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ON SUPER EFFICIENCY IN SET-VALUED OPTIMISATION
IN LOCALLY CONVEX SPACES

YlHONG Xu AND CHUANXI ZHU

The set-valued optimisation problem with constraints is considered in the sense of
super efficiency in locally convex linear topological spaces. Under the assumption of
nearly cone-subconvexlikeness, by applying the separation theorem for convex sets,
Kuhn-Tucker and Lagrange necessary conditions for the set-valued optimisation prob-
lem to attain its super efficient solutions are obtained. Also, Kuhn-Tucker and La-
grange sufficient conditions are derived. Finally two kinds of unconstrained programs
equivalent to set-valued optimisation problems are established.

1. INTRODUCTION

It is of value in both theory and algorithmic solution to transform a constrained
optimisation problem into an unconstrained one. For a vector-valued optimisation prob-
lem, Chen and Rong [1] characterised the Benson proper efficiency in terms of Lagrange
multiplier. For vector optimisation of set-valued maps, Li [2] obtained Kuhn-Tucker
optimality conditions in the sense of weak efficiency.

On the other hand, various concepts of proper efficiency have been introduced. Bor-
wein and Zhung [3] introduced the concept of super efficiency in normed vector spaces.
Recently, Zheng [4, 5] introduced a new kind of efficiency, termed super efficiency, in
locally convex topological vector spaces.

This paper is concerned with the optimality conditions for a set-valued optimisation
problem in the sense of super efficiency in locally convex spaces. In Section 2, we give
basic concepts and related results. In Section 3, under the assumption of nearly cone-
subconvexlikeness, by applying the separation theorem for convex sets, the Kuhn-Tucker
necessary condition for set-valued optimisation problems is obtained. Also, the Kuhn-
Tucker sufficient condition is presented. In Section 4, Lagrange sufficient and necessary
conditions are derived. Finally two kinds of unconstrained programs equivalent to set-
valued optimisation programs are established.

Our methods are essentially different from those in [1, 2].
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2. BASIC CONCEPTS AND RELATED RESULTS

Throughout the paper, let X be a linear topological space; Y and Z be locally
convex linear topological spaces; C and D be closed convex pointed cones in Y and
Z respectively; and finally let Y* and Z* be the topological dual spaces of Y and Z,
respectively. If M is a nonempty subset of Y, the closure, interior and generated cone of
M are denoted by cl M, int M and cone M, respectively. The dual cone of D is denned
by £)* = {/ G Z* : f(d) > 0, Vd G D}. A nonempty convex subset B of C is called
a base of C if OedB and C = coneB = \J \B = (J {Xx : x G B). Write Bst = {/

A^O A£0
€ r* : 3t > 0 such that f(b) ^ t,Vb £ B}, C = {/ G K* : /(z) ^ 0,Vz € C}.

DEFINITION 2.1: (See [4].) Suppose f) / M c f, and y £ M. Then y is called a
super efficient point of M, written as y £ SE(M, C), if, for any neighbourhood V of 0 in
Y, there exists a neighbourhood U of 0 such that

cl(cone(M - y)) D{U-C)CV.

REMARK 2.1. (See [4].) y £ SE{M, C) if and only if for each neighbourhood V of 0 in
Y, there exists a neighbourhood U of 0 such that

cone(M -y)n(U-C)cV.

DEFINITION 2.2: (See [6].) Let E C X, a set-valued map F : E -»• 2Y is said to be
nearly C-subconvexlike on E if cl(cone(F(i?) + C)) is convex.

DEFINITION 2.2: (See [6].) Let E C X, a set-valued map F : fi1 -»• 2y is said to be
nearly C-convexlikeness and C-subconvexlikeness.

By L(Z, Y) we denote the set of all continuous linear operators from Z into Y. Write
L+(Z,Y) = {T £ L(Z,Y) : T(D) C C). Suppose F : X -> 2Y, G : X -> 2Z. Then
(F,G) : X -4 2 y x Z is defined by (F,G)(i) = F(x) x G(x), and F + TG : AT -+ 2Y is
denned by (F + TG){x) = F(x) + T(G(x)).

Consider the following vector optimisation problem with set-valued maps:

set — valued optimisation problem min F{x)

such that G{x) D (-D) / O , i e l

The feasible set of set-valued optimisation problem is denoted by A, that is,

A={x£X : G(x) n (-£>) ^ 0}.

