold, it follows that it is isotropic and,
hence, the first condition of Theorem 3.1 is satisfied. The two components of the semi-
basic 1-form α = α1 dx1 + α2 dx2, which appear in the expression (2.7) of the Jacobi
endomorphism, are given by [13, (4.4)]:

α1 =
R2

2

y1 = −ψx1 y2, α2 =
R1

1

y2 = −φx2 y1.

The last three conditions of Theorem 3.1 refer to the semi-basic 1-form α/ρ, which is
given by

α

ρ
=

ψx1

(φx2 + ψx1 )y1 dx1 +
φx2

(φx2 + ψx1 )y2 dx2.

For the second condition of Theorem 3.1, one can immediately check that dJ(α/ρ) = 0
and therefore there exists a function f defined on the conic region A = {(x1, x2, y1, y2)
∈ T M, y1 > 0, y2 > 0} of T0M, such that α/ρ = dJ f . The function f is given by

f (x, y) =
1

φx2 + ψx1
(ψx1 ln y1 + φx2 ln y2). (5.2)

For the third condition of Theorem 3.1, we have to test whether dh f is a basic 1-form.
For the spray S , the local coefficients N i

j, of the nonlinear connection are given by

N1
1 = φy1, N1

2 = N2
1 = 0, N2

2 = ψy2.

It follows that

dh f =
δ f
δx1 dx1 +

δ f
δx2 dx2,

δ f
δx1 =

∂ f
∂x1 −

φψx1

φx2 + ψx1
,

δ f
δx2 =

∂ f
∂x2 −

ψφx2

φx2 + ψx1
.
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Therefore, dh f is a basic 1-form if and only if there exist two real constant c1 and c2

such that

ψx1

φx2 + ψx1
= c1,

φx2

φx2 + ψx1
= c2. (5.3)

Expression (5.2) and the condition C( f ) = 1 implies c1 + c2 = 1. Formula (5.3) is
equivalent to formula (5.1), for c = c1 and c2 = 1 − c.

We will show that, within the given assumptions (5.1), the last condition of
Theorem 3.1 is satisfied. We have that

α

ρ
=

c
y1 dx1 +

1 − c
y2 dx2

and, therefore,

d
(
α

ρ

)
+ 2iF

α

ρ
∧
α

ρ
=

c(2c − 1)
(y1)2 δy1 ∧ dx1

+
c(2 − 2c)

y1y2 (δy1 ∧ dx2 + δy2 ∧ dx1) +
(1 − c)(1 − 2c)

(y2)2 δy2 ∧ dx2,

which is nondegenerate and hence it is a symplectic form on A ⊂ T0M.
We have shown that the spray S is Finsler metrizable if and only if the condition

(5.1) is satisfied. We will show now how we can construct the Finsler function
that metricizes the spray. To simplify the calculations, we choose the constant
c = 1/2 and the functions φ(x1, x2) = ψ(x1, x2) = 2g′(x1 + x2)/g(x1 + x2), where g(t)
is a nonvanishing smooth function. In this case, one can see that the condition (5.1) is
satisfied.

For this choice we have that the basic 1-form dh f is given by

dh f = −
g′

g
dx1 −

g′

g
dx2 = da, a(x1, x2) = − ln g(x1 + x2).

According to formula (3.9), it follows that

F(x, y) = exp( f − a) =

√
y1y2

g(x1 + x2)
,

metricizes the spray S for the given choice of the functions φ and ψ. The scalar flag
curvature is given by formula (3.12), and for the above Finsler function is

κ =
ρ

F2 = 4(g′′g − (g′)2).

For the particular case, when g(t) = t/2 we obtain the case of constant sectional
curvature κ = −1 studied in [13, Section 5.4].
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5.2. A spray metrizable by a degenerate Finsler function. We present now an
example of a spray that is metrizable by a degenerate Finsler function of scalar flag
curvature. This means that the first three conditions of Theorem 3.1 are satisfied, while
the last one it is not. On M = R2, consider the following system of SODEs:

d2x1

dt2 + 2
dx1

dt
dx2

dt
= 0,

d2x2

dt2 −

(dx2

dt

)2
= 0. (5.4)

The corresponding spray S ∈ X(T M) is given by

S = y1 ∂

∂x1 + y2 ∂

∂x2 − 2y1y2 ∂

∂y1 + (y2)2 ∂

∂y2 .

