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Let A be an integral domain and K its quotient field. A is called a Krull 
domain if there is a set { Va) of rank one discrete valuation rings such that 
A = DaVa and such that each non-zero element of A is a non-unit in only 
finitely many of the Va. The structure of these rings was first investigated by 
Krull, who called them endliche discrete Hauptordungen (4 or 5, p. 104). 
Samuel (7), Bourbaki (1), and Nagata (6) gave an excellent survey of the 
subject. In terms of the semigroup D(A) of divisors of A, A is a Krull domain 
if and only if D{A) is an ordered group of the form Z(7) (1, p. 8). In fact, 
if A is a Krull domain, then the minimal positive elements of D(A) generate 
D(A) and are in one-to-one correspondence with the minimal prime ideals of A. 
Moreover, as Bourbaki observed in (1, p. 83), each divisor of A has the form 
div(Ax + Ay) for some elements x and y of K. In particular, if P is a minimal 
prime of A, then div(P) = àxv(Ax + Ay); hence P = A : (A : (x,y)). 

The extent to which the minimal primes of a Krull domain are related to 
finitely generated ideals has not been completely resolved. This question 
appeared to be partially answered by Bourbaki in (1, p. 83) when he indicated 
a method for constructing a two-dimensional Krull ring with a non-finitely 
generated minimal prime. Our purpose is to show that a domain constructed 
in the manner suggested by Bourbaki must be noetherian and thus cannot 
provide the desired example. We make use of the following result of (3) : 

Let R be a commutative ring with identity and let S be an over ring of R which 
is a finite unitary R-module. Then if S is noetherian, R is noetherian. 

Let Z denote the integers and Q the rationals. Define inductively a sequence 
of algebraic number fields {K^^i such that: 

(i) Q = Ko, 
(ii) Ki+i = Ki(yi), where yt is a root of Y2 — 5at £ Kt[Y], 

(iii) the integral closure of Z in VJKt is Dedekind. 
Let A = Z[[X]] and K its quotient field. Set zt= (a tX)K Bourbaki contends that 
the integral closure of A in i£({s4?=i) is a Krull domain and that the minimal 
prime generated by X and the zt is not finitely generated.1 

We remark that if the integral closure of Z in L = Q{{ (5a^}°°=1) is 

Received May 3, 1967. 
xOne apparent difficulty with this exercise is controlling the factorization of the prime 

integer 2 in the desired sequence of algebraic number fields. This difficulty can be avoided 
by using Z\\\ instead of Z. We show, however, that a Krull domain obtained by any such 
modification of Bourbaki's exercise is noetherian. 
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Dedekind, then the integral closure of Z in L(52) is also Dedekind. Thus the 
following result is applicable to the above example: 

Let A0 be a Dedekind domain with quotient field K0 and let J 0 = ^40[f^2]]. 
Suppose that K = K0(ai, #2, . . . , anj . . .) is a separable algebraic extension of 
Ko, that A is the integral closure of A0 in K, and that L0 is the quotient field of J0. 
Then if J is the integral closure of J0 in L0(aiX, a2X, . . . , anX, . . .) = L, the 

following are equivalent: 
(1) J is a Krull domain, 
(2) J is noetherian, and 
(3) A is a Dedekind domain. 

Proof. (3) =» (2). Suppose that A is Dedekind. For i ^ 1, let At be the 
integral closure of A0 in K0(ai, . . . , at). Let R = \JiAi[[X]]. We will show 
that R is a noetherian, finite integral overring of J and conclude that J is 
noetherian by Theorem 2 of (3). We first show that R is the integral closure 
of Jo in L(X). 

Let Ji be the integral closure of Jo in Lo(aiX, . . . , atX) = Lt. Note that 
^40[[^]] is the integral closure of J 0 in L0(X) (in fact, [1, X] is an integral 
basis). I t follows that ^4^[[X]] is the integral closure of Jt in Lt{X). Because 
of separability, there exist Ui, . . . , uk, a module basis for A t over A0. If 
b = ET=o dtX* G 4<[[X]], then dt = £ î = i X/w, with X/ G A0. Substituting, 
we can write b = X^=i UJ(J17=O A/-X"*) and conclude2 that 

AAlXVQAollXmm,...,^}. 

Since containment the other way is obvious, we have equality. Since A i is 
Dedekind, ^ [ [ X ] ] is integrally closed and is therefore the integral closure of 
Ji in LiiX). We conclude that the integral closure of J = U*J* in 
L(X) = VJiLt(X) contains R. But R = \JtAt[[X]] is integrally closed and 
has quotient field L{X). Therefore R is the integral closure in L(X) of J0 

and hence of J. 
We now show that R is noetherian. By Cohen's theorem (2, p. 29) it is 

sufficient to show that the primes of R are finitely generated. Let Q be a prime 
of R and let Q(0) = {d G A\ d is the constant term of some q £ Q}. Since 
Ç(0) is an ideal of the Dedekind domain A, it has a basis of two elements, say 
jfo and go. If X G Q, it follows that Q is generated by X, f0j and go. L e t / and g 
be elements of Q having f0 and go, respectively, as constant terms. If X G Q, 
we show t h a t / and g generate Q. If/o, go G i j , then since A t is Dedekind, 
Afo + Aigo = <2(0) C\ Ai for each i ^ j . Suppose that g = £7=o d,X> G Ç, 
then for i sufficiently large, q, / , and g are in A t[[X]]. Since d0 G (?(0) ^ 4̂ z 
there exist co0 and /30 in A t such that d0 = co0/o + /3ogo- Thus 

q - (coo/ + ft*) = xqi G Qn^ffl. 