DEFINITION 2.3: x0 € A is called a super efficient solution of the set-valued opti-
misation problem if F(x0) D SE(F(A), C) ^ 0; (z0, yo) is called a super efficient element
of the set-valued optimisation problem if x0 G A and j/o G F(x0) n 5F(F(>1), C).

https://doi.org/10.1017/S0004972700038168 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038168


[3] Super efficiency 185

LEMMA 2 . 1 . (See [7].) Suppose C has a bounded base B, 0 ̂  M c Y, then

SE(M,C) = SE(M + C,C).

LEMMA 2 . 2 . (See [8].) Suppose C has a bounded base B,% / M CY', y' s M.

If there exists g € in tC* such that g(y*) = min{g{y) : y € M}, then y' 6 SE{M,C).

REMARK 2.2. From the proof of [8, Theorem 3.1], we see the above Lemma does not
need the assumption that M is C-convex.

3 . KUHN-TUCKER OPTIMALITY CONDITIONS

Let 0 / S C Y, y G Y, <p G Y*. For convenience, let <p(S) ^ <p(y) stand for

<P(V) > <p(v), Vy G 5 .

In the same way as in the proof of [2, Lemma 1.1], we can verify the following
Lemma.

LEMMA 3 . 1 . Lettp€.D*\ {0z-} and d € int D, then <p(d) > 0.

LEMMA 3 . 2 . (See [9, Proposition 2.1(h)].) If B is a bounded base for C, then

Bst = mtC*.

THEOREM 3 . 1 . Suppose C has a bounded base, (x0, y0) is a super efficient element

of set-valued optimisation problem, (F(x) — y0, G(x)) is nearly C x D-subconvexlike on

X and there exists an x G X such that G(x) n ( - int D) ^ 0, then there exist s* € int C*,

k* € D* such that

(1) mf (s'(F{x)) + k'(G(x))) = s'(y0),

and

(2)

where s'(F(x)) = \J s*(y), k*(G(x)) = \J k*(z).
F() G ( )

PROOF: Since {XQ, J/O) is a super efficient element of the set-valued optimisation
problem, we get

yoeF(xo)nSE(F(A),C).

From Lemma 2.1, one has yQ € SE(F(A) + C,C). Suppose B is a bounded base of C,

then there is an open convex balanced neighbourhood V of 0 such that

(3) (-B) n V = 0.

From 2/0 £ SE(F(A) + C,C), it follows that there is an open convex neighbourhood U

of 0 such that U C V/2 and cone(F(^) + C - y0) n (U - C) C V/2. Thus

(4) cone(F(A) + C - y0) D {U - B) C V/2 n(U-B).
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It follows from (3) and U C V/2 that

± ( U - B) c ±

which together with (4) leads to

(5) cone(F(,4) + C - y0) D (U - B) = 0.

Let ip(x) = (F(x) — yo,G(x)). In what follows, we prove

(6) (cone(<p(X) + C x £>)) n ({U - B) x ( - i n t D ) ) = 0,

where <p(X) = (J (F(x) — yo,G(x)). The proof is by contradiction. Otherwise, from
_ xex

0z€ — int D we conclude that there exist A > 0 and x € X such that

(A(F(x) + C - yo, G(x) + £>)) n (({/ - B) x ( - intD)) ^ 0.

So,

(7)

and

(8) (A(G(x) + £>)) n ( - int £») ^ 0.
From (8) we get (G(x) + D) ("I (— int D) ^ 0, and since D is closed convex pointed cone,
it follows that G(x) l~l (— intD) ^ 0, which gives i € A This along with (7) leads to

which contradicts (5). Hence (6) holds.

Since U — B and — int D are open, it follows from (6) that

- B ) x (-int£>)) = 0 .

By hypothesis that (p(x) is nearly C x D-subconvexlike on X, we conclude that

cl(cone(<^(X) +C x D)j is convex. From the separation theorem for convex sets, there

exists (s*,fc*) e Y' x Z* \ {(0y. ,02 .)} such that

(9) (s*,k*)(c\(cone(<p(X) + CxD)^ > s'(£7 - B) + k*{-intD).

