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Natural frequency discontinuity of vertical liquid
sheet flows at transcritical threshold
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The natural and forced dynamic response of a gravitational plane liquid sheet (curtain)
of finite length interacting with an unconfined gaseous ambient is numerically and
experimentally investigated. The global eigenvalue spectrum obtained by means of a linear
inviscid one-dimensional model, accounting for the coupling between the curtain motion
and the ambient pressure disturbances, clearly shows an abrupt increase (jump) in the
characteristic natural frequency of the flow when the supercritical (We > 1) to subcritical
(We < 1) transition occurs, with the Weber number We defined as the ratio between
inertia and capillary forces. On the other hand, the numerical simulation of the forced
sheet response does not show any discontinuity between supercritical and subcritical
conditions, as recently found by Torsey et al. (J. Fluid Mech., vol. 910, 2021, pp. 1–14)
in the case of an infinite liquid sheet subjected to imposed ambient pressure disturbances
not coupled with the curtain motion. It is argued that the forced liquid sheet behaviour
varies continuously in shape and amplitude between the two regimes, not depending on
the specific liquid–gas interaction model considered, whilst the natural frequency of the
finite flow system does undergo a discontinuity, which can be theoretically predicted by
the model of sheet–ambient interaction employed here. As a major result, the experimental
evidence of the natural frequency jump is for the first time provided as well.

Key words: thin films, coating

1. Introduction

The theoretical and experimental study of the unsteady dynamics of gravitational plane
liquid sheets (curtains) issuing from a vertical slot has interested the scientific community
for decades (Finnicum, Weinstein & Rushak 1993; Clarke et al. 1997; Weinstein et al.
1997; Lin 2003; Barlow, Weinstein & Helenbrook 2012). Nowadays, further insights can
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be provided by direct numerical simulation of the relevant two-phase flow field (Della
Pia, Chiatto & de Luca 2020), which enables the solution of the curtain motion and of the
surrounding gaseous ambient to be predicted simultaneously. The free and forced dynamic
responses of such a flow system have been investigated for the cases of sheet interacting
with a one-sided air cushion (nappe configuration, Binnie 1974; Sato et al. 2007; Girfoglio
et al. 2017; Lodomez et al. 2018; Kitsikoudis et al. 2021) and unconfined gaseous ambient
(Schmidt & Oberleithner 2020; Della Pia, Chiatto & de Luca 2021; Torsey et al. 2021),
both in supercritical (We > 1) and subcritical (We < 1) regimes. The Weber number We is
here defined as the ratio between inertia and capillary forces, We = ρlU�2

in H�
in/(2σ), with

ρl and σ being the liquid density and the surface tension coefficient, U�
in and H�

in the liquid
velocity and curtain thickness at the slot exit section, respectively.

Despite the historical and the more recent efforts, several unanswered questions
remain regarding the unsteady dynamics of liquid curtains; among others, the physical
mechanisms leading to the sheet break-up in subcritical conditions are still unclear.
From one hand, theoretical and experimental works point out that a necessary condition
for the stability of thin two-dimensional liquid curtains issuing from a slot and falling
vertically under the influence of gravity is We > 1 (Brown 1961; Lin 1981; Lin & Roberts
1981); from the other hand, the experimental investigations carried out by Finnicum
et al. (1993) revealed that stable liquid curtains can exist under a wide range of flow
conditions, spanning both the supercritical and subcritical regimes (0.02 < We < 2). From
the literature analysis summarized above, it can be inferred that an interesting open
question concerns the sheet unsteady behaviour when the flow rate is reduced and the
Weber number traverses the critical threshold (We = 1). The topic is important from
the technological aspect because two-dimensional planar liquid sheets, falling under the
influence of gravity, are often employed to deposit liquid layers on a solid moving surface
during coating processes (Finnicum et al. 1993; Weinstein & Ruschak 2004), and can be
subjected to ambient disturbances that cause non-uniform coating layers.

It is known that the prevailing flow disturbances characterizing the dynamics of
gravitational planar liquid sheets are represented by travelling waves with velocity
±√

U/We relative to that of the base flow U (Weinstein et al. 1997); therefore, in the
supercritical regime (We > 1) all perturbations travel downstream along the curtain, being
faster than the underlying base flow, while for We < 1 there exist upstream travelling
disturbances which affect the curtain centreline slope at the slot exit section, whose
specific value depends on the (subcritical) Weber number. Focusing on the flow transition
from the supercritical to subcritical regime, the recent numerical investigation by Della
Pia et al. (2021), who provided a simplified one-dimensional model of the dynamics
of a sheet of finite length accounting for the coupling between the curtain motion and
the surrounding gaseous environment, highlighted the discontinuity (jump) of the flow
natural frequency when the Weber number reduces below the critical threshold We = 1.
On the other hand, Torsey et al. (2021), who studied the case of forced (rather than
natural) dynamic response of an infinite curtain subjected to sinusoidal ambient pressure
disturbances not coupled with the curtain motion, did not find any discontinuity in
interface shape and amplitude, and they hypothesized this behaviour could be related to
the modelling of the sheet–ambient interaction considered in a finite length curtain that
bounds a finite and enclosed air region.

