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Abstract

Uniformly monotone convergent iterative methods for obtaining multiple solutions of (n + wj)th
order hyperbolic partial differential equations together with initial conditions are discussed. Ap-
propriate partial differential inequalities which connect upper and lower solutions, and variation
of parameters formula is developed.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 35 H 05, 35 A 35.

1. Introduction

For a, b € R, a > 0, b > 0, let Ia, Ib denote the intervals [0,a] and [0,b]
respectively, and Iab the rectangle Ia x Ib. On Iab we shall consider the
following nonlinear hyperbolic partial differential equation

together with the initial conditions

(,.2) VWl-ajix), 0<j<m-l,

(1.3) * l ^ = A O 0 , 0 < / < » - ! ,
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154 Ravi P. Agarwal [2]

where (M) stands for

du d"u du dn+iu dm~lu
u, dx''"' dx"' dy''"' dxndy''"' dym~''''''

'« dmU Qi-l+m

•)'•
dxndym-l' dym''"' dxn~'dym,

feC[Iab x R"m+n+m,R], aj € CW[Ia,R], pi e CW[Ib,R], and

(1.4) 9af(0) = pV\0y, 0<j<m-l,0<i<n-l.

It is well recognised that the method of upper and lower solutions, together
with uniformly monotone convergent technique offers effective tools in prov-
ing and constructing multiple solutions of nonlinear problems. The upper
and lower solutions that generate an interval in a suitable partially ordered
space serve as upper and lower bounds for solutions which can be improved
by uniformly monotone convergent iterative procedures. Obviously, from
the computational point of view, monotone convergence has superiority over
ordinary convergence and several monotonic iterative schemes for ordinary
and partial differential equations have been developed and analysed in the
monograph [9] (it covers more than 100 recent publications on the subject),
and the papers [5-7, 10, 11]. In this paper we shall extend this fruitful tech-
nology for the initial value problem (1.1)—(1.4). Existence and uniqueness
results for the partial differential equation (1.1) together with (1.2)—(1.3) or
with different conditions have been considered by Agarwal [4], Lucia [12],
Kovac [8] and Volpato [14], whereas linear and nonlinear Gronwall's and
WendrofPs type inequalities, which are directly useful in estimating upper
estimates of the solutions of (1.1)—(1.4), are available in [1, 2].

2. Hyperbolic differential inequalities

We begin with the following
DEFINITION 2.1. A function w e C-n'm)[Iab,R] is said to be an upper

solution of the initial value problem (1.1)—(1.4) if

(2.1)

d»+iw(x,0) d»+Ju(x,0)
{2"Z) dx»dyJ ~ dx"dyi ' * € ' " '

di+mw(0,y) di+mu(0,y)
K ' dxldym ~ dx'dy"1 ' y *'
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Conditions (2.2)-(2.4) are equivalent to the following conditions:

< " )

Similarly, a function v e C(" 'm )[ / a 6 , R] is said to be a lower solution of (1.1 )-
(1.4) if for the function v the reversed inequalities hold in (2.1)-(2.4).

LEMMA 2.1. If

dn+m-\w dn+m-xu , , ,

then conditions (2.2)-(2.4), or equivalently (2.5), (2.6) imply that

(x,y)€lab, 0</i<n, 0<u<m-l.

PROOF. There exists a function k{x,y) > 0, (x,y) e Iab such that

where r\{x,y) = w(x,y) - u(x,y).
From (2.7) we easily find that

(2.8)

XJ-K di+»ri(0,y)

[i - n)\ dx'dy"

- v)\ dsndyj

1
{n-n- \)\{m- \ - v - 1)!
fx rv

x: I* [\x-s)n->l-l{y-t)m-x-v-xk{s,t)dtds.
Jo Jo

Since the right-hand side of (2.8) is positive, the conclusion follows.

LEMMA 2.2. Ifdn-l+mw/dx"-ldym > dn-l+mu/dx"-ldym, (x,y) e Iab,
then conditions (2.2)-(2.4), or equivalently (2.5), (2.6) imply that

{x,y)elttb, 0</i<n-l,0<v<m.
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The following fundamental result on hyperbolic differential inequalities
includes several known results for the particular case n — m=\ obtained in
[7-11,13, 15].

