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COMPUTABLY COMPACT METRIC SPACES

RODNEY G. DOWNEY AND ALEXANDER G. MELNIKOV

Abstract. We give a systematic technical exposition of the foundations of the theory of
computably compact metric spaces. We discover several new characterizations of computable
compactness and apply these characterizations to prove new results in computable analysis
and effective topology. We also apply the technique of computable compactness to give new
and less combinatorially involved proofs of known results from the literature. Some of these
results do not have computable compactness or compact spaces in their statements, and thus
these applications are not necessarily direct or expected.

§1. Introduction.

1.1. Compactness. Compactness plays a central role in classical analysis.
We don’t have space to talk about all the applications of compactness in
analysis, but refer the reader to the survey [60] for a detailed discussion.
Compactness allows us to have an intrinsic connection between the infinite
and the discrete finite instances of problems. In the words of Hewitt [60],

“A great many propositions of analysis are:

– trivial for finite sets;
– true and reasonably simple for infinite compact sets;
– either false of extremely difficult to prove for noncompact sets.”

If the reader thinks about any basic course in analysis, they will be
struck about how many elementary theorems about real analysis rely on
compactness in some form or another. When we turn to analysis on more
general spaces, again compactness plays a central role. Classically, compact
metric spaces are perhaps the most well-understood separable spaces after
the discrete ones. Metrizable compact manifolds and compact topological
groups have been studied extensively.
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1.2. Goals. The concern of this paper is computable analysis; specifically
computability aspects of Polish spaces (complete separable metric spaces).
In this paper we will hope to achieve three goals.

• We will give a unified and smooth account of uses of compactness
in computable analysis. This will involve the unification of a number
of disparate approaches offered by many authors down through the
years. We will describe and improve the fundamental techniques
associated with computable compactness that are scattered throughout
the literature.

• We will apply this machinery to prove several new results. This includes
a characterization of recursive profinite groups in terms of computable
compactness and a new computation of Čech cohomology. We will also
give new simplified proofs of some known results (more details below).

• We will offer an answer to the following question:

“What is the ‘correct’ notion of computability for a compact
Polish(able) topological space?”

In contrast with the situation for computable discrete algebra, the
situation for Polish spaces is not clear especially if we are willing to view
them up to homeomorphism.

1.3. Historical context. The roots of computable analysis go back to the
early twentieth century (see, e.g., [12]). In his seminal papers [143, 144],
Turing clarified this early intuition. He gave the first universally accepted
formal definition of a computable function. Turing used this definition
to solve the Hilbert’s Entscheidungsproblem. But Turing also introduced
computable analysis on [0, 1]. He analysed computable functions on the
field of computable real numbers. He defined a real � to be computable if
there is a Turing machine that, on input i, outputs a rational r = m

n such that
|� – r| ă 2–i . This approach was pursued especially in Russia by Markov and
his school, culminating in Aberth’s book [1]. Strangely, Turing’s definition of
a computable function (i.e., on the computable reals) is now usually referred
to as Markov computability. Our paper lies in the tradition of what has
become known as “type 2” computable analysis. This tradition goes back
to the work of Grzegorczyk [55–57] and Kleene [79]. In this approach, we
view effective functions as computable operators that are not restricted to
computable reals and work for arbitrary reals. Avigad and Brattka [4] give
an excellent overview of the development of computable analysis from the
work of Turing.

The majority of early research was restricted to computability on the real
line and inRn. In these spaces, the rationals and the tuples of rationals can be
used to define computable points. This idea can be extended to more general
spaces, as follows. For an abstract Polish space, we fix a dense sequence and
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require that we have a distance function which is a computable on the
dense set. For example, as above, we could use polynomials with rational
coefficients inC [0, 1]. (Precise definitions will be found in Section 2.) Within
this setting, computability-theoretic aspects of metric and normed spaces
have also been studied for many decades; some of the earlier references
include [109, 122, 123].

Computability-theoretic aspects in the Euclidean and the totally discon-
nected ultrametric cases, particularly Cantor space 2�, have been of central
importance. The Euclidean case—in the sense that the space is actually a
subset of Rn for some n—is treated in [22, 81, 124, 146]. The ultrametric
case—and more specifically the study of effectively closed subsets of Cantor
space—is a well-developed classical subject of computability theory with
surveys such as [29, 30]. This subdivision is of course a bit artificial since
Cantor space can be viewed as a subset of [0, 1], but the metric will no longer
be an ultrametric.

In the past decade or two there has been an increasing interest in
the computability-theoretic aspects of abstract metric spaces. The central
questions in such investigations include:

– When does a space admit a computable presentation, and in what sense
is it computable?

– Can we compute certain invariants or objects associated with this space
(e.g., the space of probability measures on the space), and if “yes” then
in what sense?

– Can we establish computable analogues of the classical topological
results?

– Can we classify computable points in computable topological spaces?
– Can we classify computably presentable spaces in a given class? etc.

