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The Geometry of Special Relativity

1.1 Introduction

1.1.1 Classical Physical Systems

A classical1 physical system consists of three parts:

1. Four-dimensional spacetime: the arena of classical physics. We label a point
in spacetime (an “event”) by its coordinates:

xμ = (x0,xi) = (ct,x), (1.1)

where x0 represents the time (we’ll use units such that c= 1)2 and x the position.
Greek indices near the middle of the alphabet (λ,μ,ν, . . .) run from 0 to 3;
Roman indices near the middle (i,j,k, . . .) run from 1 to 3.

2. Particles and fields: the entities of classical physics.

(a) Particles: A particle is a structureless point object. Its location, x(t), as a
function of time, tells you everything there is to say about it (beyond fixed
properties such as mass and charge).3 In 4-vector notation we represent the
particle’s trajectory (its world line) by xμ(s), where s is any parameter
used to denote points along the curve (f (s) would do just as well, for any
monotonic function f ):

1 In this book “classical” means “pre-quantum”; it includes special relativity.
2 It’s easy to reinsert the c’s, when necessary, by dimensional analysis.
3 We could treat point objects with spin, but let’s keep things simple; in this course “particle” means spin 0.
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4 The Geometry of Special Relativity

(b) Fields: A field is a function of position and time:

ϕα(x). (1.2)

Here α labels the components: one of them, if the field is temperature; six
of them, in the case of electromagnetism. (In expressions like this x stands
for the four components of xμ.)

3. Dynamics: the laws of motion.

1.1.2 Symmetries

A symmetry is an operation that leaves an object or a system unchanged (invari-
ant). A square, for example, is invariant under rotations (about a perpendicular axis
through its center) by 90◦, or 180◦, or 270◦, or reflections (in either diagonal, or a
bisector of two opposite sides). Of particular importance to us are invariances of
the laws of motion,4 transformations that carry one possible motion into another.
We stipulate that an invariance must have a well-defined inverse.5

Mathematically, the invariances of a system form a group.

Definition: A group, G, is a set of elements (a,b,c, . . .) and a law of “multiplica-
tion,” with the following properties:

1. It is closed: if a and b are in G, so is their product, ab.
2. It is associative: a(bc) = (ab)c.
3. It contains a (unique) unit element, 1, such that 1a = a1 = a for every element a.
4. Each element a has a (unique) inverse, a−1, such that a−1a = aa−1 = 1.

4 The ancient Greeks thought symmetries pertain to the actual motion: celestial objects ought to move on
circles, because a circle is the most perfect (symmetrical) shape. But since the time of Newton we have
understood that the more significant invariances apply to the equations of motion, and hence to the collection
of all possible motions—the set of solutions to the equations of motion. The sun’s gravitational field is
spherically symmetric, but planetary orbits don’t directly exhibit that symmetry—they’re elliptical.

5 This restriction eliminates trivial possibilities such as mapping all points on a particle trajectory onto some
fixed point (sitting still at one point being—usually—a solution to the equations of motion). It is necessary in
order to ensure that the invariances form a group.
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1.1 Introduction 5

For example, the real numbers (except 0), with multiplication defined in the usual
way, constitute an Abelian (commutative: ab = ba) group. Another group is the
set of permutations of three objects (this group is not Abelian). We are interested
here in the group of invariances of classical physics; “multiplication” in this context
means application of two transformations in succession.

Example 1.1

Imagine a quantum mechanical system with nondegenerate energy levels. The state of
the system at time t = 0 can be expanded in terms of the energy eigenstates:

|ψ(0)〉 =
∑

an |n〉, (1.3)

and at any later time

|ψ(t)〉 =
∑

ane
−iEnt/� |n〉. (1.4)

But the phase of |n〉 is arbitrary; physical predictions are unaffected by the transforma-
tion

|n〉 → eiθn |n〉, (1.5)

for any collection of real numbers θn (independent of position and time). This is a huge
invariance group, with an infinite number of parameters (if there are infinitely many
eigenstates). But for the most part it is a useless invariance, which does not help us to
solve the equations of motion.

So there exist trivial, accidental, or otherwise inconsequential invariances. One
particularly useful class consists of the geometrical invariances of space and time:
translations, rotations, dilations6 (stretching), and so on. Question: What is the
group of geometrical invariances of classical physics—the geometrical transfor-
mations that leave the laws of classical physics unchanged? A geometrical trans-
formation is a change of coordinates:

xμ → x ′μ = yμ(x). (1.6)

In the case of a particle trajectory,

xμ(s)→ yμ(x(s)). (1.7)

Fields are more complicated, because not only do the components mix (if it’s a
vector field, and we’re performing a rotation, the x̂ component will pick up ŷ and
ẑ terms), but the argument (x) must be expressed in terms of the new coordinates
(y): schematically,

6 Eds. Coleman calls them “dilatations.” Presumably permute:dilate::permutation:dilatation. But most modern
authors use “dilation,” and “dilatation” seems unnecessarily awkward.
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6 The Geometry of Special Relativity

ϕα(x)→ [ϕα(x)]′ = F [ϕβ(y−1(x))], (1.8)

where F is some function denoting the transformation (mixing) of the components
(ϕβ), and y−1 is the inverse of Eq. 1.6. In words, the new fields at point y are some
functions of the old fields at the point x that got mapped into y.

1.2 Poincaré Invariance

1.2.1 Geometrical Symmetries of Classical Physics

We’ll focus for the moment on the case of particles. If there were no laws of motion
(i.e. if every particle motion were possible), then any geometrical transformation
would be an invariance. We’ll whittle down this (huge) group by invoking some
actual laws of motion:

1. Newton’s first law. The allowed motions for a free particle are straight lines in
spacetime, so the invariance group must (at a minimum) take straight lines into
straight lines. One way to characterize a straight line is

xμ(s) = vμs + bμ, where vμ = dxμ

ds
and bμ are constants, (1.9)

which is the general solution to the differential equation

d2xμ

ds2
= 0. (1.10)

But wait: we could have used a different parameterization (say, s3 instead of s);
then

xμ(s) = vμs3 + bμ. (1.11)

So Eq. 1.10 is not a reliable way to characterize straight lines—it’s sufficient,
but not necessary. Maybe a straight line satisfying 1.10 is transformed into a
straight line that doesn’t satisfy 1.10. In point of fact this worry is misguided: an
invariance that carries straight lines into straight lines automatically takes lin-
early parameterized straight lines 1.9 into linearly parameterized straight lines.