THEOREM 2.3. Suppose that

f)t+mv an+mw

< f(x,y, (v)), ^-^- > f(x,y, {w)),dx"dym ~ J v ' " s '" dxndy
d"+Jy(x,0) < d"+Jw(x,0)

dxndyj ~ dxndyj '
di+mv(0,y) < di+mw(0,y)

dx'dy"1 ~ dx'dym '

(ii) f{x,y, uofi, MII0, . . . , Mn-i,m) is nondecreasing in («o,o, "i,o, • • •, ««-i,m);
(iii) f(x,y,UotO,Uifi,...,Mn_i>m) - f{x,y,UOfi,uxfi,...,Un-X<m) <

YZ=oY?jLoLij(uU ~ Q'j)> whenever M,J > uUi on Iab, where ' deletes the
choice i = n and j = m, and Ltj are nonnegative constants. Then, the follow-
ing hold

( 2 - 9 ) dxTbyt - dxl&r' 0<n<n,0<V<m,n+i,<n+mon lab.

PROOF. We begin with the strict inequalities in (i) and prove the conclu-
sion in (2.9) for strict inequalities. From Lemmas 2.1 and 2.2 it suffices to
prove that

dn+m-lv dn+m-xw dn~i+mv d"-1+mw
{ ' dx"dy»-1 < dx»dy»-i dx»-idy» < dx^dy" o n "*'
Suppose that (2.10) is false. Let r^ be the greatest lower bound of numbers
r > x + y such that (2.10) holds for x + y < r0. Then, there is a point
(xo,yo) e Iab with x0 + yo = r0, and (say)

, 2 i n
=

dxndym-i dxndy">-i '
Clearly, by hypothesis (i) (with strict inequalities), yo > 0. Also, for all
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Therefore, hypotheses (i) and (ii) yield the following contradiction to (2.11)

v(xo,yo) ^ d»+"-lv(x0,0) p

d"+m-lw(Xn 01

dxndym-1

A similar contradiction can be arrived at if we assume

dx"-ldym dx"-ldym '
Therefore (2.10) and consequently (2.9) with strict inequalities hold.

Now, let e > 0. Choose X > 0 such that

(2.12)
1=0 y=0

A X > 0 satisfying (2.12) always exists.
We consider the functions

(2.13) V{x,y) = v(x,y) - eex<x+y) and w(x,y) = w(x,y)

Then, from hypotheses (ii), (iii) and the choice of X in (2.12), we obtain

dxndym - • ' * — • " * - " '
n m

,=0 j=0

Similarly, it can be shown that

d"+mV

Further, it is obvious that

d"+Jv(x,0) d"+Jw(x,0) di+mV(0,y) di+mw(0,y)
dx"dyJ < dx"dyj ' dx'dy™ < dx'dy"1 '

di+JV(O,O) di+Jw(0,0) n^-^ , ft^ - ^ ,
n .1 . <—„ .^ . , 0< i < n-I, 0< j < m-l.dx'dy} dx'dy) ' ~ ~ < -J -

Thus, from the first part it follows that
(2.14)

0< n<n, 0<v <m, n + v <n + m on Iab.
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The conclusion (2.9) is obtained by letting e —> 0 in (2.14).
In our next result we shall dispense with the assumption of monotonicity

of / at the cost of strengthening the notion of lower and upper solutions.

THEOREM 2.4. Suppose that
(i) v,w e C^m)[Iab,R] are such that d^v/dx^dy" < d^+vw/dx>1dyu;

0 < n <n, 0 < v> <m, n + v<n + mon Iab;
(")

dn+mv ^ .. ,
dx"dvm - ^ x '
d"+mw

8x»8y* ~ fiX'y'Uofi'"''°''''' U"-l'

whenever

dx^-^-dxTdy^ °nIab>

(iii)

d"+h{x,0) (n) d"+lw(x,O)
dx»dxJ ~ i y ' - dx"dyj '

di+mv(0,y) (m) di+mw(0,y)
(2.15) 8x'dym ~Pi {y> ~ dx'dy*

'

(iv) / satisfies the Lipschitz condition on Iab x Rnm+n+m

\f(x,y, uo,o, uifi,..., Mn_i>m) - f{x, y, ao,o, Si , 0 , . . . , Mn_i,m)|

(2.16) K^TX^'L

1=0 ;=o

Then, for any solution (only solution [4]) u of the initial value problem (1.1)-
(1.3) the following hold

df+"v
(2.17) dx>idyv ~

0 < n < n, 0 <v < m, n + v<n + mon Iab.