The computability-theoretic study of abstract metric and topological
spaces is developing hand in hand with work on reverse mathematics [107],
algorithmic randomness [63], enumeration degree theory [118], and (to some
extent) effective descriptive set theory [106]. The notion of a computable
presentation of a space is central in such investigations. Many classical
spaces such as 2� and L2[0, 1] are equipped with a “natural” computability
structure which is usually fixed; the theory is then developed for the fixed
computability structure. The two classical texts [124, 146] essentially take
this approach. Even though both books talk about ways to compare different
computability structures on a fixed space, the space under consideration is
usually equipped with a few “natural” computability structures that can
be compared. For example, in C [0, 1] one could use polynomials with
rational coefficients or, alternatively, piecewise linear functions with rational
parameters; these turn out to be equivalent (in a rather strong sense). But
of course, not every space has a computable presentation simply from
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cardinality-theoretic observations. Can we describe those spaces that do
admit computable presentations, at least from some common classes? For
instance, for which compact Polish K does the Banach space C (K) have
a computable presentation? What about the space of probability measures
on K? etc.

To attack these and similar questions we will often have to depart from
classical computable analysis (that deals with fixed “natural” computable
presentations) and use methods of computable topology. Although we can
point at earlier initiatives such as, e.g., [73–75, 114, 115, 139–141], most of
the related work in computable topology is more recent and includes [28, 48,
62, 76, 85, 87, 148]. Computable topology is notorious for its zoo of various
notions of computability for a topological space. In contrast with effective
algebra [3, 41] where all standard notions of computable presentability had
been separated more than half-a-century ago (e.g., [42]), some of the key
notions of computable presentability in topology have been separated only
very recently [8, 59, 62, 91]; these results will be discussed in detail later in
the paper.

In the recent years there has been a tendency to focus on the three
main notions of computable presentability of a (compact) Polish space: a
computable Polish space, a computable topological space, and a computably
compact space. Our paper is focused on one of these three important
notions of computable presentability, namely computable compactness that
is defined and discussed below. Computable compactness is clearly restricted
to compact Polish spaces. Nonetheless, we will see that the notion and the
techniques associated with it have far-reaching applications in computable
analysis that are not restricted to compact spaces.

1.4. Computable compactness. Recall that we mentioned that the notion
of a computable Polish space, or a computably metrized space, seems
to be the most well-established notion of computable presentability for a
Polish(able) space. The early classical works on computable metric spaces
include [27, 88, 105]. A Polish space is computable or computably completely
metrized if there is a complete, compatible metric d and a dense subset of
special or ideal points (xi)iP� of the space such that d (xi , xj) are computable
reals uniformly in i and j. If we view spaces up to isometry, we fix the metric;
if we study them up to homeomorphism then we assume d is compatible.
In the present article, we assume the metric to be complete, since in all
examples that we care about it will indeed be such. For instance, compact
metric spaces are complete and separable.1 However, the issue is that in a

1There are various notions in the literature which do not assume the metric to be
complete. For more details about these closely related notions of effective presentability,
such as “recursive” and “computable” metric spaces, we cite [54, 147]. We note that the
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computably metrized compact space, we do not necessarily have computable
access to its finite covers.

Classical uses of compactness do not need an understanding of how finite
covers are obtained. For classical purposes, it is sufficient that the finite
covers exist. Thus, when we consider computability aspects of compact
spaces, it is natural to quantify what we mean by this. There are many
definitions of a space being computably compact throughout the literature.
Remarkably, as we prove below, they—as well as some new useful ones—
are all equivalent. For instance, Mori, Tsujii, and Yasugi [104] say that a
computably metrized space is computably compact (or effectively compact) if
there is a computable function which takes n and produces a finite 2–n-cover
of the space by open balls centred in special points and having rational radii.
(Such balls are called basic.)

The notion has proven to be extremely useful, and the techniques
associated with computable compactness tend to be elegant. Indeed, it is
not uncommon that a tedious and technical proof in computable analysis
becomes transparent and compact (pun intended) after a thoughtful
application of computable compactness.

In spite of the usefulness of computable compactness and its numerous
applications in the literature, it seems there is not many “standard” refer-
ences that would contain a systematic exposition of the most fundamental
results and techniques associated with computable compactness. Even
though these are some excellent papers and Ph.D. theses written on related
subjects (e.g., [19, 67, 103, 117]), many results and proofs are scattered
throughout the literature. As a result, it seems that some fundamental
facts about computably compact spaces keep being rediscovered over and
over again. Proofs of some results in the literature (including some recent
ones) can be significantly simplified via choosing a more careful set-up in
which computable compactness can be used to simplify combinatorics. It
seems that some of the standard techniques associated with computable
compactness are not necessarily uniformly known, and perhaps even that
the theory itself is a bit under-appreciated.