Proof: For transformations that carry straight lines into straight lines:

(a) Intersecting (or nonintersecting) straight lines go into intersecting (nonin-
tersecting) straight lines. If intersecting lines transformed into nonintersecting
lines, the transformation for the point of intersection would be ill defined, since
it would have to go to two different points—one on each line. And because we
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1.2 Poincaré Invariance 7

have stipulated that invariances have well-defined inverses, the same goes for
nonintersecting to intersecting.

(b) Planes go into planes. Let P be a point in the plane defined by intersecting lines
A and B (but not on either line), and draw a line from P intersecting A and B:

A

P B

P’

B’

A’

This line transforms into a line intersecting A′ and B ′, so P ′ lies in the plane
defined by A′ and B ′.

(c) Parallel lines go into parallel lines. This follows from (a) and (b).
(d) Equidistant coplanar parallel lines go into equidistant coplanar parallel

lines. We know that coplanar parallel lines go into coplanar parallel lines,
but could it be that equidistant ones (a, b, c) go into nonequidistant ones
(a′, b′, c′)?

A B

a
b
c

D
C

B‘A‘

c‘
b‘

a‘
D‘

C‘

d
d‘

No: draw line A, and let the distance between its intersections with a and b be d.
Now draw line B, parallel to A, and construct lines C and D, passing through the
four intersections. By simple geometry, C and D are parallel (because a, b, and
c are equidistant), and d ′ = d . However, unless a′, b′, and c′ are also equidistant,
C′ and D′ will not be parallel, violating (c).

So the transformation x(s)→ y(x(s)) takes equal intervals (x(s3)−x(s2) = x(s2)−
x(s1)) into equal intervals (y(s3) − y(s2) = y(s2) − y(s1)), preserving the linear
parameterization. QED
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8 The Geometry of Special Relativity

Under the transformation 1.6,

xμ → yμ(xν),

derivatives transform (by the chain rule)7 as

dxμ

ds
→ dyμ

ds
= ∂yμ

∂xν

dxν

ds
, (1.12)

d2xμ

ds2
→ d2yμ

ds2
= ∂yμ

∂xν

d2xν

ds2
+ ∂2yμ

∂xν∂xλ

dxν

ds

dxλ

ds
. (1.13)

Because all straight lines (d2xμ/ds2 = 0) must transform into straight lines
(d2yμ/ds2 = 0), it follows that invariances consistent with Newton’s first law
satisfy

∂2yμ

∂xν ∂xλ
= 0 (1.14)

(for all μ,ν,λ). The general solution is a linear function of x:

yμ = Mμ
ν xν + bμ, (1.15)

where the 16 elements of Mμ
ν and the 4 components of bμ are constants. (As a

4 × 4 matrix, det M �= 0, since y(x) must have an inverse.) Newton’s first law
has reduced the geometrical invariances to a 20-parameter group, the inhomo-
geneous affine group (in four dimensions); with bμ= 0 it becomes the homo-
geneous affine group.

2. Constancy of the velocity of light. In empty space, light travels in straight lines,
and according to special relativity the speed of light (in vacuum) is a universal
constant, independent of the velocity of the source or the observer. If a light
signal travels from point x to point x′, departing at time t and arriving at time
t ′, then

7 We use the Einstein summation convention, whereby repeated indices are summed. Thus the third term in
Eq. 1.12 carries an implicit summation sign,

∑3
ν=0.
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1.2 Poincaré Invariance 9

c(t ′ − t) = |x′ − x|, (1.16)

or (setting c = 1)

(t ′ − t)2 = (x′ − x)2 =
3∑

i=1

[(xi)′ − xi]2. (1.17)

Introducing the metric tensor8

gμν ≡

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ , (1.18)

we have

(x ′ − x)μgμν(x
′ − x)ν = 0. (1.19)

The constancy of the speed of light means that if x and x ′ satisfy Eq. 1.19, then
so too must the transformed coordinates y and y ′. What does this tell us about
M and b? Well,

xμ → yμ = Mμ
ν xν + aμ ⇒ (y ′ − y)μ = Mμ

ν(x
′ − x)ν, (1.20)

so

Mμ
κ(x
′ − x)κgμνM

ν
σ (x ′ − x)σ = 0, (1.21)

or

(x ′ − x)κ
[
Mμ

κ gμν Mν
σ

]
(x ′ − x)σ = 0. (1.22)

This must hold for any x and x ′ satisfying Eq. 1.19. It follows that9

Mμ
κ gμν Mν

σ = λgκσ (1.23)

for some constant λ; or, in matrix notation,10

MT gM = λg. (1.24)

8 Some authors use the other signature (−, + , + ,+); it doesn’t matter, as long as you are consistent.
9 Although 1.23 obviously guarantees 1.22, it is not so clear that it is required by 1.22. But remember that this

must hold for any x and x′ satisfying 1.19, and from this it is not hard to show that 1.23 is in fact necessary.
10 Reading left to right, the first index (whether up or down) is the row, and the second (up or down) is the

column. The significance of upness and downness will appear in due course. The superscript T denotes the
transpose: (MT )

μ
κ = M

μ
κ .
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10 The Geometry of Special Relativity

What sorts of transformations remain, after invoking Newton’s first law and
the constancy of the speed of light? We can factor the matrix M as follows:

M = M1M2, where M1 = | det M |1/4I and M2 = M

| det M |1/4
(1.25)

(I is the unit matrix). Thus any M is the product of a pure dilation M1,

M1 = αI, so MT
1 gM1 = α2g and hence λ1 = α2, (1.26)

and a dilation-free term M2 with determinant ±1, for which

(det M2)(det g)(det M2) = λ4
2(det g) ⇒ λ4

2 = 1 ⇒ λ2 = ±1. (1.27)

Actually, the negative sign is impossible,11 so (in view of Eq. 1.26) λ = λ1λ2 is
in fact always positive.