PROOF. AS in Theorem 2.3, if v and w satisfy strict inequalities in the
hypotheses (ii) and (iii) then strict inequalities follow in the conclusion (2.17).
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Now, let e > 0 and k > 0 be such that the inequality (2.12) holds, and
consider the functions V and ID defined in (2.13). We also define the functions
Anj,(x,y,u): Iab x R —> R; 0 < n < n, 0 < v < m, ft + v < n + m, as follows

^z.ioj yi^i/^jt,y,u) -

Let 2 = 2(x,y) be such that

< <

f dtL+vv dtt

(2.19) dx*dyv

0 < fi < n, 0 <v < m, on Iab.

Then, u^v = Alltl/(x,y,d"+l/z/dxf'dyl/y, 0 < /i < n, 0 < v < m,
n + m, satisfy

(2.20)

and also,

(2.21)

0 < n < n, 0 <v < m,

"eX{x+y).a+ dxfdy"

Consequently, from the hypotheses (ii) and (iv), we find

dn+mW
dx"dym > f(x,y, uojo, " i ,o, . . . . un-U

1=0 7=0
dx'dyj

1=0 ;=o

on Iab,

f(x,y,(z))

f(x,y,{2))

>f{x,y,(z))
for all (z) satisfying (2.19). Similarly, the inequality d"+mV/dx"dym <
f(x,y, (V)) can be proved. Further, since

dx"dyJ
di+mv(0,y)

(n)
dx"dyj '

di+mw(0,y)
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from the first part it follows that

(2.22) dxudy" dx^dy
0<fi<n, 0 < v < m, n + v < n + m on Iab.

The conclusion (2.17) follows by letting e -* 0 in (2.22).

COROLLARY 2.5. Suppose that
(i) v,w e C("'m)[Iab, R] are, respectively, the lower and upper solutions of

the initial value problem (1.1)—(1.3);
(ii) hypothesis (ii) of Theorem 2.3 holds;
(iii) hypothesis (iv) of Theorem 2.4 holds.

Then, the conclusion (2.17) holds.

3. Existence results

THEOREM 3.1. Suppose that
(i) v,w e C(nm)[Iab,R] are, respectively, the lower and upper solutions of

the initial value problem (1.1)—(1.3), satisfying

i 0< fi < n, 0 <v < m, n + v<n + mon Iab;

(ii) hypothesis (ii) of Theorem 2.3 holds.
Then, there exists a solution u(x,y) of the initial value problem (1.1)—(1.3),
satisfying (2.17).

PROOF. Let / ^ ( . x , ^ , w); 0 < ft < n, 0 < v < m, n + v < n + m,\x.

the functions as defined in (2.18). Then, the function f(x,y,Aofi(x,y, u),
A\,o(x,y,u),..., An-itm(x,y,«)) defines a continuous extension of / to Iab x

it is bounded. Therefore, the modified differential equation

dn+mu
(3.1) -Q^dylZ = f(x,y,Aofi{x,y,u),Axfi{x,y,u),...,An-<i,m{x,y,u))

together with the initial conditions (1.2), (1.3) has a solution M(Jt,>0 on Iab

[4]. It therefore suffices to show that

< — — <
(3.2) dx>idyu ~ dx^dy" ~

0 < n < n, 0 <v < m, fi + v<n + m on Iab.

For e > 0, we define the functions
\ w(x,y) = w(x,y) + e(l+x)n(l+y)m.
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We claim that

d^U dM+"w

(3.3) dx"dy dxfdy
0 < H <n, 0 <v < m, n + v < n + m on

Since

dn+Jy(x,Q) dn+Ju(x,0) dn+Jw(x,0)
dx"dyj < dx"dyJ < dx*dyJ '

di+mV(0,y) di+mu(0,y) di+mw(0,y)
(3.4) dx*8ym < dx'dy* < 9x'5j;'" '

0 < i<n- 1,

from Lemmas 2.1 and 2.2 it suffices to show that

dx"dym~l dx"dym~i dxndym~l

and

a c a « a t p
( ' dx"-ldym < ax"-'a>'m < dxn~ldym ° n "*'

Let ro be the greatest lower bound of numbers r > x + y such that (3.5)
and (3.6) holds for x +y < r0. Then, there is a point {xo,yo) e Iab with
*o + yo = r0, and (say)

, 3 ?v dvjxo^o) = d"+m-lu(xo,yo)
{ ' ' dxndym~x dx"dym-i '

Clearly, by (3.4), y0 > 0. Also, for all y e [O,}>o] we have

0 < fi < n, 0 <v < m, fi + v < n + m.

Further, from the definition of A^v{x,y, u) in (2.18), for all y e [O,yo] we
also have

d"+"v(xo,y) <
Xo' dx"dy ) ~ dxfdy" '

0 < n < m, 0 <u < m, n + v < n + m.