Thus, as mentioned above, our first main goal of this article is to fill
this apparent gap in the literature, at least partially. Once we accumulate
enough techniques and develop new ones, we will apply this machinery
to prove new results and improve known proofs; this is our second main
goal. Recall that our third goal is to try to suggest a correct notion of
computable compact Polish space. The potential candidates for the “correct”
computability notion include a computable topological space, a computably
metrized space, and computably compact space, and some other perhaps

aforementioned two notions of “recursive” and “computable” spaces are equivalent up to
scaling the metric by a computable real [54].
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more exotic notions—such as a right-c.e. (upper-semicomputable) metric
spaces—that can be found in the literature and some of which will be
mentioned later. We suggest that the following might be true:

Computable compactness is the right notion of computability for
compact Polish spaces.

Even if the reader will disagree with this thesis after looking at the
results that we present here, the definition of computable compactness
is certainly robust. More formally, Theorem 1.1 contains eight equivalent
formulations of computable compactness some of which are new. Many of
the applications that we discuss in this article—perhaps most notably
the recently discovered effective Stone and Pontryagin dualities—strongly
suggest that our thesis should not be dismissed even if we view spaces
up to homeomorphism. We will also explain why all three standard
definitions of computable presentability for a compact Polish space—
computably compact, computably metrized, computable topological—differ
up to homeomorphism.

The study of computably compact spaces is very closely related to the
investigation of effectively closed subsets of computably metrized Polish
spaces, especially when the set happens to be computable closed. As we will
see in Proposition 3.29, under some mild restrictions computable closed sets
can be viewed as computably compact spaces, and vice versa by (vi) of the
theorem below. We cite [67] for an excellent recent survey. The cited survey,
however, does not really have many proofs or proof sketches, so we felt that
including proofs should be a good idea; this is done in Section 3.5, which
includes the necessary facts that we will need in the present paper.

Another classical and closely related subject in computability theory is the
area of Π0

1 classes. This area can be viewed as a special case of the theory
of effectively closed sets but restricted to 2�. Of course, more can be said
about 2� than about an arbitrary space. Unlike the theories of computably
compact spaces and computable closed sets, there is no shortage of excellent
surveys and papers about Π0

1-classes (e.g., [29, 30, 34]), and the draft of a
book “Effectively Closed Sets Π0

1 Classes” by Cenzer and Remmel that is
available online (as of early 2022). Thus, we will not include many proofs,
we just state a few results in Section 2.6 that we will need, and will give
references.

These three topics—computably compact spaces, computable closed sets,
and Π0

1-classes—are closely related, and no firm line can be drawn between
them.

Before we proceed, we should admit that giving a complete and
comprehensive survey of the existing literature and results on the subject
is not among the main goals of this article, but nonetheless we will provide
many useful references. This is not a survey paper in the usual sense, it is
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mainly a technical semi-survey paper with many new results, and it should
be treated as such. We also chose to spread further discussion and references
to the literature throughout the paper (where it is relevant) rather than to
write a giant introduction.

1.5. The Main Theorem. The following theorem will be proven over the
subsequent sections. The fundamentals of computable compactness theory
will be developed simultaneously with the proof. We will discuss each clause
of the theorem in detail shortly; for now we note that (iii), (iv), and (viii) are
new.

Theorem 1.1. For a computably, completely metrized Polish space M, the
following are equivalent:

(i) Given n, we can effectively compute (the finite set of parameters
describing) a finite 2–n-cover Kn of M by basic open balls.

(ii) We can effectively enumerate all finite basic open covers (each given
at once as a finite set of parameters) of the space.

(iii) The same as (i), but additionally in each finite cover n we can uniformly
decide whether any finite collection of basic open balls inKn intersect.

(iv) In the notation of (iii), we can additionally uniformly decide
(non)emptiness of intersection for any finite collection of balls in
Ť

nP� Kn, but balls may have merely computable radii (and, thus, are
not necessarily basic).

(v) There is a computable sequence of computable reals (�n)nP� (�n ď 2–n)
so that, for every n, we can compute the maximal number of points in
the space that are at least �n-far from each other.

(vi) M is computably homeomorphic to a computable closed subset of the
Hilbert cube.

(vii) M is a computable surjective image of 2�.
(viii) The full continuous diagram of M is decidable.

As we will note later, it is easy to see that (ii) is also equivalent to the
approach that is standard throughout reverse mathematics ([135]): there
exists an enumeration functional that, given a countable cover composed of
basic open balls outputs (an index of) some finite subcover of the cover. This
approach is perhaps the most familiar one to a working mathematician, while
(i) is rather an effective analogy of total boundedness. Of course, a complete
metric space is compact iff it is totally bounded, but this elementary fact is
perhaps not quite as well-known as the standard definition of compactness.
There are also other characterizations of computable compactness, e.g., for
subsets of a fixed space in terms of Hausdorff distance. We will mention
this characterisation later when we talk about computable closed sets and
the Hilbert cube (vi) (see Fact 3.39). There are also other characterisations
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of computable compactness in special classes, e.g., in the class of profinite
groups. We will discuss some such characterizations in due course.

In view of this theorem, we have the following definition, which is a
characterization established in this paper:

Definition 1.2. A computable Polish space is called computably com-
pact or effectively compact if it satisfies (the equivalent conditions in)
Theorem 1.1.