3. Eliminating dilations. Question: Is our universe invariant under dilations?
Imagine performing the Cavendish experiment to measure the gravitational
force between two point masses:

F = G
m1m2

r2
, (1.28)

giving an acceleration to m1 in the amount

a1 = G
m2

r2
. (1.29)

Under a dilation (change of scale),

r → λr, t → λt, a→ λ−1a. (1.30)

So if dilation doesn’t affect G or m2, then a1 goes like λ−1 but Gm2/r2 goes
like λ−2. Since G is a universal constant, it can’t depend on λ, and since there
is no mass continuum (no electron, for example, with slightly larger or smaller
mass), mass cannot depend continuously on λ. Conclusion: Our universe is not
invariant under dilations.12

11 This follows from Sylvester’s law of inertia; see, for instance, S. MacLane and G. Birkhoff, A Survey
of Modern Algebra, 3rd ed., Macmillan (1965) p. 254. In essence, if MT gM = −g then
Q ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 = −(y0)2 + (y1)2 + (y2)2 + (y3)2, so there is a 3-dimensional
subspace (x0 = 0) in which Q < 0, and another 3-dimensional subspace (y0 = 0) in which Q > 0. But the
entire space has only four dimensions, so this is impossible.

12 This still leaves open the possibility of invariance under combined dilations and Lorentz transformations.
We’ll eliminate that option in Section 1.2.6.
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1.2 Poincaré Invariance 11

From these three overall constraints ((1) Newton’s first law, (2) the constancy
of the speed of light, and (3) the absence of scale invariance)13 it follows that the
maximum14 possible geometrical invariance of classical physics is15

xμ → yμ = 
μ
νx

ν + bμ with 
T g
 = g. (1.31)

The group of all such transformations (all possible 
’s and all b’s) is called the
Poincaré group (or the inhomogeneous Lorentz group). The subgroup bμ = 0
is the (homogeneous) Lorentz group.

1.2.2 Active and Passive Transformations

I have been thinking of the geometrical invariances as active transformations, in
which the system is physically moved to a new location or orientation (or, in the
case of dilations, shrunk or expanded). But one can achieve the same effect (for-
mally) by a passive transformation, changing the coordinates in the reverse sense,
while leaving the system itself fixed. (In criminal circles these are known as the
“alibi” and “alias” strategies.) There is a kind of duality here, summarized in the
following table:

Active (x → 
x + b) Passive (x → 
−1x − b)
“alibi” “alias”

Acts on position/motion coordinates

Invariance solutions→ solutions form invariance of the
equations of motion

13 Caveats: (1) assumes that Newton’s first law holds even for inaccessibly high velocities, (2) assumes
that the speed of light is independent of the motion of the source even for unattainably high source
speeds, and (3) assumes that the law of universal gravitation holds (at least approximately) for all
speeds and separation distances. These assumptions are all, of course, open to potential experimental
falsification.

14 I have shown that the geometrical symmetry group is no bigger than the Poincaré group, but I have not proved
that it couldn’t be smaller; in principle, some new physical law might reduce it even further. Einstein
postulated that there is in fact no further reduction; we call this assumption Lorentz invariance.

15 Eds. We have used M for the generic linear transformation (1.15); 
 denotes a Lorentz transformation,
satisfying 
T g
 = g.
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12 The Geometry of Special Relativity

Einstein preferred the alias viewpoint, but the two perspectives are, for the most
part, equivalent.

1.2.3 Minkowski Space

Notice that Lorentz transformations


T g
 = g (1.32)

are not (in general) rotations in four dimensions. Those would be generated by
orthogonal matrices,

RT R = I, (1.33)

and preserve the (positive definite) quadratic form

xT x = xT Ix = (x0)2 + (x1)2 + (x2)2 + (x3)2 (1.34)

(that is, if y=Rx, then yT y = xT x). By contrast, Lorentz transformations preserve
the indefinite quadratic form

xT gx = (x0)2 − (x1)2 − (x2)2 − (x3)2 (1.35)

(i.e. if y = 
x then yT gy = xT gx). If this quantity is positive, then x is said to be
time-like; if it is negative, x is space-like; if it is zero, x is light-like. More gener-
ally, if y = 
x and z = 
w then yT gz = (
x)T g(
w) = xT 
T g
w = xT gw.
This invariant quantity is the scalar (or dot) product of x and w; if xT gw= 0, x

and w are orthogonal.16

16 Don’t confuse orthogonal vectors with orthogonal matrices (1.33)—same word, different meanings.
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1.2 Poincaré Invariance 13

Minkowski space (the 4-dimensional spacetime of special relativity) separates
into distinct regions, as illustrated in the following figure (which you must imagine
includes an undrawable z-coordinate, so the cones are really hyper-cones):

If you are sitting at the origin (x = y = z = t = 0), your future is the locus of
all points in spacetime that you can influence; your past is the locus of all points
that can have influenced you. As for the present, you cannot affect anything there,
and it cannot affect you—to do so would require a signal propagating faster than
the speed of light.

1.2.4 Topological Structure of the Lorentz Group

Orthogonal transformations in three dimensions fall into two disjoint “compo-
nents”:

(1) Rotations: determinant +1 (3 parameters; e.g. the Euler angles),
(2) Reflections: determinant −1 (3 parameters; e.g. the Euler angles).

A 3-dimensional rotation can be represented by a point within a sphere of radius π

(with antipodal surface points identified): the axis of rotation defines the direction
to the point, and the angle of rotation tells you its radial coordinate. Thus the north
pole would specify a rotation by 180◦ about the north–south axis (which has the
same effect as a rotation by 180◦ about the south–north axis). All rotations are
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14 The Geometry of Special Relativity

continuously connected (to one another, and to the identity), but reflections are not
continuously connected to rotations—they are represented by a separate sphere.