The motivation of the present paper is twofold. On the one hand, it will be shown that the
curtain forced response to sinusoidal transverse velocity perturbations is continuous across
the critical threshold We = 1, not depending on the particular model of sheet–ambient
interaction. On the other hand, experimental evidence of the discontinuous behaviour of
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Natural frequency discontinuity of vertical sheet flows

the curtain natural response in transcritical conditions will be provided, which can be
numerically predicted through a Bernoulli based model of sheet–ambient interaction for
a finite length sheet. Although several previous contributions reported on measurements
of the natural frequency of liquid sheet flows, such as the historical work of Binnie (1974)
and more recent papers by Sato et al. (2007), Lodomez et al. (2018, 2019a,b, 2020) and
Kitsikoudis et al. (2021) regarding the nappe configuration, to the authors’ knowledge this
is the first time that the experimental occurrence of the frequency jump of an unconfined
liquid curtain in transcritical conditions is provided.

The work is organized as follows: in § 2, the theoretical and numerical framework is
introduced; § 3 highlights the experimental method employed in the analysis, together
with a description of the apparatus used to generate the vertical liquid curtain; results are
presented and discussed in § 4, and conclusions are drawn in § 5. Finally, further theoretical
and numerical insights into both the natural and forced liquid sheet dynamics are provided
in Appendices A and B.

2. Theoretical and numerical modelling

Both the natural and forced responses of a gravitational liquid sheet, interacting with an
unconfined gaseous ambient, are analysed by means of a linear inviscid one-dimensional
model, described in detail in previous contributions (Della Pia et al. 2020, 2021). Despite
the simplifying assumptions, the predictions of this model were found to be valuable
compared with two-phase numerical simulations carried out with a volume-of-fluid (VOF)
code (Popinet 2003, 2009). In supercritical conditions, the natural frequency of the system
was predicted with a relative spread of 10 % (Della Pia et al. 2020). In the subcritical
regime, instead, an agreement within 5 % was found between the natural frequency arising
from the model and the resonance frequency of the VOF simulated sheet subjected to
a time continuous sinusoidal transverse velocity forcing v�

f applied at the inlet section
(Della Pia et al. 2021). In the latter case, the curtain shape was found to be influenced
by a nonlinear interaction between a dominant sinuous mode and secondary varicose
ones, which were identified through the spectral proper orthogonal decomposition of the
two-phase flow field (Colanera et al. 2021).

The forced dynamics of the flow is here analysed by continuously forcing the sheet by
means of a harmonically modulated transverse component of the inlet velocity, thereby
basically exciting sinuous modes. The natural response is studied with the standard
eigenvalues analysis. With reference to the sketch of figure 1, the dimensionless governing
equations of the evolution of sinuous disturbances for the perturbed sheet centreline � and
transverse velocity v are

∂�

∂t
+ U

∂�

∂x
= v, (2.1)

∂v

∂t
+ U

∂v

∂x
= 1

WeH
∂2�

∂x2 −
(

− 2
π

1
ε

ρa

ρl

1
H

∫ 1

0

∂2�

∂t2
ln |x − ξ | dξ

)
. (2.2)

Dimensionless variables are defined as

x = x�

L�
, � = ��

H�
in

, U = U�

U�
in

, H = H�

H�
in

, ε = H�
in

L�
, (2.3a–e)

v = v�

εU�
in

, p = p�

ρlU�2
in

, t = t�U�
in

L�
, We = ρlU�2

in H�
in

2σ
, (2.4a–d)
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H�(x�)

H�
inU�

in

v�
f

��(x�, t�)

p�
a
+ (x�, t�)p�

a
– (x�, t�)

x�

y�

Collected liquid

L� g

Figure 1. Schematic representation of (harmonically forced) liquid sheet.

where all dimensional quantities except the fluid properties (ρl, liquid density, ρa, air
density, σ , liquid/air surface tension) are indicated with the superscript �. The inlet Weber
number is denoted as We, ε is the sheet slenderness parameter, �� is the centreline location
and t� denotes the time. Note that ε represents the spatial integration variable.

