
JFP 24 (2-3): 131–132, 2014. c© Cambridge University Press 2014

doi:10.1017/S0956796814000124
131

Special Issue Dedicated to ICFP 2012
Editorial

S A T N A M S I N G H
Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

(e-mail: s.singh@acm.org)

R O B E R T B R U C E F I N D L E R
Northwestern University, 2145 Sheridan Rd, Tech L359, Evanston, IL 60208, USA

(e-mail: robby@eecs.northwestern.edu)

The 17th ACM SIGPLAN International Conference on Functional Programming (ICFP)
took place on September 10–12, 2012 in Copenhagen, Denmark. After the conference,
the programme committee selected several outstanding papers and invited their authors to
submit to this special issue of Journal of Functional Programming. Robby Findler and
Satnam Singh acted as editors for these submissions. This issue includes the accepted
papers, each of which provides substantial new material beyond the original conference
version.

Dunfield presents the definition of a simply typed language with unrestricted intersection
and union types in Elaborating Intersection and Union Types. These union and intersec-
tion types are versatile, allowing simple encodings of operator overloading, records, and
dynamic typing. Dunfield’s definition is phrased as an elaboration into ordinary λ -calculus
terms, meaning that a language based on his calculus can be compiled via an ordinary ML
compiler.

Endrullis, Hendriks, Bakhshi, and Rosu explore three different, commonly used mod-
els of streams in their paper On the Complexity of Stream Equality. They demonstrate
that stream equality is not decidable. More surprisingly, the precise complexity of the
equivalence problem depends on the stream model used, ranging from low levels of the
arithmetic hierarchy through the entire analytical hierarchy. The paper also contains a
careful introduction to the various stream models and the equality problem.

Johnson, Sergey, Earl, Might, and Van Horn show how to combine pushdown flow
analysis and abstract garbage collection into a single analysis that is stronger than either
individually in the eponymous paper Introspective Pushdown Analysis. The key difficulty
in the combination is that pushdown flow analysis needs to restrict access to the stack (to
preserve decidability) and abstract garbage collection needs access to the stack (to realize
its gains in precision). To resolve this conflict, the authors introduce a variant of pushdown
analysis that allows just enough stack inspection to facilitate abstract garbage collection,
but not so much as to lose decidability.

Myreen and Owens make progress on the problem of adapting proof assistant systems
into practical software development systems in Proof-Producing Translation of Higher-
Order Logic into Pure and Stateful ML. Although one can write and verify an algorithm in
a higher-order logic using a proof assistant such as Coq or HOL, the process of extracting

https://doi.org/10.1017/S0956796814000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000124


132 S. Singh and R. B. Findler

a program from the proof system by conversion into a regular programming language
corresponds to a glaring leap of faith. This paper demonstrates how to increase the trust-
worthiness of such translation steps with an automated technique by proving correct the
translation step with respect to the logical and operational semantics of the target language.
The authors describe a system that implements a verified translation scheme from HOL4
to their subset of Standard ML called CakeML.

Dagand and McBride present a scheme for code reuse in dependently type program-
ming systems through the use of functional ornaments in Transporting Functions Across
Ornaments. Ornaments describe how one datatype can be enriched into another with the
same structure. This allows a relationship to be established between functions on different
datatypes, e.g. addition (on natural numbers) and concatenation (on lists). The definition
of addition can then be lifted to lists by only providing the extra details necessary to add
(concatenate) lists rather than numbers.

Wadler presents a foundation for concurrent programming in Propositions as Sessions
that rests upon the Curry–Howard correspondence. The paper presents CP, a calculus
inspired by work of Caires in which propositions of classical linear logic correspond to
session types, as well as GV, a linear functional language with session types inspired by
work of Gay and Vasconcelos. A translation from GV to CP is presented which formalises
a connection between the standard presentation of session types and linear logic. Both CP
and GV are free from races and deadlock.

We thank the authors and reviewers of these papers for their efforts producing and
reviewing these papers within the strict time limits imposed by the special issue publication
constraints. We also gratefully acknowledge the support of the JFP editors-in-chief and
editorial office.

Satnam Singh and Robert Bruce Findler
Special Issue Editors

https://doi.org/10.1017/S0956796814000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000124