Question: How many parameters characterize a (homogeneous) Lorentz trans-
formation, 
T g
 = g (at most 16, of course, since 
 is a 4×4 matrix, but presum-
ably fewer than that)? And how many disjoint components does the Lorentz group
possess? If we know how four basis vectors (for instance, (1,0,0,0), (0,1,0,0),
(0,0,1,0), and (0,0,0,1)) transform under 
, then we know how any vector trans-
forms. Let’s start with (1,0,0,0); it gets transformed (under 
) to some vector
(x0,x1,x2,x3), with

xT gx = (x0)2 − (x1)2 − (x2)2 − (x3)2 = 1− 0− 0− 0 = 1, (1.36)

so

x0 = ±
√

1+ (x1)2 + (x2)2 + (x3)2. (1.37)

This defines a hyperboloid of two sheets:

Every x1, x2, and x3 is possible, but once they are specified, x0 is determined, up to
an overall sign, so there are three continuous parameters, and one discrete choice.

Similarly, (0,1,0,0) transforms to (y0,y1,y2,y3), with

yT gy = (y0)2 − (y1)2 − (y2)2 − (y3)2 = 0− 1− 0− 0 = −1, (1.38)

or

(y0)2 + 1 = (y1)2 + (y2)2 + (y3)2. (1.39)
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1.2 Poincaré Invariance 15

This time it’s a hyperboloid of one sheet:

where y0 determines the radius of the (y1,y2,y3) sphere, leaving two angular vari-
ables; again, three parameters. However,

yT gx = y0x0 − y1x1 − y2x2 − y3x3 = 0 · 1− 1 · 0− 0 · 0− 0 · 0 = 0 (1.40)

eliminates one variable (we could solve, for instance, for y3), so there remain two
(continuous) parameters, and no new discrete choices.

The same goes for (0,0,1,0) → (z0,z1,z2,z3), except that there are now two
orthogonality constraints (zT gx = zT gy = 0), leaving just one additional free
parameter. Finally, for (0,0,0,1)→ (w0,w1,w2,w3) we have

(w0)2 − (w1)2 − (w2)2 − (w3)2 = −1, (1.41)

w0x0 − w1x1 − w2x2 − w3x3 = 0, (1.42)

w0y0 − w1y1 − w2y2 − w3y3 = 0, (1.43)

w0z0 − w1z1 − w2z2 − w3z3 = 0. (1.44)

From the last three we can solve for w1, w2, and w3 (in terms of w0 and the other
parameters); then 1.41 determines w0 up to a sign. So there are no new (continuous)
parameters, but one discrete sign choice.

Conclusion:

The Lorentz group has four disjoint components, and six continuous parameters.

We classify the four disjoint components of the Lorentz group according
to whether the sign of the time stays the same (orthochronous) or changes
(nonorthochronous), and whether the spatial part turns a right-handed coordinate
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16 The Geometry of Special Relativity

system into another right-handed system or (by including a reflection) into a left-
handed system. An example of a right-handed orthochronous transformation is the
identity:


 = I ≡

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (1.45)

an example of a left-handed orthochronous transformation is parity:


 = P ≡

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ , (1.46)

an example of a right-handed nonorthochronous transformation is time reversal:


 = T ≡

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (1.47)

and an example of a left-handed nonorthochronous transformation is the
product PT :


 = PT =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ . (1.48)

Notice (from Eq. 1.32) that

det(
) = +1 (proper) or −1 (improper). (1.49)

I’ll use the symbol L↑+ to denote the proper (subscript +) orthochronous (super-
script ↑) sector; − for improper and ↓ for nonorthochronous:

Symbol L↑+ L↑− L↓− L↓+
Name right-handed left-handed right-handed left-handed

orthochronous orthochronous nonorthochronous nonorthochronous

Example I P T PT

det(
) 1 −1 −1 1
(proper) (improper) (improper) (proper)
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1.2 Poincaré Invariance 17

Notice that L↑+ contains the identity (and all transformations continuously con-
nected to the identity); I’ll call it L0. Suppose 
 is in L↑−. Since P 2 = 1, I can
write 
 = P(P
), and P
 is in L0. So any element of L↑− can be expressed as
the product of P with an element of L0. The same goes for the other two sectors:

L↑− = PL0, L↓− = TL0, L↓+ = PTL0. (1.50)

Thus the discrete invariances P and T , together with L0, generate the entire group.
For the most part we will confine our attention to L0, the “connected part” of the
(homogeneous) Lorentz group.

1.2.5 Rotations and Boosts

Within L0, two kinds of transformations are of special interest: spatial rotations,
and boosts. The former act only on the spatial coordinates:

R =

⎛⎜⎜⎝
1 0 0 0
0
0 R3

0

⎞⎟⎟⎠ , (1.51)

where R3 is a 3 × 3 orthogonal matrix. The rotations constitute a 3-parameter
subgroup (the ordinary 3-dimensional rotation group, SO(3)). Boosts comprise
another 3-parameter set. A boost (or “pure” Lorentz transformation)17 acts in a
plane that includes the time axis; a boost in the xt plane transforms a unit vector in
the t direction as follows:

B :

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠→
⎛⎜⎜⎝

a

b

0
0

⎞⎟⎟⎠ , (1.52)

with a2 − b2 = 1 and a > 0 (orthochronous), so we can write

a = cosh φ, b = sinh φ (1.53)

for some (real) number φ. Meanwhile, it takes a unit vector in the x direction,

B :

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠→
⎛⎜⎜⎝

c

d

0
0

⎞⎟⎟⎠ . (1.54)

17 Eds. Coleman calls them “accelerations,” but “boost” is the standard term.
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18 The Geometry of Special Relativity

The transformed vectors must be orthogonal, because the original vectors were:

c cosh φ − d sinh φ = 0 ⇒ c

sinh φ
= d

cosh φ
≡ α, (1.55)

and their “lengths” are preserved (c2 − d2 = −1), so α = ±1. Which sign do we
want? Evidently

B =

⎛⎜⎜⎝
cosh φ ± sinh φ 0 0
sinh φ ± cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (1.56)

but det(B) = +1, so we need the plus sign.
Under the boost B, a particle at rest, whose trajectory in spacetime (using t as

the parameter) is x = 0, t = s, is transformed to x ′ = sinh φ s, t ′ = cosh φ s, and
its velocity is

v = x ′

t ′
= tanh φ. (1.57)