Uppercase and lowercase letters denote base and perturbation quantities, respectively,
and the subscript in denotes the base flow at the inlet section. Based on the works by
Weinstein et al. (1997) and Finnicum et al. (1993), the Torricelli free-fall model, U =√

1 + 2x/Fr, is considered as the steady main flow in (2.1) and (2.2). The Froude number is
defined as Fr = U�2

in /gL�, where L� is the sheet length and g the gravitational acceleration.
The second term on the right-hand side of (2.2) represents the variation in pressure of the
external quiescent ambient surrounding the right and left sides of the sheet in the xy plane
(Kornecki, Dowell & O’Brien 1976), namely

p+
a − p−

a = − 2
π

1
ε

ρa

ρl

1
H

∫ 1

0

∂2�

∂t2
ln |x − ξ | dξ. (2.5)

It is worth noting that the system (2.1) and (2.2) is not rigorously hyperbolic due to
the integral term (2.5). However, in a previous work focused on the analysis of the free
impulse response of the curtain flow (Della Pia et al. 2020), numerical integrations of (2.1)
and (2.2) revealed solutions represented by travelling waves with phase velocities and
corresponding crossing times in strict agreement with those obtained for ρa/ρl = 0 (i.e.
hyperbolic equations with wave characteristic velocities equal to U ± √

U/We) given by
Girfoglio et al. (2017) (see also (34) in Della Pia et al. 2020). Based on this consideration,
we set up the linear stability analysis as described in § 2.1, to predict the natural frequency
of the finite curtain flow and provide comparisons with the experimental findings reported
in § 4.
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2.1. Asymptotic stability analysis
The natural response of the sheet is analysed via an eigenvalues problem. The global
temporal modes are introduced in (2.1) and (2.2) as �(x, t) = �̂(x) · eλt and v(x, t) =
v̂(x) · eλt, where �̂ and v̂ are eigenfunctions and λ is the complex eigenvalue. Eigenvalues
and eigenfunctions are numerically computed by a Chebyshev collocation method in
the MATLAB environment, with both differential and integral terms being spectrally
accurate (De Rosa, Girfoglio & de Luca 2014).

For inlet supercritical conditions, We > 1, two boundary conditions are imposed at the
inlet section, i.e.

�̂(0) = 0, (2.6)

d�̂

dx

∣∣∣∣
0

= 0. (2.7)

For a subcritical inlet, We < 1, there exists an upstream directed characteristic curve with
slope U − √

U/We featuring the theoretical solution of (2.1) and (2.2) (for ρa/ρl = 0),
and therefore only the boundary condition �̂ = 0 can be retained at the inlet section
(Finnicum et al. 1993; Girfoglio et al. 2017; Torsey et al. 2021). The eigenvalues equation
becomes singular, and the condition removing this singularity constitutes the required
second boundary condition (Della Pia et al. 2021)

d�̂

dx

∣∣∣∣
xs

= −λv̂(xs)/U + 2ρaλ[F(xs) − G(xs)]/ (περl)

λ+ We/Fr
, (2.8)

where F(x) = ∫ 1
0 v̂ ln |x − ξ | dξ , G(x) = ∫ 1

0 Ud�̂/dx ln |x − ξ | dξ and xs is the critical
station, i.e. the location where the local Weber number Wel = ρlU�2H�/2σ = UWe is
equal to unity

xs = Fr
2

(
1

We2 − 1
)

. (2.9)

The role of the critical station in the selection mechanism of the global mode (i.e.
oscillation mode involving the entire flow field in case of spatially developing flow) of
liquid sheets undergoing the supercritical-to-subcritical flow transition has been already
highlighted in the experimental investigations by Le Grand-Piteira et al. (2006) and
Brunet, Clanet & Limat (2004), which revealed spontaneous oscillations of liquid sheets
falling from a horizontal wet tube and maintained between two vertical wires, and of liquid
bells resulting from the overflow of a viscous liquid out of a circular dish, respectively. In
particular, Le Grand-Piteira et al. (2006) found that subcritical liquid curtains are able to
sustain a characteristic chessboard pattern of sinuous waves, whose propagation velocity
is equal to half of the liquid speed at the transonic line (x = xs), and does not depend on
the vertical location on the curtain. The authors argued that this behaviour could be the
outward sign of a global mode.

2.2. Numerical simulation of the forced dynamics
Numerical simulations of the dynamics of harmonically forced sheets have been carried
out by means of a standard finite-difference discretization of the governing equations
system (2.1) and (2.2). In both supercritical and subcritical regimes, the following inlet
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boundary conditions have been considered:

�(0, t) = 0, (2.10)

v(0, t) = vf (t) = A sin(2πft), (2.11)

for an initially unperturbed liquid sheet, namely �(x, 0) = v(x, 0) = 0.
We verified the validity of the boundary condition (2.11) in subcritical conditions by

performing the following analysis. For We < 1, we first retained only the constraint (2.10),
and solved a modified version of the system (2.1) and (2.2) by adding a transverse driving
force applied at the critical station, x = xs, in (2.2)

∂v

∂t
+ U

∂v

∂x
= 1

WeH
∂2�

∂x2 + 2
π

1
ε

ρa

ρl

1
H

∫ 1

0

∂2�

∂t2
ln |x − ξ | dξ + Fs, (2.12)

where
Fs = As cos(2πft)δs, (2.13)

with δs a Dirac distribution function centred at the critical station. Secondly, we solved the
system (2.1) and (2.2) with boundary conditions (2.10) and (2.11). By proper selection of
the amplitude As, namely by choosing a value of As yielding the amplitude of the lateral
velocity at the inlet, v(0, t), equal to that imposed via (2.11) for supercritical conditions
(We > 1), the results of the two problems were found to be identical. Note also that the
harmonically forcing transverse velocity represented by (2.11) is analogous to that adopted
by Schmidt & Oberleithner (2020) and Della Pia et al. (2021) in two-dimensional viscous
nonlinear simulations, while Torsey et al. (2021) considered sinusoidal ambient pressure
perturbations.

