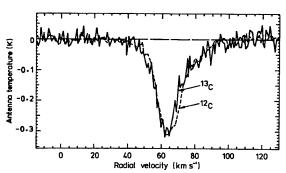
DETECTION OF THE 2, - 3, TRANSITION OF 13CH3OH

T. B. H. KUIPER

Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109


F. F. GARDNER, J. B. WHITEOAK CSIRO Radiophysics Division P. O. Box 76, Epping, New South Wales 2121

W. L. PETERS, III, Stewart Observatory, University of Arizona Tucson, Arizona 85721

J. E. REYNOLDS

Mt. Stromlo & Siding Spring Observatories Private Bag, P. O. Woden, Canberra, ACT 2606

The 2₀ → 3_{.1} E-type transition of ¹³CH₃OH at 14.78 GHz has been detected towards four continuum sources: Sgr B2, two positions in Sgr A (the peaks of the '+20 km/s' and the '40 km/s' clouds), and W33. The NASA Deep Space Network 70-m antenna near Canberra, Australia, which has a 66 arcsec beam at this frequency, was used. A comparison of the ¹³C and ¹²C profiles for Sgr B2 indicates a rest frequency of 14,782.27 ± .03 MHz, 0.12 MHz above the laboratory value of

Methanol spectra of Sgr B2. The ¹²C scale has been adjusted to fit the ¹³C spectrum.

Haque et al. (1974). For the Galactic Centre sources, the 12 C/ 13 C abundance ratios derived using the simplest assumptions lie in the range 30-40, higher than the 20-25 range derived from H_2 CO observations. For W33 the apparent value of ~50 is lower than the value of ~100 derived by Henkel et al. (1983) from H_2 CO. There may be no discrepancy, however, as W33 contains two velocity components -- the higher velocity one at 36 km/s is more prominent in CH₃OH and the lower 33 km/s more prominent in H_2 CO.

Haque, S.S., Lees, R.M., Saint Clair, J.M., Beers, Y., and Johnson, D.R. 1974, Ap.J. (Lett.), 187, L15. Henkel, C., Wilson, T.L., Walmsley, C.M., and Pauls, T. 1983, Astr. & Astroph., 127, 388.

The research described in this paper was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.