Notice that whereas φ (the rapidity) can be any (real) number, tanh φ is always
between −1 and +1: the limiting speed achievable by a boost is c (which is 1 in
our units). Note also that a boost looks very much like a rotation, except that (and
this is crucial) the circular functions (sine and cosine) are replaced by hyperbolics
(sinh and cosh). Equation 1.56 can be cast in a more familiar form by solving 1.57
for cosh φ and sinh φ in terms of v:

B =

⎛⎜⎜⎝
γ γ v 0 0
γ v γ 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , where γ ≡ 1√
1− v2

. (1.58)

Every transformation in L0 can be expressed as the product (in either order) of a
rotation and a boost:


 = BR = R′B ′. (1.59)

Proof: Since 
 carries the vector (1,0,0,0) into a vector of “length” 1,




⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

cosh φ

êx sinh φ

êy sinh φ

êz sinh φ

⎞⎟⎟⎠ (1.60)
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1.2 Poincaré Invariance 19

(for some real φ), where ê is a unit 3-vector. We might as well choose our axes so ê
is in the x direction. Then




⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

cosh φ

sinh φ

0
0

⎞⎟⎟⎠ ⇒ 
 =

⎛⎜⎜⎝
cosh φ ? ? ?
sinh φ ? ? ?

0 ? ? ?
0 ? ? ?

⎞⎟⎟⎠ . (1.61)

Let B be the boost (1.56) that has the same effect on (1,0,0,0):

B =

⎛⎜⎜⎝
cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (1.62)

Define

L ≡ B−1
 =

⎛⎜⎜⎝
1 a b c

0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞⎟⎟⎠ . (1.63)

Actually, the top row has to be (1,0,0,0), because L is itself a Lorentz transformation,
and hence satisfies LT gL = g:⎛⎜⎜⎝

1 0 0 0
a ? ? ?
b ? ? ?
c ? ? ?

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 a b c

0 ? ? ?
0 ? ? ?
0 ? ? ?

⎞⎟⎟⎠ (1.64)

=

⎛⎜⎜⎝
1 a b c

a ? ? ?
b ? ? ?
c ? ? ?

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠⇒ a = b = c = 0.

So L is in fact a rotation:

R = B−1
 ⇒ 
 = BR. QED (1.65)

1.2.6 Simultaneous Dilations and Lorentz Transformations

In Section 1.2.1 we eliminated pure dilations (λI ) as elements of the geometri-
cal invariance group of classical physics, but what about dilations combined with
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20 The Geometry of Special Relativity

Lorentz transformations: λ
? Suppose the group contained both λ1
 and λ2
 for
one and the same 
; in that case it would also contain

(λ1
)(λ2
)−1 = (λ1λ
−1
2 )I, (1.66)

which would be a pure dilation unless λ1 = λ2. So there cannot be two different
λ’s for a given 
; λ must be uniquely determined by 
—every Lorentz transfor-
mation 
 carries a particular dilation λ. Is that possible? Because every Lorentz
transformation is the product of a rotation and a boost (
 = RB), and rotations are
certainly in the invariance group, so too is

R−1(λRB) = λB, (1.67)

so (by the same argument as before) λ depends only on the boost, not on the
rotation: λ(v). In fact, by rotational invariance, it can only depend on the magnitude
of v: λ(v2). Now B(v)B(−v) = I , so the invariance group must also contain

I = (λ(v)B(v)) (λ(v)B(v))−1 = λ(v2)B(v)λ(v2)B(−v) = (λ(v2)
)2

, (1.68)

and hence λ(v2) = ±1. But λ(0) = 1 (the identity), and we assume continuity, so
λ(v2) = 1: dilations are not allowed even if they are tied to Lorentz transformations.

1.3 Time Dilation and Lorentz Contraction

1.3.1 Arc Length and Proper Time

In Minkowski space the analog to arc length along a world line xμ(s) is

τ(b)− τ(a) =
∫ b

a

ds

(
gμν

dxμ

ds

dxν

ds

)1/2

=
∫ b

a

√
dt2 − dx2 − dy2 − dz2.

(1.69)

It is independent of parameterization (unchanged if we use s ′ = f (s) in place of s),
and it is Lorentz invariant. (The square root is OK, since world lines are everywhere
time-like.) If the particle is at rest, the integral is just the elapsed time. If the particle
is moving at constant velocity, it can be brought to rest by a Lorentz transformation,
and since arc length is invariant, it is still the time elapsed on the particle’s own
watch—its proper time, τ . But what about a particle that speeds up or slows
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1.3 Time Dilation and Lorentz Contraction 21

down? The curved path in spacetime can be approximated by short line segments,
each corresponding to a different comoving observer traveling at constant velocity.
When it is necessary to change directions (to “pass the baton” to the next comoving
observer), the two observers are at the same spacetime point, and can synchronize
their clocks unambiguously. Thus the sum of the observers’ time intervals (which is
to say, the total arc length) still corresponds to the elapsed time on the particle’s own
clock. Conclusion: Arc length is proper time, even when the particle accelerates.
Proper time is the “natural” parameterization for a world line; it is defined (up to
an additive constant) by

gμν

dxμ

dτ

dxν

dτ
= 1. (1.70)

Problem 1.1

Alice and Bob both travel from spacetime point a to spacetime point b. Alice goes by the
straight line path (in Minkowski space); Bob wanders around—his world line is curved.
Question: Which trip takes longer, according to each traveler’s own watch?

1.3.2 Time Dilation

Suppose observer O is at rest at the origin. Observer O′ starts out at the origin, at
t = t ′ = 0, and moves away (say, in the x direction) at constant speed v = dx/dt .
When O’s clock reads time t , what time t ′ does O observe on the (moving) clock
carried by O′? That is, what is the elapsed (proper) time on the O′ clock? From
Eq. 1.69,

t ′ = τ =
∫ √

1−
(

dx

dt

)2

−
(

dy

dt

)2

−
(

dz

dt

)2

dt =
√

1− v2 t = 1

γ
t . (1.71)

Notice that t ′ is smaller than t ; the moving clock runs slow. This is known as time
dilation.