The prescribed oscillation amplitude is A = 5, which, for the slenderness ratio ε = 0.01
considered in the present case, corresponds to 5 % of the inlet velocity magnitude U�

in,
while various forcing frequencies f have been considered, as will be discussed in § 4.
For all cases reported, the forcing frequencies have been chosen to not coincide with the
natural frequencies of the flow system, to not excite possible resonance phenomena. The
numerical simulation of the spatio-temporal partial-derivative equations did not need any
special treatment for the presence of the singularity in subcritical regime.

3. Experimental set-up and procedure

The experimental set-up is a remake of that described in detail by de Luca & Meola (1995)
and its sketch is reported in figure 2. Starting from an overflow tank and through flexible
tubes, the liquid fluid goes into a stagnation chamber equipped with a perforated plate,
and it is ejected by means of a stainless steel nozzle. The flow rate is controlled with a
regulating valve and a flow meter. Two lateral Plexiglas plates, placed at each end of the
nozzle, facilitate the formation of the sheet and guarantee the two-dimensionality of the
base motion; details of the experimental sheet and the nozzle cross-section are reported on
the right in figure 2. Particular care is taken to eliminate any vibration source and to control
the ambient air to be quite still. The liquid is collected in a reservoir below the test section
and then pumped back to the tank. Tests are carried out on liquid sheets issuing from a
nozzle with a horizontal exit section, 180 mm long, having a discharge width H�

in equal
to 2 mm. To enhance the optical detection of the sheet oscillation hereafter described, the
working fluid was obtained by diluting a very small amount of white ink (Lefranc and
Bourgeoi coloured drawing ink) in water, so as to obtain a low-concentration aqueous
solution with 1 % of ink. The characterization of the solution has been carried out by
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Tank

Perforated
plate

Stagnation
chamber

Nozzle
cross-section

(xy plane)

H�
in

Flowmeter

Valve

Pump

Reservoir

x�

z�O

Figure 2. Sketch of the experimental apparatus. Details of the two-dimensional liquid sheet and the nozzle
are reported on the right. The red spot in the sheet plane denotes the measuring point.

measuring the fluid properties: the nominal (or bulk) surface tension has been obtained by
means of a tensiometer through the pendant drop method and it is equal to 0.0605 N m−1,
the fluid density is 0.998 kg m−3 and a falling-sphere viscometer has provided a value of
the dynamic viscosity equal to 1.05 × 10−3 Pa s.

Time-resolved measurements of the sheet oscillations in the lateral plane xy (normal to
the nozzle spanwise direction z) are carried out by recording the transverse velocity signal
v(t) by means of a scanning laser Doppler vibrometer (Polytec PSV400−H4) at a proper
measuring point, located 20 mm downstream of the nozzle exit section, as indicated by the
red spot on the right in figure 2. The acquired frequency does not depend on the measuring
point location. The frame rate of acquisition is equal to 256 Hz, and 2048 samples are taken
for each measurement. The aqueous solution of white ink is necessary to make the test
fluid opaque, thus allowing the laser measurements. The curtain oscillations are excited
through the impulse motion of a thin plate, 0.5 mm in thickness, moving in the horizontal
yz plane, 0.2 mm below the nozzle exit section. This contact method, used to set the curtain
in motion, does not disrupt the sheet for any of the test conditions.

4. Results and discussion

4.1. Numerical investigation of natural and forced dynamics
Results of the spectral analysis for Weber numbers around unity will be hereafter presented
to shed light on the natural response of the flow when crossing the critical regime.
Figure 3(a,b) compares spectra obtained in supercritical and subcritical conditions, with
(b) depicting a zoom of the spectrum inner parts; the relevant dimensionless parameters
are listed in table 1. Since the Weber number is modified by varying the inlet velocity, the
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λr

0.70 0.1 0.2 0.3 0.4 0.6 0.8 0.9 1.0

0

0.5

1.0

�̂

We = 1.2

We = 1.05

We = 0.95

We = 0.8

We = 1.2

We = 1.05

We = 0.95

We = 0.8

(b)(a)

(c)

Figure 3. Combined We–Fr effect on the eigenvalues (a,b) and on the normalized least stable eigenfunction,
(c): (We, Fr) = (1.2, 0.08), black filled dot and continuous black line; (1.05, 0.07), black open dot and dashed
black line; (0.95, 0.06), red filled dot and continuous red line; (0.8, 0.05), red open dot and dashed red line.
(b) Shows a zoom of the inner parts of the spectra reported in (a). The characteristic frequencies Δλ+i and
Δλ−i , whose values are listed in table 2, are indicated respectively in (a,b).