Therefore, hypothesis (ii) yields the following contradiction to (3.7):
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dn+m-lu(xo,yo) = dn+m-lu(x0,0)
dxndym-1 dxndym-x

+ I f (x0, t, AOfi(xo, t, u(x0, t)),A\,o (x0, t, ° ^ ' ' J ,

dn+m-lv(xo,yo)
~ d"dm{

• • • >-*4«-l,m I-*0> t,

f(xo,t,(v(xo,t)))dt

dx"dym-1 dxndym-x '

A similar contradiction holds if instead of (3.7) we assume any one of the
other three possibilities in (3.5) and (3.6).

Thus, the inequalities (3.5) and (3.6) hold. The conclusion now follows
by letting e -> 0 in (3.3).

COROLLARY 3.2. Suppose that the hypotheses (i)-(iii) of Theorem 2.4 are
satisfied. Then, there exists a solution u{x,y) of the initial value problem
(1.1)-(1.3), satisfying (2.11).

4. Variation of parameters formula

THEOREM 4.1. Any solution (only solution) u(x,y) on Iab of the linear dif-
ferential equation
(4.1)

dn+mu A iJ

together with (1.2)—(1.4) can be written as

(4.2) u(x,y) = <p(x,y)
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where M\ and Mi are constants, and the functions <p(x,y), y/{x,y) are defined
as follows
(4.3)

(=0 \ k=0
m-l : (n—i—l ,

'22j[ £ -
j=0 J \ 1=0

n - 1 m - l „ , , . / (n-i-l , ^l/f^k\ (n-j-l

D / \ /=0 " /

1

(4.4) ( n - l ) ! ( m - l ) !

x / / (x-s)H-l(y-t)m-le-MlS-Ml'h(s,t)dtds.
Jo Jo

PROOF. Let us assume that any solution of the linear differential equation
(4.1) can be written as

(4.5) u(x,y) = eM>x+M*yz(x,y)

from which it is easy to obtain that

n \ I W. i , . , *n-i(_Ajr\m-j

dxndym iLj^^lA;/ V ' dx'dyJ

and hence

dx"c
f M Y - U M)m-i
( " M l ) ( " M 2 )

dx"dym'

Thus, u{x,y) defined in (4.5) is a solution of (4.1) if and only if

From (4.6) it is easy to find that

xV- VI = > - —— 4- / lY «l I > - v ' / I / / (
•*->y) Z^l it flvl I" 1M / VA *^ \ / . .1 Q_nd.., I a i

1

(n - l)!(m - 1)!
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Hence, the solution u(x,y) of the initial value problem (4.1), (1.2)—(1.4) can
be written as

,=0 ' jfc=0

\x
ds»

7=0 J' /=O

(4.7) +¥{x,y)

( n - 1)! z

REMARK 4.1. From the definition of y/(x,y) in (4.4) it follows that

x f f/ / (x-s)"-i-l(y-t)m-J-le-MlS-M*'h(s,t)dtds.
Jo Jo

Thus, for all nonnegative constants Mi and A/2, and nonnegative function
h{x,y) onlab, dft+"t///dxt'dy'' > 0;0< n < n,0 <u < m, fi + u < n + m on

hb-

REMARK 4.2. From the explicit representation of q>{x,y) in (4.3) it is
possible to find sufficient conditions on the functions aj(x) and /?,0>) and
their derivatives so that d^tp/dx^dy" >0,0<n<n,0<v<m,/i + u<
n + m on Iab. For example, if n = m — 1, then (4.3) reduces to

and hence it suffices to assume that Mi and M2 are nonnegative constants,
^oOO - 0 on Ib, a'Q(x) >0onla and c*o(O) = /?o(O) = 0. As another example,
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if Mi = M2 = 0, then it is easy to note that
n—1 / m—\ i n — lm—ln—1 / m—\ i n — lm—l ,• .•

.y) = E 7*o-> + E W o - E E W<f»
( = 0 • ; = 0 •'• (=0 j=0 ' J'

= E 7AM + T^TjT E j f <* ~ ^-^(s)d

/ m-ip\m)

and hence it suffices to assume that P("\y) > 0, 0 < v < m on Ib and
a{"\x) > 0 on 7a, or equivalently of-fix) >0,0</i<nonla and P\m\y) >
0 on 7fc.

From Theorem 4.1 and Remarks 4.1 and 4.2 the following result can be
proved immediately.