Incidentally, if O observes O′ going at velocity v, then O′ observes O going at
velocity −v. That is to say,18

(B(v))−1 = B(−v). (1.72)

18 Eds. Actually, Coleman already used this in Eq. 1.68.
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22 The Geometry of Special Relativity

Proof: Choose axes such that the motion is along the x direction. From Eq. 1.56,

B(v) =

⎛⎜⎜⎝
cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (1.73)

where v = tanh φ, and hence −v = − tanh φ = tanh(−φ). Then

B(−v) = B(−φ) =

⎛⎜⎜⎝
cosh φ − sinh φ 0 0
− sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (1.74)

Therefore

B(−v)B(v) =

⎛⎜⎜⎝
cosh φ − sinh φ 0 0
− sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
(cosh2 φ − sinh2 φ) 0 0 0

0 (cosh2 φ − sinh2 φ) 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ = I . QED

1.3.3 Lorentz Contraction

Two stripes (A and B) are painted across a road, a distance d apart. A car, going at
constant speed v, takes time t to go from A to B:

d = vt . (1.75)

Now examine the same process from the perspective of an observer in the car (using
clocks and meter sticks moving with the car):

d ′ = v′t ′. (1.76)

The speeds are the same (as we saw in Section 1.3.2), but the time interval on the
moving clock is reduced (it’s running slow, Eq. 1.71), so

d ′ =
√

1− v2 d = 1

γ
d. (1.77)

Lengths shrink, for a moving observer, by just the factor necessary to compen-
sate for time dilation. This is called Lorentz–Fitzgerald contraction, or Lorentz
contraction, for short.
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1.4 Examples and Paradoxes 23

Lorentz contraction only affects dimensions parallel to the direction of motion;
lengths perpendicular to the motion are not contracted.19 Beware: An observation
is what you get after correcting for the time the signal took to get to you; what you
observe, therefore, is not at all the same as what you see (or hear). Time dilation
and Lorentz contraction pertain to what you observe, and relativity is almost always
talking about observations.

1.4 Examples and Paradoxes

1.4.1 The Time Dilation Paradox

Time dilation raises an apparent paradox: If O says the O′ clock is running slow, O′
can say with equal justice that the O clock is running slow (and by the same factor).
Who’s right? They both are! It’s a matter of simultaneity, which is different for
the two observers. On a Minkowski diagram, lines of simultaneity make the same
angle with the light cone as does the time axis. Thus, in the following figure, lines
of simultaneity for O (which are, of course, horizontal) all make the same angle
with the light cone (to wit, 45◦) as the t-axis does, while lines of simultaneity for
O′ all make the same angle with the light cone as the t ′-axis does (to wit, α).

lig
ht 

co
ne

First I’ll resolve the paradox, then I’ll confirm the rule. Suppose AO = 1,
the time shown on the O clock. Then

√
1− v2 is the time shown simultaneously

(according to O) on the O′ clock; O reports that the O′ clock is running slow. By
simple geometry, β1 = β2 = β3 = β4 ≡ β (note that α + β = 45◦), and so

OB

v
= OO ′

AO
= v

1
⇒ OB = v2 ⇒ AB = 1− v2. (1.78)

19 Eds. For a nice proof, see E. F. Taylor and J. A. Wheeler, Spacetime Physics, Freeman, San Francisco (1966),
page 21.
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24 The Geometry of Special Relativity

Therefore O′ says that when the O′ clock reads
√

1− v2, the O clock reads (1−v2),
and hence that the O clock is running slow (by the same factor,

√
1− v2). Paradox

resolved.
Now let’s justify the rule for constructing lines of simultaneity. We want to show

that S ′ is a line of simultaneity for O′ if α = β:

Proof: The equation for the t ′-axis is x′ = 0, or (using 1.73)

x′ = 
1
0 t +
1

1 x = (sinh φ)t + (cosh φ)x = 0, t = −(coth φ) x.

The equation for S′ is t ′ = constant (if it is to be a line of simultaneity in O′):

t ′ = 
0
0 t +
0

1 x = (cosh φ)t + (sinh φ)x = const, t = −(tanh φ) x + const.

So the slope of the t ′-axis is

tan(α + 45◦) = − coth φ,

and the slope of S′ is

tan γ = − tanh φ.

Now, γ + β + (180◦ − 45◦) = 180◦, so γ = 45◦ − β, and hence

tan γ = tan(45◦ − β) = tan 45◦ − tan β

1+ tan 45◦ tan β
= 1− tan β

1+ tan β
= − tanh φ

and

tan(α + 45◦) = tan α + 1

1− tan α
= − coth φ ⇒ 1− tan α

1+ tan α
= − tanh φ.

So α = β. QED
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1.4.2 The Twin Paradox

Alice boards a rocket ship, which accelerates uniformly in the x direction. After
a certain time, it decelerates (at the same rate) back to v = 0. Then it reverses
direction, and returns to earth in the same way. Because moving clocks run slow,
not as much time will have elapsed on the rocket clock as on a stationary earth
clock, so at their reunion Alice will have aged less than her twin brother Bob, who
stays at home. Suppose the trip takes 40 years by her watch, and the acceleration is
g. How many years has Bob aged in the process?

We need to determine the rocket’s position (x) as a function of time (t). By
“uniform acceleration” we mean that a passenger on the rocket experiences an
unchanging acceleration, g. From her perspective she is at a fixed position (seat
23B, or (x0,y0,z0)), and her watch reads proper time, τ . Thus her coordinates are
yμ = (τ,x0,y0,z0), and her velocity is

ẏμ = (1,0,0,0), (1.79)

where the dot denotes differentiation with respect to proper time. Of course, she is
not in an inertial reference frame; these coordinates refer to her instantaneously
comoving inertial frame. You cannot get her acceleration by differentiating again,
because it involves transfer to a new comoving frame. We’ll get it instead by an
indirect route.