Gas-to-liquid density ratio rρ = ρa/ρl 0.001
Sheet slenderness ratio ε = H�

in/L� 0.01
Froude number Fr = U�2

in /(gL�) 0.08, 0.07, 0.06, 0.05
Weber number We = ρlU�2

in H�
in/(2σ) 1.2, 1.05, 0.95, 0.8

Table 1. Dimensionless parameters involved in the numerical analysis.

Froude number accordingly changes, ranging from Fr = 0.08 to 0.05 as the Weber number
varies from We = 1.2 to 0.8.

As discussed by Girfoglio et al. (2017) and Della Pia et al. (2020, 2021), the supercritical
regime is characterized by the presence of two branches exhibiting an almost constant
spacing Δλi between the imaginary part of the eigenvalues (frequency), which is directly
associated with the crossing time of slow (upper branch, Δλ−i ) and fast (lower branch,
Δλ+i ) travelling waves (i.e. with velocity ∓√

U/We relative to that of the base flow U,
respectively) featuring the solution of (2.1) and (2.2). On the other hand, when the Weber
number is reduced below unity, the spectrum reveals the fast branch only; therefore, for
We = 1.05 the characteristic frequency of the system, Δλ−i = 6.16, is associated with the
crossing time of the slow wave, whilst for We = 0.95 it is Δλ+i = 33.80 (figure 3 and
table 2), thus exhibiting a jump when traversing the critical regime (table 2). An analogous
discontinuity was found by Girfoglio et al. (2017) for the nappe configuration; note also
the continuous trend of Δλ+i around the We critical threshold. The natural frequency
discontinuity corresponds to an abrupt change in the eigenmode shape �̂ associated
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Natural frequency discontinuity of vertical sheet flows

We 1.2 1.05 0.95 0.8

Δλ−i 7.22 6.16 — —
Δλ+i 29.83 31.99 33.80 36.88

Table 2. Global frequency in supercritical (Δλ−i , We > 1) and subcritical (Δλ+i , We < 1) flow regimes.

with the least stable frequency of the spectrum, which is reported in figure 3(c) for We
progressively reduced from We = 1.2 to We = 0.8. Note that each curve is normalized
with respect to its maximum, which for all cases occurs at the domain exit section, such
that �̂(1) = 1. It is worth noting that the theoretical prediction of the liquid sheet natural
frequency, and therefore its jump when the supercritical-to-subcritical flow transition
occurs, strongly relies on two features of the curtain flow model here employed (2.1)–(2.2);
accounting for the sheet–ambient interaction via (2.5), and considering a sheet of finite
length L�. As a matter of fact, we verified that if one neglects the pressure term (2.5) in the
case of a finite length curtain, the linear stability analysis yields an empty spectrum, i.e. no
natural frequency is detected, and consequently no frequency discontinuity. On the other
hand, if a curtain of infinite length is considered, the natural frequency predicted by the
theoretical analysis vanishes; the latter question will be addressed in detail in Appendix A.

Figure 4 shows results of the forced oscillatory dynamics of the sheet centreline
for supercritical (We = 1.05, panels a,c,e) and subcritical (We = 0.95, panels b,d,f )
conditions obtained by solving (2.1) and (2.2) enforcing the boundary conditions (2.10)
and (2.11) introduced in § 2; three forcing frequencies are considered in the analysis,
namely f � = 1, 5, 20 Hz. The initial unperturbed sheet centreline, y = 0, is denoted as
a dashed line, while the solid lines indicate the centreline shapes at fixed times expressed
as fractions of the (dimensionless) oscillation period T . We explicitly note here that a
transient solution is present in the domain after the forcing is introduced via the boundary
condition (2.11) at t = 0. However, after less than one reference time (t = 1), the transient
is expelled, and the sheet oscillations converge to periodic solutions for all the forcing
frequencies considered, which are the ones reported in figure 4. Moreover, we verified that
the converged values of the curtain centreline amplitude within each oscillation cycle do
not depend on the specific boundary condition initial value, v(x = 0, t = 0), i.e. on the
forcing phase.