Using the formulae (2.4) and (2.6), the local components of the corresponding Jacobi
endomorphism and the Ricci scalar are given by

R1
1 = −2(y2)2, R2

2 = 0, ρ = −2(y2)2.

Since S is a two-dimensional spray, it follows that it is isotropic and, hence, first
condition of Theorem 3.1 is satisfied. The semi-basic 1-form α/ρ = α1/ρdx2 +

α2/ρdx2 has the components:

α1

ρ
=

R2
2

y1ρ
= 0,

α2

ρ
=

R1
1

y2ρ
=

1
y2 .

From the above formulae, one can immediately check that dJ(α/ρ) = 0 and, hence, the
second condition of Theorem 3.1 is satisfied. Moreover, we have that there exists a
function f ∈ C∞(T0M) such that

α

ρ
= dJ f , for f (x, y) = ln |y2|.

Third condition of Theorem 3.1 is satisfied if and only if dh f is a basic 1-form. By
direct calculation we have that this is true, since dh f = dx2. More than that, for
a(x1, x2) = x2, we have that dh f = da. Therefore, the function

F(x, y) = exp( f (x, y) − a(x)) = exp(−x2)y2

is a degenerate Finsler function that metricizes the given system (5.4). This degenerate
Finsler function has scalar flag curvature, given by formula (3.12), which in our case
is

κ =
ρ

F2 =
−2

exp(−x2)
.

It can be directly checked that any solution of the system (5.4) is also a solution of the
Euler–Lagrange equations for F2. Some other nonhomogeneous Lagrangian functions
that metricizes the system (5.4) where determined in [3, Example 7.10].
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5.3. A spray that is not Finsler metrizable. We consider now an example of a
spray that is not Finsler metrizable, and this is due to the fact that the third condition
of Theorem 3.1 is not satisfied. On M = R2, we consider the following system of
SODEs:

d2x1

dt2 +

(dx1

dt

)2
+

(dx2

dt

)2
= 0,

d2x2

dt2 + 4
dx1

dt
dx2

dt
= 0. (5.5)

The above system can be identified with a spray S ∈ X(T M), which is given by

S = y1 ∂

∂x1 + y2 ∂

∂x2 − ((y1)2 + (y2)2)
∂

∂y1 − 4y1y2 ∂

∂y2 .

We make use of formulae (2.4) and (2.6) to compute the local components of the
corresponding Jacobi endomorphism and the Ricci scalar, which are given by

R1
1 = −(y2)2, R2

2 = −2(y1)2, ρ = −2(y1)2 − (y2)2.

Again, the spray S is two-dimensional and, hence, it is isotropic, which means that the
first condition of Theorem 3.1 is satisfied. The other conditions refer to the semi-basic
1-form α/ρ = (α1/ρ) dx2 + (α2/ρ) dx2, whose components are given by

α1

ρ
=

R2
2

y1ρ
=

2y1

2(y1)2 + (y2)2 ,
α2

ρ
=

R1
1

y2ρ
=

y2

2(y1)2 + (y2)2 .

From the above formulae, it follows that dJ(α/ρ) = 0, which means that the second
condition of Theorem 3.1 is satisfied. Therefore, there exists a function f ∈ C∞(T0M)
such that

α

ρ
= dJ f , for f (x, y) = ln(2(y1)2 + (y2)2).

For the above considered function f we can check that dh f is not a basic 1-form. It
follows then that third condition of Theorem 3.1 is not satisfied and consequently
the spray is not Finsler metrizable. The system (5.5) has been borrowed from
[3, Example 7.2], where it has been shown, using different techniques, that this system
is not metrizable.
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