The equivalence of (i) and (ii) is well-known, and usually one of the two
is taken as the standard definition of a computably compact space. See
Theorem 3.3.

It seems that (iii) or something similar might be also known, but perhaps
in some other form (see, e.g., [62] for some related informal discussions).
Also, Section 8.4 of [67] contains a discussion of spiritually similar results.
Perhaps, the most closely related material can be found in [119]. However,
we were unable to find any explicit proof of the equivalence of (i) and (iii)
anywhere in the literature. For a proof, see Theorem 3.13.

As far as we know, (iv) is new. Characterization (iv) will be very useful in
several applications greatly reducing the combinatorial complexity of proofs
in many cases. It will be especially useful in computing cohomology groups
of spaces, but some further (perhaps, less expected) applications will also
be presented. This equivalence is stated and then proven in Theorem 3.16.

Iljazovič [65] was the first to discover the equivalence of the fifth
formulation (v) with the standard definition; it has recently been re-
discovered in [120]. Its significance is the remarkable fact that computable
compactness is an isometric invariant of the space. In other words,
computable compactness is not a property of some specific nice presentation,
but it is an intrinsic property that holds for all isometric presentations. The
result will appear as Theorem 3.21.

The sixth version (vi) is well-known, but we are not sure who was the first
to observe its equivalence to computable compactness. See Theorem 3.36
for a proof.

The seventh item (vii) is an effective version of the classical Hausdorff–
Alexandroff theorem (see Theorem 3.40). The result is due to Brattka, de
Brecht, and Pauly (see Proposition 4.1 of [20]). Also, working independently,
Couch, Daniel, and McNicholl [32] proved the result for the special
case of closed subspaces of Rn. Around the same time, Day and Miller
[33] independently discovered another important special case of this
result, specifically for probability spaces. Interestingly, in Remark 3.23 of
his large unpublished survey “Algorithmic randomness, martingales and
differentiability” Jason Rute refers to this property (being a computable
image of 2�) as being a stronger version of computable compactness.2

2As of 2022, the survey is still available at the personal home page of Jason Rute.
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And indeed it may seem at first glance that it should be stronger than,
e.g., (i). We give two new and substantially different proofs of the result,
one using (iv) discussed above, and the other one using Π0

1 classes and the
Hilbert cube. Both proofs serve as a fine illustration of the techniques that
we develop in the paper. The effective Hausdorff–Alexandroff theorem will
be rather useful in several applications that will be discussed in due course.

Finally, the last item (viii) of the theorem is new; it is inspired by [10,
Definition 9.9] and the very recent paper [25]. It says that any formula of
continuous logic formed in the language of pure metric uniformly defines a
computable functionMn Ñ [0, 1], where n is the number of free parameters
in the formula. This pleasant, unexpected, but quite elementary result will
be stated formally in Theorem 3.7. Theorem 3.7 will be restricted to spaces
of diameterď 1, but as noted in the remarks preceding this theorem, it is just
a mere notational convenience. The result perhaps confirms one’s suspicion
that in the case of compact metric spaces, continuous logic is not particularly
expressive.

1.6. Summary of applications. We now discuss several applications (of
computable compactness) that can be found in Section 4. We are mainly
focused on the applications that are either new, or give new proofs of known
results. We also mention several applications that are very recent and are
related to our research interests. We also pose several open questions.

Our list of applications is not even close to being exhaustive, but we will
discuss the literature where more results of this sort can be found. Here is a
summary:

(1) In Section 4.1 the reader can find several useful standard results
most of which are at least half-a-century old. They serve as a mere
illustration of some of the basic techniques.

(2) The next Section 4.2 contains an unpublished result of Nies and
Melnikov that states that Π0

1 classes can be used to represent
isometric isomorphisms between effectively compact spaces. The
result is not difficult, but its consequences are fairly powerful; in
particular, combined with several standard results about Π0

1-classes,
this method gives elegant and much more “compact” proofs of some
results from the literature.

(3) Section 4.3 contains an application of computable compactness to
constructing basic sequences in Banach spaces. The application is
elementary but is neat. The subtlety is that, in classical Banach space
theory, one routinely uses dual spaces and Hahn–Banach theorem
to construct basic sequences (e.g., [26]), but it is known that the
Hahn–Banach theorem is not computable [16, 102]. Computable
compactness gives a way to circumvent this obstacle. The result is
very recent and can be found in Long’s M.Sc. thesis [90].
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(4) The next Section 4.4 applies the techniques developed in Section 3
to Stone spaces; these results are very recent and can be found in
[59, 62]. For instance, we will see that a Stone space is computably
compact iff it is computably metrizable iff the dual Boolean algebra is
computably presentable. Among many applications, we will explain
why the isomorphism problem for Stone spaces is Σ1

1-complete.
The result is “known” but it seems it has never been stated in the
literature; we include it for future reference. We will also see that
these techniques can be used to produce an example of a computable
topological Polish space not homeomorphic to any computably
metrized space.