For all f � and We values here investigated, one observes that, as the forcing frequency
is increased, the oscillation wavenumber also increases, whilst the maximum amplitude of
sheet deflection correspondingly decreases. An analogous behaviour has been recently
highlighted by Torsey et al. (2021). At the highest forcing frequency (e, f ), the sheet
response shows a convective character and a shorter wavelength, as already obtained by
Della Pia et al. (2021) through VOF simulations accounting for viscous effects. As a major
result of the analysis of the forced oscillatory curtain dynamics, it is possible to appreciate
that, for each f � value, the sheet response varies continuously when the flow undergoes
the supercritical-to-subcritical transition, with both the sheet shapes and amplifications
being quite similar for We = 1.05 and We = 0.95. Considering the analogous result
found by Torsey et al. (2021) in the case of an infinite liquid sheet subjected to
imposed ambient pressure disturbances not coupled with the curtain motion, one can
infer that the continuous behaviour of the finite length curtain forced dynamics at the
transcritical threshold does not depend on the specific curtain–ambient interaction model
employed. The latter consideration will be further corroborated by the analysis provided
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Figure 4. Weber number effect on the sheet centreline deflection, �, as a function of the streamwise station, x,
at different fractions of oscillation period T: t = 0T (black); 0.25T (red); 0.5T (blue); 0.75T (green). The
dashed line denotes the centreline of the unperturbed curtain. From top to bottom: f � = 1, 5 and 20 Hz.
(a) (We, f �) = (1.05, 1 Hz); (b) (We, f �) = (0.95, 1 Hz); (c) (We, f �) = (1.05, 5 Hz); (d) (We, f �) =
(0.95, 5 Hz); (e) (We, f �) = (1.05, 20 Hz); ( f ) (We, f �) = (0.95, 20 Hz).

in Appendix B, where it will be shown that, even neglecting the coupling (2.5) in (2.1) and
(2.2), the forced oscillatory dynamics varies continuously between We > 1 and We < 1.
Moreover, we verified that, considering a forcing frequency equal to the sheet supercritical
natural frequency in the analysis reported in figure 4, the continuous variation of curtain
shapes in transcritical conditions is still retrieved, being the oscillation amplitude of course
lower for the subcritical case (excited far from its resonance condition). A continuous
forced behaviour has also been recovered for a curtain subjected to ambient sinusoidal
pressure disturbances, as outlined in the recent work by Torsey et al. (2021). On the
contrary, based on both the stability analysis and the experimental findings (§§ 4.1 and 4.2,
respectively), it is the curtain natural frequency which does undergo a jump in transcritical
conditions.

4.2. Experimental detection of frequency jump at the transcritical threshold
For each experimental test an initial value of relatively high flow rate per unit length,
Q�

in = U�
inH�

in, is fixed. By means of the regulating valve the flow rate is slowly decreased
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We = 0.94

Figure 5. Normalized power spectral density of the vibrometer recordings acquired at different values of the
Weber number.

We f �
e (Hz) f �

n (Hz) ε s

3.50 2.38 2.52 5.56 % 16.4 %
2.43 2.00 2.30 13.04 % 10.2 %
1.56 1.88 2.00 6.00 % 11.0 %
1.12 1.63 1.67 2.40 % 11.8 %
0.94 4.75 4.84 1.86 % 8.0 %

Table 3. Experimental and numerical values of the natural frequency varying the Weber number. The relative
percentage spread ε is defined as ε = 100 · ( f �

n − f �
e )/f �

n . The last column reports the standard deviation of the
experimental measurements.

to obtain various flow regimes, varying from supercritical-to-subcritical conditions. Five
flow rate values are considered, ranging from Q�

in = 0.93 × 10−3 to 0.48 × 10−3 m2 s−1,
which correspond to We = 3.50, 2.43, 1.56, 1.12, 0.94, respectively. The lowest value
of Q�

in is the minimum flow rate to maintain a stable two-dimensional liquid sheet, i.e.
attached to the lateral plates. For each test condition the measurement has been repeated
20 times.

Figure 5 presents the normalized power spectral density (PSD) of the signals acquired by
the vibrometer for the Weber number values listed above. At We = 3.5 the flow is fully in
supercritical conditions, and the PSD exhibits a peak at f �

e = 2.38 Hz. When We decreases,
according to the stability analysis predictions, the PSD peak moves towards lower f �

e
values, while a higher frequency dynamics is excited, as revealed by the secondary peak
at f �

e ≈ 6 Hz for We = 1.12. A further decrease in the Weber number determines the flow
transition from the supercritical-to-subcritical regime, with the measured peak frequency
undergoing a jump from f �

e = 1.63 Hz (We = 1.12) to f �
e = 4.75 Hz (We = 0.94).

Table 3 and figure 6 show the agreement between experimental values ( f �
e ) and

numerical predictions ( f �
n ) of the natural frequency, and confirm the occurrence of the

discontinuity at We = 1. Note that the error bars reported in figure 6 and in last column
of table 3 represent the standard deviation (s) of the experimental measurements, whose
values vary between 8 % and 16 % of the corresponding mean quantities. The reference
frequency employed to convert the numerical data Δλ±i in dimensional form f �

n is f �
ref =

U�
in/(2πL�).
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Figure 6. Comparison between numerical ( f �
n , continuous curves) and experimental ( f �

e , filled circles) natural
frequencies in supercritical (black) and subcritical (red) regimes. The numerical frequency associated with the
fast branch of the spectrum in supercritical conditions is also reported (black dashed curve). The error bars
represent the standard deviation of the experimental measurements.