THEOREM 4.2. Suppose that
(i) u € C("m)[Iab,R] is such that

dn+mu

dxndym

Afi a«rf A/2 ore nonnegative constants
(ii) d"+"<pa/dxiIdyl/ > 0; 0 < /z < n, 0 < i/ < m, n + v < n + m on Iab,

where <pa(x,y) is same as <p{x,y) replacing otj(x) by dju{x, 0)/dxJ and Pi(y)
/

Then, the following hold

^ °» 0<fi<n, 0<i> <m, }i + v <n + m on Iab.

5. Monotone iterative method

The purpose of this section is to provide sufficient conditions so that the
iterative scheme
(5.1)

dxn

/=0 j=0
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( 5 2 )

(5.3)

with the given function Uo(x,y), generates the sequences
0 < fi < n, 0 < V < m, n + v < n + m, which converge uniformly and
monotonically to df^u/dx^dy" on Iab, where u(x,y) is a solution of the
initial value problem (1.1)-(1.4). For this, we will need the following lemma.

LEMMA 5.1 [3]. Let (E, <) be a partially ordered space and v0 < WQ be two
elements of E. Denote by \vo,wo\ the interval {u e E: vo < u < Wo}. Let
T: [vo, wo] —» E be an isotone operator (T(v) < T(w), whenever v < w) and
let it possess the properties

(i) v0 < T(v0),
(ii) the (nondecreasing) sequence {Tk(vo)} where T°(vo) = VQ, Tk+l(v0) =

T[Tk(v0)] for each k = 0 , 1 , . . . is well defined, that is, Tk(v0) < w0 for each
k,

(iii) the sequence {Tk(vQ)} has sup v e E, that is, Tk(vo) | v,
(iv) Tk+i(v0) T T(v),
(i)' T(w0) < w0,
(ii)' the (nonincreasing) sequence {Tk(wo)} is well defined, that is, Tk(wo)

> vo for each k,
(iii)' the sequence {Tk{wo)} has inf w e E, that is, Tk(y0) 1 y,
(iv)'Tk+i(wo)lT(w).
Then, v = T(v) and for any other fixed point u e [vo,wo] of T, v < u.

(Then, w = T{w) and for any other fixed point u e [vo,wo] ofT, u < w.)
Moreover, if T possesses both properties (i) and (i)', then the sequences

{Tk(vo)}, {Tk(wo)} are well defined and if, further, T has the properties (iii),
(iii)' and (iv), (iv)' then

vo < T(v0) < < Tk{v0) <-<v<w

< < Tk(w0) < < T(w0) < w0

and v = T(v), w = T(w), and also any other fixed point u € [vo,wo\ satisfies
Vo < U < lOo-

In the space C ^ ' * ^ / ^ , R], 0<p + q<n + m, we in t roduce a part ial
order ing as follows: for v,w € C ^ [ / „ $ , / ? ] , we say v < w if and only if

< d'i+l/w/dx''dy'/; 0 </i < n, 0<v<m, fi + i><n + mon
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Iab. In this space we also define for norm,

N l = « m a x 1SUP dx"dyv\j '
H+v<n+m

THEOREM 5.2. Suppose that
(i) VQ,WQ e C(n'm\lab,K\ are such that VQ < WQ in the partial ordering of

(ii) d"+mv0/dx"dym < f(x,y,(v0)), dn+mwQ/dx"dym > f(x,y,(w0)),
(iii) for fixed nonnegative constants My and M2, <pVQ < <p < (pw<) in the

partial ordering of C^'q^[Iab,R], where the Junction <p(x,y) is defined in (4.3),
q>Vo(x,y) is same as <p{x,y) replacing at{x) by djv0(x,0)/dxj and
Piiy) by d'vo(O,y)/dy', and <pWo(x,y) is same as <p(x,y) replacing aj(x) by
dJwo(x,O)/dxJ and piiy) by d'woiO^/dy1,

(iv)

f(x,y,«o,o,"i,o. • • •, «n-i,m) - f(x,y, MO,O,SI,O»• • •.un-i,m)

* -1 ft (/) (7) (-̂ i r-'i-
,=0 y=0 V / \ J y

wherever d^v^dx^dy" < u^v < u^ < d^^wo/dx^dy": 0 < fi < n,
0<u <m, n + v <n + m on Iab.