(5) In Section 4.5 we prove that a profinite group is recursively presented
(in the sense of [128, 137]; to be defined) iff it is computably compact;
this result is new.

(6) Section 4.6 contains a new algorithm for computing Čech coho-
mology of a computably compact space. The algorithm is new, but
the result itself is not new (though it is very recent [91]). In the
subsection we also discuss several applications of Čech cohomology
in computable topology.

(7) Section 4.7 applies computability of Čech cohomology established in
the previous subsection to produce examples of computably metrized
compact spaces that are not homeomorphic to any computably
compact space. It is not hard to find a computably metrized space
that is not isometrically isomorphic to any computably compact
space (just take the interval [0,Ω], where Ω is Chaitin’s omega3

or some other left-c.e. real that codes 01.) However, the situation
becomes more complex if we view spaces up to homeomorphism.
The result is not new but is very recent, and the proof that we give
is a new combination of modern and classical techniques some of
which we introduce in the preceding subsections. Our new proof is
perhaps the simplest one known so far.

(8) Section 4.8 contains a new proof of computable universality of
C [0, 1] among computable Polish spaces up to (computable) isom-
etry. The issue is that the standard proofs of universality of C [0, 1]
rely on the Hahn–Banach theorem; as we have already mentioned
above, it is not computable in general. Sierpinski [134] suggested a
more direct proof that he thought was “effective”; however, his proof
gives a merely 01-computable embedding. We use tools of computable

3While it is not central to this paper, Ω is the Lebesgue measure of the domain of a
universal prefix-free Turing machine (see [36]). It is a “natural” example of a left-c.e. real
which is not computable, in the same way that the halting problem is a natural example of a
c.e. non-computable set.
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compactness to produce a computable embedding of any computable
Polish space to the standard presentation ofC [0, 1]. The result is not
new [5], but the proof that we here give is new. Our new proof is much
less combinatorially involved than the one in [5]; the latter does not
use computable compactness tools. (However, it is not necessarily
clear that our proof holds primitively recursively, while the proof
from [5] gives a primitive recursive embedding.)

(9) In Section 4.9 we prove that every computably compact space of
finite covering dimension can be computably embedded into a finitely
dimensional Euclidean space. This is an improved version of a very
recent result of Harrison-Trainor and Melnikov [58] that establishes
that there is an arithmetical embedding. Our result is stronger and
the technique that we use is different from what has been used in [58].
The new version heavily relies on one of the new characterizations of
computable compactness that we prove in the paper. It will allow us
to effectivize one of the standard proofs from the classical literature
with only minor modifications.

(10) Section 4.10 contains the proof of the fact that, for a computably
compact X, the space of probability measures P(X ) on X is a
computable homeomorphic image of 2�. This is known, even though
the standard reference [33] does it only for the special case ofX = 2�

and via an explicit construction of a computable map from 2� onto
P(X ). But it is actually easier to establish computable compactness
of P(X ) directly (using covers), and then apply (vii) of Theorem 1.1.
The result is very recent and is due to Marcone and Valenti [92].
Computable compactness of P(X ) can be used to show that a
compact computable group is computably compact iff it admits a
computable Haar probability measure. This is a known result and
we will discuss it more fully in Section 4.10.

(11) The final Section 4.11 contains several open questions that are related
to the material contained in the previous subsections. Most of these
questions are directly or indirectly related to compactness.

To make our exposition smoother, we shall often define notions when we
need them. The most commonly known basic notions of computable metric
space theory can be found in the preliminaries.

§2. Preliminaries. All of our spaces are Polish (separable and completely
metrizable) spaces. Such spaces are also sometimes called Polishable. All
spaces are also compact, unless stated otherwise. There will be only very
few exceptions towards the end of the paper where the spaces considered
will not be compact, namely the Urysohn space and the space of continuous
functions on the unit interval C [0, 1].
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We will almost never consider the empty space, even though it is actually
possible to include this rudimental case into our framework. However, many
proofs become more uniform and definitions more convenient if we exclude
this case.

We remind the reader that a real α is computable if there exists a
computable sequence (qf(i) | i P N) of rational numbers such that |α –
qf(i)| ă 2–i . If we have a computable sequences of rationals but only know
that qf(i) Ñ α, but not a computable modulus of convergence, then we
would say that α is a Δ0

2-real; and if the sequence qf(i) is monotonically
increasing (resp. decreasing), then α is said to be left-c.e. or lower semi-
computable (resp. right c.e. or upper semi-computable).

Much work in computable analysis from recent years has been concerned
with the theory of representations [146]. In the type 1, countable case, when
we talk about functions acting on, for example, polynomials, we really mean
functions acting on numbers or strings “representing” the objects. In the type
2 case, a representation is a way of assigning an infinite string α in Baire
space �� with the object we wish to run algorithms upon; and to do so in
a computationally meaningful way. However, in the case of Polish spaces,
Cauchy sequences provide a natural and effective way to represent elements.
Thus, we stick throughout with the notation as presented in the subsections
below.