5. Conclusions

The free and forced responses of gravitational liquid sheet flows interacting with an
unconfined air ambient have been analysed both numerically and experimentally, for
various inlet Weber numbers ranging from supercritical (We > 1) to subcritical (We < 1)
conditions. The numerical investigation is based on a linear inviscid one-dimensional
model accounting for the coupling between the curtain motion and the ambient pressure
disturbances, whose capability of prediction has been already tested by comparison with
numerical simulations carried out with a VOF based code. An eigenvalues analysis
has been employed to investigate the natural response, while the numerical integration
of the governing equations, equipped with an inlet boundary condition including a
harmonically oscillating transverse velocity, has provided the forced behaviour of the
sheet. Experimental tests have been performed to measure the free response of the flow
system by recording the sheet oscillations in its lateral plane with a scanning laser Doppler
vibrometer; the flow rate was progressively reduced so as to obtain a transition from the
supercritical-to-subcritical regime.

Results of the forced curtain oscillatory dynamics have shown that the sheet response
varies continuously when the flow undergoes the supercritical-to-subcritical transition.
Considering the analogous result found by Torsey et al. (2021) in case of an infinite liquid
sheet subjected to imposed ambient pressure disturbances not coupled with the curtain
motion, and results obtained in the present work neglecting the sheet–ambient interaction
(Appendix A), it is inferred that the continuous behaviour of the finite length curtain forced
dynamics at the transcritical threshold does not depend on the specific curtain–ambient
interaction model considered. On the contrary, the global eigenvalue spectrum obtained
by means of the modal analysis clearly shows an abrupt increase in the natural frequency
at the transcritical threshold, whose occurrence has been confirmed for the first time by
experimental findings.

As a summary, the theoretical prediction of the liquid sheet natural frequency, and
therefore its jump when the supercritical-to-subcritical flow transition occurs, strongly
relies on two features of the curtain flow model employed here: accounting for the
sheet–ambient interaction and considering a sheet of finite length. As a matter of fact,
we verified that if one neglects the pressure term in case of a finite length curtain, the
linear stability analysis yields an empty spectrum, i.e. no natural frequency is detected,
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and consequently no frequency discontinuity. On the other hand, if a curtain of infinite
length is considered, the natural frequency predicted by the theoretical analysis vanishes.
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Appendix A. Natural frequency of an infinitely long curtain

The aim of the present section is to show that the liquid sheet natural characteristic
frequency, and therefore its jump when the supercritical-to-subcritical flow transition
occurs, can only be predicted considering a curtain of finite length L� together with the
pressure model adopted within this work (§ 4.1). In other words, if a sheet of infinite length
is considered, the predicted natural frequency vanishes.

To this purpose, one can introduce the gravitational length scale L�
g = U�2

in /g, evaluate
the ratio between this scale and the actual curtain length L�, which is also the Froude
number, Fr = U�2

in /(gL�), and consider that an infinitely long curtain corresponds to the
condition U�2

in /g << L�, that is a curtain gravitationally of infinite length. Therefore, in
the present analysis the case of infinite length can be investigated as limit case of Fr →
0, which physically corresponds to lengthen progressively the curtain for a given inlet
velocity U�

in.
For the reasons stated above, the evolution of the liquid sheet natural frequency as

the Froude number is progressively reduced, tending to zero, is studied; results are
shown in figures 7 and 8, where the eigenvalue spectrum (figure 7a) and the theoretical
predictions of the natural characteristic frequency (Δλ−i , figures 7(b) and 8(c), and Δλ+i ,
figure 8(d), respectively in supercritical and subcritical conditions) are reported. Moreover,
the corresponding dimensional values f �

n are shown in figure 7(c) and figure 8(a,b). The
theoretical predictions Δλ±i are provided, following Girfoglio et al. (2017), as

Δλ−i = π

Fr

⎡⎢⎢⎣1
2

(U|1 − 1) + 1√
We

(√
U|1 − 1

)+ 1
We

log

√
U|1 − 1√

We

1 − 1√
We

⎤⎥⎥⎦
, (A1)

Δλ+i = π

Fr

⎡⎢⎢⎣1
2

(U|1 − 1) − 1√
We

(√
U|1 − 1

)+ 1
We

log

√
U|1 + 1√

We

1 + 1√
We

⎤⎥⎥⎦
, (A2)
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Figure 7. Eigenvalue spectrum (a), Δλ−i (b) and curtain natural characteristic frequency f �
n (c) varying the

Froude number. In (b,c), both the theoretical predictions (continuous black curve) and the numerical evaluations
from the spectrum (black circles) are reported. Here, We = 1.2.

where U|1 = √
1 + 2/Fr, while the reference quantity employed to convert the data Δλ±i ,

so as to obtain the (dimensional) natural frequency f �
n , is f �

ref = U�
in/(2πL�), as previously

done in § 4.2.
By looking at figure 7(c) and figure 8(a,b), it can be appreciated that, as the Froude

number decreases, the frequency f �
n also decreases, and tends to vanish as Fr approaches

zero, both in supercritical and subcritical conditions. Note that, for the supercritical case
considered in figure 7 (We = 1.2), two branches of spectrum are obtained, and the natural
frequency is associated with the eigenvalues spacing of the upper branch Δλ−i (see § 4.1).
It is also interesting to note that the dimensionless values Δλ±i increase as Fr decreases
(figures 7(b) and 8(c,d)) as an effect of the adopted length scale L�, which is indeed not
appropriate in the current analysis (Fr → 0) and it has to be replaced by a different one,
namely by the gravitational length L�

g, as determined in the study of an infinitely long
curtain by Torsey et al. (2021).