Since cl(cone(v?(X) + C x D) J is a cone on which (s*,fc*) is bounded below, we derive

(10) (s',fc
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It follows from (0 K ,0 z ) € cl(cone(<p(X) + Cx D)) and (9) that

(11) Q^s*{U-B) + k'(-

From ( 0 y , 0 z ) 6 C x D and (10) we get (s*,k')(ip(X)) > 0. Thus (s*,k*)(<p(x)) > 0,
Vx G X. In other words, s*(F(x) - y0) + fc'(G(z)) > 0, hence

(12) ^ ^

Firstly, we prove k* G D*. In fact, according to (11),

(13) r(int£>) ^s'(U-B).

Since int D is a cone and on which k* is bounded below, one derives

(14) r(int£>) ^ 0 .

Since D is a closed convex cone, D = cl(intZ)). For any d € D, there exists a net
{da} C int£> such that d = \ixado. Then k*{d) = \\mk*{da) ^ 0. Therefore k*(D) ̂  0,
k' € D\

Secondly, we verify s* ^ 0K-. Otherwise, s* = 0Y- and k* / 0^-. Hence
k* eD'\ {0 z .} . From (12) it follows that

(15) k'(G{x))^0,Vx€X.

On the other hand, by hypothesis, there is a p e G(x) n ( - int D), from Lemma 3.1 we
have fc*(p) < 0, which contradicts (15).

Thirdly, we check s* € intC*. Let fc0 G int£>, A > 0. From (13), k'(Xk0)
^ s'{U - B). Letting A -> 0+, one has 0 ^ s*(t/ - B). Hence

(16) s'(B) > s*(U).

Since s* / 0 y , there exists u0 € f/ such that s*(u0) = t > 0. [Otherwise, for any ueU,
s'(u) ^ 0. Then for any y € Y, by the absorption of {/, there is a Ao > 0 such that
XoV € C/, hence, s*(Aoy) < 0, Aos*(j/) ^ 0, s'{y) ^ 0, which together with s* € Y' gives
s* = 0 y , a contradiction.] Choosing u0 e [/ in (16), we get s*(5) ̂  t, that is, s* G Bst,
Invoking Lemma 3.2, we get s* 6 intC*.

Fourthly, we show the validity of (2). Substituting x = x0 into (12), from y0 G F(x0),

we see that

(17) k*(G(xo))>O.
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On the other hand, since x0 € A, we know there exists p G G(xo)n(—D), hence k'(p) ^ 0.
This together with (17) leads to k*(p) = 0. Therefore,

(18) 0€fc*(G(z0)).

Combining (17) and (18), we obtain (2).

Finally, to end the proof, we show (1) is true. From (12), we get

(19) . mf (s'(F(x)) + fc'(G(x))) > *•(,*,).

On the other hand, from j/o G F(x0) and (18), one derives sm(yQ) G s*(F(xo))+k*(G(xo)),
which together with (19) leads to that (1) holds.

The proof is completed. D

THEOREM 3 . 2 . Suppose C has a bounded base and the following conditions hold
for the set-valued optimisation problem:

(i) x0 € A;

(ii) there exist y0 G F(x0), s* G intC*, k* G D* such that

Then (xo,yo) is a super efficient element of set-valued optimisation problem.

PROOF:

8'{yo) = mf (a'(F(x)) + k'(G(x))) < inf

inf (a'(F(x)) + km(G(x) n (-£>)))•

From k*(G(x) n (-£>)) ^ 0, we get s*(y0) < infs*(F(x)), hence s'{y0)

= min{s*(y) : y € F(A)}, by Lemma 2.2 , one has y0 € SE(F(A),C), which together

with j/o € F(XQ) gives that (xo,yo) is a super efficient element of set-valued optimisation

problem. D

From Theorem 3.1 and Theorem 3.2 it is easy to obtain the following Corollary.

COROLLARY 3 . 1 . Suppose C has a bounded base, x0 € A, y0 e F(x0), there is

x e X such thatG(x)f)(- intD) ^ 0, and (F(x)-yo,G(x)) is nearly CxD-subconvexlike

on X. Then (xo, j/o) JS a super efficient element of set-valued optimisation problem if and

only if there exist s* € intC*, k* G D* such that

mfc(s*(F(x))+kt{G(x)))=s'(yo).
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4. LAGRANGE OPTIMALITY CONDITIONS

THEOREM 4 . 1 . Suppose C has a bounded base, (x0, y0) is a super efficient element
of set-valued optimisation problem, (F(x)-y0, G(x)) is nearly C x D-subconvexlike on X
and there exists an x e X such that G(x)n(- int D) ^ 0. Tien tiere existsT e L+(Z, Y)
such that T(G{xo)n(-D)) = {Oy} and (x0, yo) is a super efficient element of the following
unconstrained optimisation problem:

nnniKx)=F(x)+T(G(x)).
XfcA

PROOF: From the proof of Theorem 3.1, we see that there exist s* e intC*, k* € D*
such that (12) holds, namely,

(20) s'(y) + k'(z) 2 s'(yo),Vy € F{x),z€ G(x),x € X.