2.1. Effective metrizations of Polish spaces. A Polish space (M,d ) is right-
c.e. presented or admits a right-c.e. metric if there exists a sequence (αi)iP� of
M-points which is dense in M and such that for every i, j P �, the distance
d (αi , αj) is a right-c.e. real, uniformly in i and j. (In particular, we always
assume that the metric is complete.) More formally, there is a c.e. setW Ď

�2 ˆQ such that for any i and j,

tq P Q : d (αi , αj) ă qu = tq : (i, j, q) PW u.

Note that the sequence (αi)iP� may contain repetitions; equivalently, it is
possible that d (αi , αj) = 0 for some i, j. We call pointsαi from the sequence
special or ideal. For instance, an undirected (simple) graph with the shortest
path metric is a right-c.e. metrized space. We will see that Π0

1 classes can also
be viewed as right-c.e. metrized spaces.

The definition of a left-c.e. Polish space is obtained from the notion of a
right-c.e. Polish space using the notion of a left-c.e. real, mutatis mutandis.

Definition 2.1. A Polish space is computably presented or, perhaps more
descriptively, computably metrizable if there is a (complete) metric on the
space which is both right-c.e. and left-c.e.

Strictly speaking, a computable or a right-c.e. metrization of a space
is a countable object (αi)iP�, but we will usually identify a computable
metrization (αi)iP� of space M with its completion (αi)iP�.
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Remark 2.2. Note that we intentionally did not emphasise whether we
consider Polish spaces up to isometric isomorphism or under some other
notion of similarity, such as, e.g., quasi-isometry or homeomorphism.
Indeed, these will lead to non-equivalent notions. For example, for a real �,
the space [0, �] is isometrically isomorphic to a computably metrized space if,
and only if, � is left-c.e. However, for any real � this space is homeomorphic
to the unit interval [0, 1] which is of course computably metrizable. In this
paper we usually consider Polish spaces under homeomorphism, that is,
a Polish space has a right-c.e. presentation if it is homeomorphic to the
completion of a right-c.e. metrized space. Nonetheless, we will emphasise
this in most of the theorems and lemmas that we prove to make sure that
there is no conflict of terminology.

2.2. Computable topological spaces. There are several definitions of a
computable topological space that can be found in [73, 83, 139]. We will
use the following.

Definition 2.3 (see, e.g., Definition 3.1 of [84] or Definition 4 of [148]). A
computable topological space is given by a computable, countable basis of its
topology for which the intersection of any two basic open sets (“basic balls”)
can be uniformly computably listed. More formally, it is a tuple (X, �, �, �)
such that:

• (X, �) is a topological T0-space,
• � is a base of �,
• � : � Ñ � is a computable surjective map (i is called an index of �(i)),

and
• there exists a c.e. set W such that for any i, j P �,

�(i)X �(j) =
ď

t�(k) : (i, j, k) PW u.

Let (X, �, �, �) be a computable topological space. For i P �, by Bi we
denote the open set �(i). As usual, we identify basic open sets Bi and their
�-indices. There are many versions of this notion above in the literature (see,
e.g., [139]). All of these notions are essentially Definition 2.3 with some extra
assumption. For example, one can also additionally require that there is a
computable dense sequence (xi)iP� such that txi, jy : xi P Bju is computably
enumerable. See [115, 139] for many other extra assumptions, some of which
definitely seem ad hoc. We thus stick with the basic Definition 2.3. Perhaps,
the most natural example of a computable topological Polish space is given
by the proposition below.

Proposition 2.4 (cf. Theorem 2.3 of [84]). Every right-c.e. Polish space is
a computable topological space.
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Proof. Let (M,d ) be a right-c.e. Polish space, and let (αi)iP� be its
sequence of special points. By � we denote the metric topology of (M,d ).
As usual, the base � of � contains basic open balls

B(αi , q) = tx PM : d (αi , x) ă qu, i P �, q P Q+.

For i P � and q P Q+, we put �(i, q) = B(αi , q).
We prove that the tuple (M, �, �, �) is a computable topological space. It

is sufficient to establish the following: for any i, j P � and q, r P Q+, we can
(uniformly) effectively enumerate a set X Ď � ˆQ+ such that

B(αi , q)X B(αj, r) =
ď

tB(αk, t) : (k, t) P X u. (1)

Our set X is defined as follows: X contains all pairs (k, t) such that

d (αi , αk) ă q – t and d (αj, αk) ă r – t.

Since the space (M,d ) is right-c.e., it is not hard to see that the set X is c.e.,
uniformly in i, j, q, r. If (k, t) P X , then by using the triangle inequality, we
can easily show that B(αk, t) is a subset of B(αi , q)X B(αj, r).

Let x be an arbitrary point from U = B(αi , q)X B(αj, r). Choose
positive rationals � and 	 such that � ă q – d (αi , x) and 	 ă r – d (αj, x).
Since U is open, we can find k P � and t P Q+ such that x P B(αk, t) Ď U
and t ă min(�{2, 	{2). Then we have

d (αi , αk) ď d (αi , x) + d (αk, x) ă (q – �) + t ă q – �{2 ă q – t.