Therefore, we conclude that the theoretical model of unconfined liquid sheet flow
adopted in this work predicts a vanishing natural frequency in the limit of Fr → 0, i.e.
for a curtain of infinite length.

Appendix B. Effect of the sheet–ambient interaction on forced curtain shapes

This section aims at showing that, regardless of whether the coupling between the curtain
motion and the external ambient is considered in (2.1) and (2.2) via the pressure term (2.5),
the forced liquid sheet behaviour analysed in § 4.1 varies continuously in shape and
amplitude when traversing the critical threshold We = 1. To this purpose, we present in
figure 9 results of the curtain oscillatory dynamics obtained both by taking into account
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Figure 8. Analysis of the curtain natural characteristic frequency f �
n in the limit case of Fr → 0 in

supercritical (a) and subcritical (b) conditions. The dimensionless values Δλ±i are also reported (c,d).

the sheet–ambient interaction (continuous curves), i.e. by numerical integration of

∂�

∂t
+ U

∂�

∂x
= v, (B1)

∂v

∂t
+ U

∂v

∂x
= 1

WeH
∂2�

∂x2 − Δpa, (B2)

which are the same equations as (2.1) and (2.2) (where Δpa is given by (2.5)), and by
neglecting it (dotted curves), thus solving

∂�

∂t
+ U

∂�

∂x
= v, (B3)

∂v

∂t
+ U

∂v

∂x
= 1

WeH
∂2�

∂x2 . (B4)

The boundary conditions (2.10) and (2.11) introduced in § 4.1 are enforced in both the
cases. The numerical investigation is performed in the same flow conditions considered
in § 4.1, i.e. for We = 1.05 (a,c,e) and We = 0.95 (b,d, f ), and the forcing frequencies
considered are f � = 1, 5 and 20 Hz. Note that (B3) and (B4) are the same as those
presented by Torsey et al. (2021) once they are combined and small notational differences
rectified.

Two main results arise from the analysis reported in figure 9. First, it can be appreciated
that, regardless of whether the coupling between the curtain motion and the ambient

945 A32-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.578


M. Chiatto and A. Della Pia

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.1

0

0.1

−0.1

0

0.1

0.6 0.8
−4

−2

0

2

4

−4

−2

0

2

4
(×10−2) (×10−2)

�

�

�

0 0.2 0.4 1.0

x x
0.6 0.80 0.2 0.4 1.0

0.6 0.80 0.2 0.4 1.0 0.6 0.80 0.2 0.4 1.0

0.6 0.80 0.2 0.4 1.0 0.6 0.80 0.2 0.4 1.0

(e)

(b)(a)

(c) (d )

( f )

Figure 9. Weber number effect on the sheet centreline deflection, �, as a function of the streamwise station,
x, at different fractions of oscillation period T: t = 0T (black); 0.25T (red); 0.5T (blue); 0.75T (green).
Results of the numerical integration of (B1)–(B2) (continuous curves); (B3)–(B4) (dotted curves). The
dashed line denotes the centreline of the unperturbed curtain. From top to bottom: f � = 1, 5 and 20 Hz.
(a) (We, f �) = (1.05, 1 Hz); (b) (We, f �) = (0.95, 1 Hz); (c) (We, f �) = (1.05, 5 Hz); (d) (We, f �) =
(0.95, 5 Hz): (e) (We, f �) = (1.05, 20 Hz); ( f ) (We, f �) = (0.95, 20 Hz).

pressure disturbances is considered, the sheet response to the imposed sinusoidal velocity
perturbation (2.11) varies continuously when the supercritical-to-subcritical transition
occurs. Considering the identical result found by Torsey et al. (2021) in the case of a liquid
sheet subjected to imposed ambient pressure disturbances not coupled with the curtain
motion, this result further corroborates the considerations reported in § 4.1, namely that the
continuous behaviour of forced sheets at the transcritical threshold does not depend on the
specific liquid–gas interaction model employed. On the other hand, although the curtain
shapes obtained by taking into account or neglecting the curtain–ambient interaction are
in qualitatively good agreement, a longer wavelength of the centreline deflection can
be detected for the case of no coupling, the effect being more evident at higher forcing
frequencies (figure 9e, f ).
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