CrossMark

Irish Section Conference 2022, 15–17 June 2022, Impact of nutrition science to human health: past perspectives and future directions

The D-VinCHI study: secondary analysis of vitamin D dietary intakes pre-2020 and post-2021

E. Royle, LK. Pourshahidi, EM. McSorley and PJ. Magee

Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland.

Vitamin D is best known for its role in the prevention of rickets and osteomalacia and may have a protective role in noncommunicable diseases⁽¹⁾. In the UK, low dietary intakes of vitamin D are evident in all age groups. Currently, 29–40% of children do not meet the reference nutrient intake of $10\mu g/day$ vitamin D from all dietary sources including from supplementation⁽²⁾. The COVID-19 pandemic highlighted the association between vitamin D and immune health in the popular media, this may have led to increased dietary intakes of vitamin D including from supplementation within the UK population. This study aimed to explore the vitamin D dietary intakes in children before and after the COVID-19 lockdown. A secondary analysis of the D-VinCHI study⁽³⁾ was undertaken to compare healthy children aged 4–11 years old who completed the study before the initial COVID-19 lockdown (pre-March 2020) and post-COVID-19 lockdown (post- July 2021). Daily vitamin D dietary intakes were assessed using a retrospective vitamin D food frequency questionnaire⁽⁴⁾. Contribution of different food groups to vitamin D intakes were also quantified. A total of 77 children were enrolled within the study between November 2019 and February 2022. The mean (\pm SD) age of participants was 8.12 (\pm 2.09) years and 45.5% were female. The mean (\pm SD) height and weight of participants were 133.36 (\pm 13.91) cm and 32.36 (\pm 11.79) kg respectively. The mean (\pm SD) body mass index (BMI) was 17.60 (\pm 3.19) kg/m². An average intake of 6.15 (\pm 5.01) µg/day vitamin D from all dietary sources including from supplements was reported from all participants. No significant difference was observed in mean vitamin D intakes (diet and supplements) pre-COVID (6.4 µg/day) when compared to that determined post lockdown (5.8 µg/day).

Regular vitamin D supplementation was taken in 20.8% of participants and contributed a mean (\pm SD) 7.3 (\pm 5.20) µg/day to total vitamin D intakes. In total 19.5% of participants met the reference nutrient intake of 10µg/day from all dietary sources including supplements. The results of this secondary analysis show that dietary intakes of vitamin D have not increased from 2019–2022. The dietary intakes are still well below current government recommendations and suggests that further public health strategies are required to increase intake of vitamin D from all sources including (bio)fortified, dietary and supplementation.

Implementing policies to target those at risk of low vitamin D dietary intakes may alleviate the disparities in health found in those with vitamin D deficiency.

References

- 1. Amrein K, Scherkl M, Hoffmann M, et al. (2020) Eur J Clin Nutr 74, 1498-1513
- 2. NDNS National Diet and Nutrition Survey (2019). [Available at: https://gov.uk/government/statistics/ndns-results-from-years-9-11-2016-2017 and-2018-to-2019].
- 3. Glatt DU, McSorley E, Pourshahidi LK, et al. (2022) Nutrients 14, 804
- 4. Weir RR, Carson EL, Mulhern MS, et al. (2016) J Hum Nutr Diet 29, 255-61