It follows from 1.70 that

gμνẍ
μẋν + gμνẋ

μẍν = 0, so gμνẋ
μẍν = 0. (1.80)

Thus proper acceleration (ẍ) is always orthogonal to proper velocity (ẋ). So her
acceleration must have the form

ÿμ = (0,g,0,0). (1.81)

Thus

gμνẍ
μẍν = gμνÿ

μÿν = −g2. (1.82)

We’ll take this as the (Lorentz-invariant) characterization of “uniform acceleration.”
Now let’s examine her motion from the earth’s perspective. Proper velocity always
has “length” 1 (Eq. 1.70),

gμνẋ
μẋν = 1; (1.83)

for motion in the x direction we have

ẋμ = (cosh ϕ, sinh ϕ,0,0) so ẍμ = ϕ̇(sinh ϕ, cosh ϕ,0,0). (1.84)
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26 The Geometry of Special Relativity

Hence

gμνẍ
μẍν = (ϕ̇)2(sinh2 ϕ − cosh2 ϕ) = −(ϕ̇)2. (1.85)

For uniform acceleration, therefore, Eq. 1.82 says ϕ̇ = g, or ϕ = gτ . Setting
x = t = 0 at τ = 0,

ẋ0 = dt

dτ
= cosh ϕ = cosh(gτ) ⇒ t = 1

g
sinh(gτ), (1.86)

ẋ1 = dx

dτ
= sinh ϕ = sinh(gτ) ⇒ x = 1

g
(cosh(gτ)− 1) . (1.87)

These are parametric equations for a hyperbola; gt = sinh(gτ) and (gx + 1) =
cosh(gτ), so

(gx + 1)2 − (gt)2 = 1. (1.88)

For this reason, uniform acceleration is known as hyperbolic motion.
In the figure below, each of the four segments is a hyperbolic arc (the scale on

the x-axis is not the same as on the t-axis; with equal scales the slope would never
be less than 1).

If we measure time in years and distance in light-years, the unit of acceleration
would be

1
light-yr

yr2
= c

yr
≈ 3× 108 m/s

π × 107 s
≈ 9.5 m/s2, (1.89)

which is pretty close to the acceleration of gravity on earth. That means we can take
g = 1 in our units, for a reasonably comfortable ride. The acceleration segment
lasts 10 years, by Alice’s watch (the whole trip takes her 40 years). But her brother
has aged

t = 4 sinh(10) ≈ 2 e10 = 44,000 yr (1.90)

(note that earth time goes up exponentially with rocket time).
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1.4.3 Doppler Shift

Consider a spaceship approaching you (at rest on the earth) with constant speed v.
The spaceship sends out a light pulse every second (by the spaceship clock). At
time t = t ′ = 0, when the rocket is a distance d away, the first signal is sent, so
it gets to you at t = d. The second signal is sent when the spaceship clock reads
t ′ = 1 = t

√
1− v2, so yours reads t = 1/

√
1− v2. At that time (in your system)

the spaceship is at

d − v√
1− v2

(1.91)

(which is also the time it takes for the pulse to reach you). Thus the second signal
leaves at 1/

√
1− v2 (your time), and arrives at

t = 1√
1− v2

+ d − v√
1− v2

. (1.92)

The interval between signals received is

(1) �t = 1− v√
1− v2

=
√

1− v

1+ v
. (1.93)

If the rocket is moving away from you, v has the opposite sign, and

(2) �t =
√

1+ v

1− v
. (1.94)

In case (1) you see the spaceship clock running faster than yours (the Doppler
effect swamps time dilation); in case (2) you see greater time dilation than
expected (Doppler and dilation conspire). But always you observe time dilation:
t = t ′/

√
1− v2.

1.4.4 The Bandits and the Train

A row of bandits regularly fires on the daily train as it passes by at a speed close to
c. One day a bandit calls in sick, so there is a gap in the line. The bandit chief points
out that the train will be Lorentz contracted, and there will come an interval (when
the foreshortened train is directly opposite the missing bandit) when no bullets hit
the train. The engineer notes that from the perspective of a person on the train, it
is the row of bandits that will be contracted, and the fact that one is missing will
hardly be noticeable; the train will be fired upon without interruption.
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Who is right? Does there occur a moment when no bullets hit the train? Answer:
They both are—for their respective reference systems. The problem is conflicting
notions of simultaneity:

When D meets B,

• the chief says C is already past A (C meets A before D meets B),
• the engineer says C has not yet reached A (C meets A after D meets B).

There is no contradiction, just a different perspective concerning the sequence of
two events.

1.4.5 The Prisoner’s Escape

A (spherical) prisoner proposes to escape by running so fast that Lorentz contrac-
tion will permit him to slip between the bars:

His cellmate retorts that in the escaping prisoner’s reference frame it is the distance
between the bars that will be Lorentz contracted, and it will be even more difficult
for him to get out. Who is right? (This is a better problem than the train and bandit
paradox, because they cannot both be correct: at the end of the day either he’s a
free man, or he’s not.)

Answer: He does not escape. The trouble arises when he changes direction to
slip through the bars:
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In the nonrelativistic case (left) there is no Lorentz contraction, the spacing between
the bars is (presumably!) less than his diameter (a), and he cannot get through; in
the relativistic case (right) he is indeed Lorentz contracted along the direction of
motion—he becomes an ellipsoid (or a spheroid, or something), but the critical
dimension a is unchanged, and it is no easier (nor more difficult) for him to slip
through. The essential point is that dimensions perpendicular to the direction of
motion are not contracted.

1.4.6 The Moving Cube

Imagine looking at a cube, of side 1, very far away (so there is no parallax—rays
reaching your eye from all parts of the cube are parallel). The cube is at rest (so are
you), and oriented so that you can see two faces. The view from above is shown in
the first figure; what you see is shown in the second figure:

Question: What do you see if the cube is moving, to the left, at speed v? This is
a rare case in which we deliberately ask what you see, not what you observe; what
you observe is just a Lorentz-contracted version of the figure on the right, but what
you see must take into account the fact that light from more distant parts of the cube
takes longer to reach your eye. In the figure below I have drawn the top face of the
cube, in your (stationary) reference frame, where it is Lorentz contracted along the
direction of motion. At the same instant you receive the light from the left corner
(O), you also get light from the right corner (A), but since the latter had to travel a
greater distance (AB) it must have left somewhat earlier, when the cube was in the
“old” position, as indicated.
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30 The Geometry of Special Relativity