2For a ring i?, i?{.Si, . . . , Sn} denotes the i?-module generated by Sit . . . , 5„. 
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Since X G Q, we have that gi G Q and gi = coi/ + /3ig + Xg2. Combining 
these we have that q = (œ0f + Pog) + (o>i/ + Pig)X + X2q2. Proceeding 
inductively we conclude that 

<z = £"-«>(«/ + PSX* = f(Z7^jX') + gÇZUW) 
with ooj, 13j G Ai for all 7. Thus / and g generate Q and we have established 
that R is noetherian. 

Finally, we show that R is a finite module over / . Let A' — A C\ J. Then 
A' is a Dedekind domain. (It is a one-dimensional Krull domain (8, p. 84) 
since A' = A C\ (R C\ L) and Af Q A implies A' is integral over A0.) 
Furthermore, A is a finite ./I' module. To see this we observe that alXJ afX, 
and X2 are in L for each pair i, j and therefore a^j G L. Since a^- is algebraic 
over Ko, there exists htj G 4̂o such that hi^a^j G ^4. Letting i£' be the 
quotient field of A', we have that a^j G i£' for every pair i,j. Thus Kf (ai) = K. 
Therefore A is the integral closure of A' in a finite, separable algebraic 
extension of Kf and it follows that A is a finite A' module. Let h, t2, . . . , tn be 
a module basis for A over ^4'. We claim that R = J{X, h, t2, . . . , tn\. Clearly, 
J{X, ti, t2, . . . , tn) ÇI i^. As we have already seen, ^0[pf]] is contained in 
J[X]. For a fixed i, let ôi, 62, . • • , bm be a module basis for At over ^40. Then 
4,[[X]] C J[X]{bl9 62, . . . , M ; but each 6r G i4'{*i, *2, • . . , k). Thus 

AAlXÏÏQJlXttuh, . . . , / , } 

and it follows that i? = LM,[[X]] £ /{-X", *i, 2̂, . . . , tn}. Therefore, R is a 
finite J module and from the fact that R is noetherian we conclude that J is 
noetherian. 

(2) =» (1). If / is noetherian, it is then a noetherian integrally closed 
domain and is therefore a Krull domain (8, p. 82). 

(1) =» (3). If / is Krull, then A' —J C\ K is a one-dimensional Krull ring 
and hence is Dedekind. A is the integral closure of A' in a finite algebraic 
extension and is therefore Dedekind. 

We note that in proving R noetherian we have essentially shown the 
following lemma. 

LEMMA. Let S be a commutative ring with identity and let Q be a prime ideal of 
S[[X]]. Then Q is finitely generated provided Q(0) = {c G S\ c is the constant 
term of some q G Q) is a finitely generated ideal of S. Moreover, if (2(0) is gen­
erated by n elements, then Q is generated by n + 1 elements if X G Q and by n 
elements if X G Q. 

As immediate corollaries we have the following well-known results. 

COROLLARY 1. If S is a commutative, noetherian ring with identity, then 
S[[X]\ is noetherian. 

COROLLARY 2. If S is a principal ideal domain, then S[[X]] is a unique 
factorization domain (uf.d.). 
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Proof. By Corollary 1, 5[[X]] is noetherian and by the lemma, its minimal 
primes are principal. Thus 5[[X]] is a u.f.d. (6, p. 42). 

Although the Bourbaki exercise is not valid, its contention is at least 
partly correct; there do exist Krull domains with minimal primes that are not 
finitely generated. 

Let Kbea. field and let {Xj}?=i be a set of elements algebraically independent 
over K. Let A = K[X1} X2, • . .], A' = K^X^Xj)] with Land L' the respective 
quotient fields. A' consists of all polynomials / in K[Xi, X2, . . .] such that 
each monomial i n / has as total degree an even integer. We show that A' is a 
Krull domain with a non-finitely generated minimal prime. To see that A' is 
Krull we observe that it is the intersection of the Krull ring A and the field U. 
It is clear that A' Ç A C\ U. And if h G A C\ Z/, then h £ L' implies that 
h = f/g, where / and g are polynomials in K[Xh X2, . . .] in which each 
monomial has even total degree. The equality h-g =f implies that each 
monomial in h has even total degree and h G A'. Thus A' is Krull. The 
essential valuations of A' are simply the restrictions of the essential valuations 
of A to L'. In particular, consider P, the centre of the Xi-adic valuation on 
A'. We see that P = (Xi2, XiX2, . . . , XiXni . . .) and using the algebraic 
independence of the Xô one can show that no proper subset of {X\X^=\ 
generates P. Thus P cannot be finitely generated. 

We observe that even though P is not finitely generated, it remains (in 
some sense) related to the finitely generated ideals. For the second symbolic 
power of P, P ( 2 ) = (Xi2). In particular, P is the radical of a finitely generated 
ideal. We also note that the above example is infinite-dimensional. No finite-
dimensional example of such a ring is known to us and in fact wTe know of no 
non-noetherian, two-dimensional Krull ring. The nature of the relationship 
between the minimal primes of a Krull ring and the finitely generated ideals 
of the ring remains, for the most part, unknown. 
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