Therefore, (k, t) belongs to X, and the set X satisfies (1). Hence, (M, �, �, �)
is a computable topological space. %

For instance, every computably metrized Polish space is a computable
topological space. We shall return to computable topological and right-c.e.
spaces later, when we talk about Stone duality. Effective compactness can
also be defined for computable topological and right-c.e. spaces, but we will
not need this degree of generality until Section 4.4. (This will be clarified in
the remarks before Theorem 4.28.) Until Section 4.4 we restrict ourselves to
computable, completely metrized spaces.

2.3. The definition of computable compactness. We have already explained
what it means for a Polish space to be computably metrized. We usually
assume that all our spaces are Polish metric and non-empty. Recall that a
complete metric space M is compact iff for every ε ą 0, there exists a finite
set F of points such that every point has distance less than ε to F. For now,
we say that a space is computably compact if it satisfies (i) of Theorem 1.1:

Definition 2.5. A computably metrized space is called computably
compact if there exists a computable function that, given n, outputs the
index of a finite tuple of basic open balls of radii ă2–n that cover M.
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We should explain a bit more carefully all the terms that we use in the
definition above. A ball centred in a special point is basic if its radius is a
rational number. When we consider finite covers, we usually say that we can
compute a finite cover by basic open balls if we can compute the index of a
finite set that codes the indices of the finitely many centres and the rational
radii of basic open balls in the cover. This should not be confused with
enumerating a finite cover, i.e., listing one ball after another in a c.e. fashion.

Remark 2.6. Most proofs in this article do not actually need the radii to
be rational numbers, but would work with balls of radius a computable real.
However, we cannot list computable reals effectively. Therefore, we cannot
hope to have an effective base of topology consisting of all basic balls with
computable radii and computable points.

Suppose a compact space is computably metrized. How much computa-
tional power do we need to make it computably compact?

Definition 2.7. LetM = (M,d, (pi)iPN) be a compact computable metric
space. A compactness modulus ofM is any function that bounds

h(n) = mintj : @iDk ă j d (pi , pk) ď 2–n
u

from above. We call h the least modulus of compactness.

Note that if h(n) = j, then the 2–n+1-basic open balls centred in p0, ... , pj
cover the space. Since d (pi , pk) ď 2–n is a Π0

1 condition and the quantifier
Dk ă j is bounded, and the space is compact, h is computable relative to 01. It
is not difficult to show that there exists a computably metrized compact space
in which the least modulus of compactness computes 01, and indeed, any
modulus of compactness as well. As we mentioned in the introduction, the
interval [0,Ω] defines a computably metrized space that is not isometrically
isomorphic to any computably compact space (by Theorem 3.21), and its
modulus of compactness (for any computable presentation) computes 01.

In what will follow, we will not necessarily need the (least) modulus of
compactness. Indeed, it is sufficient to calculate some (and not necessarily
the least) j such that @iDk ă j d (pi , pk) ď 2–n. One way to state this would
be to require j to be “the first found” (in some Δ0

2 approximation sense)
that works. A space is computably compact if for every n we can compute
some j that works. It is not difficult to manufacture a pathological example
of a space where some j can be computably found for a given n, but one
cannot compute the least such j. (See the next subsection for a similar
counterexample.)

2.4. More about basic open balls.

Notation 2.8. For a basic open B, write Bc for the basic closed ball with
the same centre and radius as B.
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The reader should keep in mind that the space can be very strange, quite
unlike Rn. For instance, the closure B of B does not have to be equal to
Bc in general (think of an isolated point in BczB). Also, in general we
cannot decide whether two basic open or closed balls intersect or not, as is
illustrated by the example below.

Example 2.9. There exists a computably compact subspace of the unit
square such that there is no uniformly computable procedure deciding whether
two given basic open or basic closed 2–n-balls intersect.

To make sure that the non-emptiness of intersection of open balls is
undecidable, for every n create a gadget consisting of two points xn and
yn at distance 2–n – 2–n–2 from each other, and also put a third point zn at
distance exactly 2–n from each of xn and yn. The point is at the intersection
of the 2–n-circles centred at xn and yn.

• Wait for the nth potential procedure to declare that B(xn, 2–n)X
B(yn, 2–n) = H.

• If this ever happens at some stage s, take m = s + n + 1 and put a
new point wn at distance exactly 2–m from zn so thatwn P B(xn, 2–n)X
B(yn, 2–n) .

To make sure that the non-emptiness of intersection of basic closed balls
is undecidable, for every n create a similar gadget, but this time keep zn
out of the space at every finite stage. Instead, initiate the enumeration of
a sequence (�i,n) of points in the complement of Bc(xn, 2–n)Y Bc(yn, 2–n)
rapidly converging to zn, i.e., d (zn, �i,n) = 2–n–i . At stage s, put �s,n into the
space.