For any z G G(x0) D (-D), substituting x = x0, y = y0, z = z into (20) we get

k'{z) 2 0.

On the other hand, from z € -D and k' € D* it follows that k*(z) ^ 0. Thus

(21) k'{z) = O,VzeG(xo)n(-D).

Since s* € intC*, we can choose c 6 C such that s*(c) = 1. Define a linear operator

T:2-4Fby

(22) T(z) = k*{z)c,VzeZ.

Thus T(Z?) = k'(D)c C C, this implies

T(EL+{Z,Y).

In view of (21) and (22), we deduce that T(z) = Oy, Vz e G(x0) n (-£>), that is,

(23) T{G(x0) n (-£>)) = {Oy}.

On the other hand, Vx e X,

= s'{F(x))+k-(G(x))s'(c)

From (12) it follows that

(24)
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From 2/0 € F(x0) and (23), one derives y0 G F(x0) + T(G(x0)) = ip(x0), which together
with (24) gives that s*(y0) = min{s'(iy) : w G ip{X)}. Invoking Lemma 2.2, we get
j/o G SE(ip(X),C), Hence y0 G ip(xo)nSE(ip(X),C), therefore (xo,yo) is a super efficient
element of the following unconstrained optimisation problem:

This finishes the proof. D

THEOREM 4 . 2 . Suppose C has a bounded base, x0 G A, y0 G F(x0). If there
exists T G L+(Z, Y) such that 0Y G T(G(x0)) and (x0, Jto) is a super efficient element of
the following unconstrained programming:

(x) + T(G(x)),

then (XQ, 2/o) is a super efficient element of set-valued optimisation problem.

PROOF: y0 € F(x0) C F{x0) + T(G{x0)) = tp(x0) C rp(X), where V(^)

= |J ip(x) = (J (^(a;) + T(G(x))). Since (x0) 2/0) is a super efficient element of uncon-
xex iexv '

strained set-valued optimisation problem, we have y0 G SE(xp(X),C), which together
with Lemma 2.1 gives 2/0 € SE(ip(X) + C,C). By definition, for any neighbourhood V
of 0 in Y, there exists a neighbourhood f/of 0 such that

(25) cone(ip(X) + C - y0) D (U - C) C V.

On the other hand, we have the following relations:

x G A =• G(x) n (-£>) / 0

=> 3^! G G(X) such that zx G -JD

=> T{zx) € - C

=» C - T(zx) CC + C

=>• C C T(zx) + C

=• C C r (G(i ) ) + C,

where =>• means implies. Thus,

F(A) + C - y0 = ( J (F(x) + C - 2/0)

(x) + T(G(x))+C-y0)

c T(G(x))+C-y0)
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Therefore,

cone(F(,4) + C - y0) C cone(^(X) + C - y0),

which together with (25) gives

cone(F(A) + C - yo)n{U - C) CV.

This implies y0 € SE(F{A) + C,C). Invoking Lemma 2.1, we deduce y0 € SE(F{A),C),
hence ?/0 € F(x0) D Si?(F(yl), C). Thus (a;0, t/o) is a super efficient element of set-valued
optimisation problem. Q

The following Corollary is a direct consequence of Theorem 4.1 and Theorem 4.2.

COROLLARY 4 . 1 . Suppose C has a bounded base, x0 € A, y0 e F(x0),
(F(x) - 2/0, G(x)) is nearly C x D-subconvexlike on X and there exists anxSX such that
G{x) n ( - int D) ^ 0. Tien (x0, y0) is a super efficient element of set-valued optimisation
problem if and only if there exists T € L+(Z,Y) such that 0y 6 T(G(x0)) and (xo,yo)
is a super efficient element of the following unconstrained programming:

mm1p(x)=F(x)+T{G(x)).

REMARK 4.1. Corollary 3.1 and Corollary 4.1 convert constrained optimisation set-
valued optimisation problem into unconstrained programming.
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