By simple trigonometry,

OA ≡ L, AB = L sin θ, AC = vt, (1.95)

where t = AB is the time it takes light to travel the “extra” distance. So

L = OC + AC =
√

1− v2 + v(L sin θ), (1.96)

and hence

L =
√

1− v2

1− v sin θ
, OB = L cos θ =

√
1− v2 cos θ

1− v sin θ
= x. (1.97)

This replaces x in the previous figure (notice that it reduces to cos θ when v→ 0).
What about y? Again, the light from O arrives at the same time as the light from

the back corner (C), which had to travel an extra distance CD, and therefore must
have left earlier, when the cube was in the “old” position:
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We’re looking for y = OD. All the acute angles are equal to θ , so

BC ≡ �, CE = � sin θ, BE = � cos θ, AB = cos θ, AO = sin θ . (1.98)

The delay time is

CD = AB + CE = � sin θ + cos θ, (1.99)

so � (the distance the cube moves as light goes from C to D) is

� = v(� sin θ + cos θ) ⇒ � = v cos θ

1− v sin θ
. (1.100)

Then (since AD = BE)

y = OD = AO − AD = sin θ − v cos2 θ

1− v sin θ
= sin θ − v

1− v sin θ
. (1.101)

What you see, then, is

where x and y are given by Eqs. 1.97 and 1.101. Now comes a small miracle:

x2 + y2 = sin2 θ − 2v sin θ + v2 + cos2 θ − v2 cos2 θ

(1− v sin θ)2
= 1, (1.102)

so we might as well define a new angle θ ′, such that x = cos θ ′ and y = sin θ ′,
and what we see looks exactly like what we saw for a cube at rest, only rotated at a
different angle. It doesn’t look like a contracted cube at all, but rather like a rotated
cube! We observe a contracted cube, but we see a rotated cube. What is more, we
could construct any other object out of cubical “Lego,” so the same conclusion
holds quite generally.20

20 Eds. In 1939 George Gamow published a famous book, Mr. Tompkins in Wonderland, in which he imagined a
world where the speed of light was just a few mph, and he described seeing a Lorentz-contracted bicycle with
a skinny rider, as it passed by. His blunder was corrected by many authors: he had failed to distinguish what
you see from what you observe. R. Penrose, Proc. Cambridge Phil. Soc. 55, 137 (1959); J. Terrell,
Phys. Rev. 116, 1041 (1959); V. F. Weisskopf, Physics Today 13, 24 (September 1960); M. L. Boas,
Am. J. Phys. 29, 283 (1961).
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32 The Geometry of Special Relativity

1.4.7 Tachyons

Could there exist particles that travel faster than light (tachyons)? They are per-
fectly consistent with Lorentz invariance. You could not convert an ordinary particle
into a tachyon by Lorentz transformation, but one tachyon is connectable to another
tachyon by Lorentz transformation (though it may be going backward in time). A
tachyon’s velocity would be space-like, and by Lorentz transformation the world
line of a tachyon moving at constant velocity could be made to coincide with (say)
the x-axis—it would take no time at all to get from point a to point b: the particle
would be in two places at the same time (and everywhere in between). We would
presumably like to exclude such outlandish behavior, but this is an independent
assumption; it does not follow from Lorentz invariance alone.

Problem 1.2

Aberration. A spaceship moves with velocity v along its axis of symmetry. A star is at
rest; the vector from the spaceship to the star makes an angle θ with this axis. What is
the angle at which an observer on the spaceship sees the star?

Problem 1.3

Milne’s model of an expanding universe. Imagine a collection of noninteracting parti-
cles (galaxies, if you like). They all start out (t = 0) at the origin, but with “randomly”
distributed velocities. If the distribution of velocities is Lorentz invariant, then we can
take any particle to be the one “at rest.” At a later time t , the faster-moving particles will
be farther away. This is a primitive model for an expanding universe.

To construct a Lorentz-invariant velocity distribution, note that

gμνv
μvν = v2 = 1 (1.103)

(Eq. 1.70), where vμ ≡ dxμ/dτ is the proper velocity, τ is the proper time (for the
particle in question), and v0 is positive. Thus the velocities all lie on the forward hyper-
boloid:
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1.4 Examples and Paradoxes 33

Let’s express the number of particles in the volume d4v (of velocity space) as21

N δ(v2 − 1) d4v, (1.104)

for some constant N . The delta function is manifestly Lorentz invariant, as is d4v, so
this defines a Lorentz-invariant distribution of velocities on the hyperboloid. What is the
resulting distribution in the 3-velocity22 v = dx/dτ? Using the standard formula for the
delta function of a function,

δ(f (z)) =
∑

i

1

|f ′(zi)|δ(z− zi), (1.105)

where the sum is over the zeros of f (f (zi) = 0),23

δ((v0)2 − v2 − 1) = 1

2|√v2 + 1|δ(v
0 −

√
v2 + 1)

+ 1

2| − √v2 + 1|δ(v
0 +

√
v2 + 1)

= 1

2v0
δ(v0 −

√
v2 + 1) (1.106)

(the other term vanishes because v0 > 0). Thus the number of particles in the volume
d4v is

N δ(v2 − 1) d4v = N

2v0
δ
(
v0 −

√
v2 + 1

)
dv0d3v. (1.107)

Integrating over v0 we get the number of particles with velocities in the range d3v:

N

2
√

v2 + 1
d3v. (1.108)

(a) Find the density of galaxies (the number per unit volume) as a function of position
and time: ρ(x,t).
(b) What is “Hubble’s law” (speed |v| as a function of distance |x|) in this universe?

(c) What would someone (at rest at the origin) actually see (as opposed to observe) at
time t—what density of galaxies, as a function of distance, and what speed law?

21 Note that the Lorentz-invariant density is unique (up to the overall constant N ). Given the density at one
point, A, I can, by Lorentz transformation, carry that point to any other point B on the hyperboloid, and thus
determine the density at B. There cannot exist two different Lorentz-invariant distributions.

22 Note that this is not the ordinary 3-velocity dx/dt , but the proper 3-velocity v = dx/dτ .
23 Ordinarily I would write the square of a 3-vector (v ··· v = |v|2) as v2, but this notation has been preempted for

the 4-vector (v2 = (v0)2 − v ··· v), so I’ll write the square of the 3-vector using boldface: v2 (even though it’s a
scalar).
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