Then, the sequences {*/*}, {wk} where the Junctions vk+i(x,y), w^+iix^)
are (uniquely) generated by the corresponding scheme (5.1)—(5.3) by taking
uo(x,y) as vo(x,y) and wo(x,y) respectively, are well defined and {vk} con-
verges to an element v e C^'q)[Iab,R], {wk} converges to an element w e
C(P<>)[Iab,R] (the convergence being in the norm ofC^'9)[Iab,R\). Further, in
the partial ordering ofC^A)[Iab,R\,

Vo<V\ < - < V k < - < V < W < - < W k < - < W \ < Wo,

v(x,y) and w(x,y) are the solutions of the initial value problem (1.1)—(1.4)
and each solution u(x,y) of this problem which is such that u € [VQ, WQ] satisfies
V < U < W.

PROOF. For any n e C^A'[IabiR\ such that VQ < n < WQ in the partial
ordering of C{p<q)[Iab, R], consider the initial value problem (4.1), (1.2)-( 1.4),
where

h(x,y) = f(x,y,(n))

1=0 7=0 ^ ' ^ '
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It is obvious that this initial value problem has a unique solution u(x,y) on
Iab. On the interval [v0, iu0] we define a mapping T by Tr\ = u.

First, we shall show that this operator T is isotone. For this, let T}Ur}2e
C^-^Uab, R] be such that rji < r\2. Let u\ = Tr\x and u2 = Tr\2. Then
U = u2-U\ satisfies the differential equation

dn+mu
dxndym

+ f{x,y,{ni)) - f{x,y,{n\))

+iii(nMn!)(-Mlr-i(-M2r-j

which from the hypothesis (iv) implies that

Further, since «i and «2 satisfy the same initial conditions (1.2)—(1.4), it
follows that d»+I/<pB/dxf'dyv = 0, 0 < n < n, 0 < v < m, fi + v < n + m
on Iat,. Thus, Lemma 4.2 is applicable, and as a consequence we find that
«i < «2, or equivalently, T?/i < Tr\2 in the partial ordering of
Thus, the operator T is isotone.

Next, we shall show that v0 < TvQ in the partial ordering of
For this, TVQ = V\ satisfies the differential equation

- - t t {•) {"I) (-

which on using the hypothesis (ii) gives the inequality

dn+mv

where C = Vi - v0. Further, from the hypothesis (iii), we have <pVa < q> in
the partial ordering of C^'«)[/at, /?], which implies that d^Vvldx^dy" > 0;
0 < / ' < n , 0 < i ' < m , / i + i ' < n + mon /afc. Thus, Lemma 4.2 is once again
applicable, and in conclusion we have v0 < Tv0 = V\ in the partial ordering
of CM[lab,R]. The proof of the inequality TwQ < wQ is similar. Thus, the
conditions (i) and (i)' of Lemma 5.1 hold and it proves that the sequences
{Tkvo = vk}, {Tkwo = wk} are well defined.

https://doi.org/10.1017/S1446788700031293 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031293


[17] Hyperbolic partial differential equations 169

Thus, the sequences {d^^Vk/dx^dy"} are nondecreasing and bounded
above by d^^wo/dx^dy", and the sequences {dti+vwk/dxi1dyv} are nonin-
creasing and bounded below by d/t+l/vo/dxttdy'/; 0 < n < n, 0 < f < m,
H + v <n + m on Iab. Hence, in conclusion the sequences

are uniformly bounded on lab. Further, since the functions vk(x,y), wk(x,y)
are the solutions of appropriate initial value problems, these sequences are
equicontinuous also. Thus, the Arzela-Ascoli theorem is applicable and for
each fixed fi, v there exist subsequences of

{d/4+vvk/dx'xdyv} and {d'1+vwk/dx'1dyl/}

which converge uniformly on Iab. However, since these sequences are mono-
tonic, we conclude that the whole sequences

and

converge uniformly to some df^v/dx^dy" and d»+vw/dxt'dy'', and v < w
in the partial ordering of C^1*) [/„£,/?]. Summarizing these arguments, we
find that Tkv0 | v and TkwQ [ w.

Finally, the continuity of the operator T implies that Tk+lv0 = T[Tkv0] T
Tv and Tk+iw0 = T[Tkw0] | Tw.

Hence, the conditions of Lemma S.I are satisfied and the conclusions of
Theorem 5.2 follow.

COROLLARY 5.3. Suppose in addition to the hypotheses of Theorem 5.2 the
Junction f satisfies the Lipschitz condition (2.16). Then v{x,y) = w(x,y)
on Iai,, and consequently, there exists a unique solution of the initial value
problem (1.1)—(1.4) in the interval [U
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