• Wait for the nth potential procedure to declare that Bc(xn, 2–n)X
Bc(yn, 2–n) ‰ H.

• If this ever happens at some stage s, stop putting points �s,n, �s+1,n ...
into the space.

It should be clear that, for each gadget, the diagonalization works. We
also note that the gadgets are uniformly computably compact. We can fit
all these gadgets into the unit square and get a computably compact metric
space (of Cantor–Bendixson rank 2) with the desired property.

Thus, we see that the non-emptiness of set-theoretic intersection of basic
open balls in not c.e. in general. We will return to this issue in Section 3.3
where we will see that there are enough balls for which this property actually
is decidable; hence, we can get a characterization of computable compactness
where the basic balls used in covers have decidable intersections.

A similar example can be produced to show that inclusion is also not
c.e. in general. The following stronger notion is c.e.; it will be very useful
throughout the paper. We write r(B) for the radius of a basic ball B and we
use cntr(B) to denote its (distinguished) center.
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Definition 2.10. A basic open ball U is said to be formally included into
a basic open W, written U Ďform W , if

r(U ) + d (cntr(U ), cntr(W )) ă r(W ).

This notion has been around for many decades (see, e.g., [139] where it
is called strong inclusion). If the centres and the radii are computable (not
necessarily special and rational, respectively), formal inclusion remains c.e.
The same can be said about formal s-disjointness defined as follows.

Definition 2.11. Two basic open balls U and W are formally s-disjoint if
r(U ) + r(W ) ă d (cntr(U ), cntr(W )) and this can be seen after calculating
the radii and the distance with precision 2–s . We say that U and W are
formally disjoint if they are formally s-disjoint for some s.

We note that formal inclusion remains c.e. in the context of right-c.e.
metric spaces, while formal disjointedness remains c.e. in left-c.e. metric
spaces.

2.5. Effectively continuous maps. Let X be a computable topological
space. For a point x P X , its name is the set

Nx = ti P � : x P Biu.

We say that a map f : X Ñ Y between computable topological spaces X
and Y is computable if there exists an enumeration operator that, given the
name of x P X , outputs the name of f(x) P Y .

An open name of an open set U Ď X is a setW Ď � such that

U =
ď

iPW

Bi .

Definition 2.12. Let X and Y be computable topological spaces. A
function f : X Ñ Y is effectively continuous if there is a c.e. family F Ď
P(X )ˆ P(Y ) of pairs of (indices of) basic open sets such that:

(C1) For every (U,V ) P F , we have f(U ) Ď V .
(C2) For every point x P X and every basic open E in Y such that

f(x) P E, there exists a basic open D in X with (D,E) P F and
x P D.

The elementary fact below is well-known and can be traced back to,
e.g., [27]. In this specific form it can be found in [97]. The lemma essentially
says that a map is computable if, and only if, it is effectively continuous.

Lemma 2.13. Let f : X Ñ Y be a function between computable Polish
spaces. Then the following conditions are equivalent:
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(1) f is effectively continuous.
(2) There is an enumeration operator Φ that on input an open name of an

open set V in Y lists an open name of the set f–1(V ) in X.
(3) There is an enumeration operator Ψ that given the name of a point
x P X , enumerates the name of f(x) P Y .

(We remark that the proof below works for right-c.e. spaces. It also works
for computable topological spaces with c.e. formal (strong) inclusion that
can be defined abstractly without any reference to a metric; see, e.g., [97,
139].)

Proof. (1) ñ (2). Suppose V =
Ť

iPW Bi . Note that (C2) implies that

f–1(V ) =
ď

tD P X : (D,E) P F & Di PW E Ďform Biu,

and thus the name of f–1(Bi) can be listed using only positive information
aboutW, with all possible uniformity.

(2) ñ (3). Note that B P Nf(x) if and only if f–1(B) contains a basic
open set in Nx .

(3) ñ (1).Define a collection F of pairs (D,E) of (indices of) basic open
sets in X ˆ Y as follows. Fix a basic open E in Y. Enumerate all basic open
D in X, and for each such D, enumerate all finite collections D,A1, ... , Ak
of basic open sets (in X) such that D Ďform XiďkAi (meaning that D is
formally contained in each Ai). Feed these finite collections to Φ and wait
for some E to be enumerated in the output. When E is enumerated (if ever),
put (D,E) into F.

We claim that F defined above satisfies (C1) and (C2). We check (C1). If
(D,E) P F thenf(D) Ď E. Indeed, suppose d P D. There exists a sequence
D,A1, ... , Ak such that ΦtD,A1,...,Aku enumerates E. Recall D Ďform XiAi
implies D Ď XiAi , thus for any d P D the sequence listed by ΦN

d
will

contain E, and therefore f(D) Ď E. We now check (C2). Fix x P X and
a basic open E Q f(x). We must show that for some basic open D Q x,
(D,E) P F . By assumption, ΦN

x
enumeratesNf(x) that contains E. Suppose

E is listed with use A1, ... , Ak . Since the Ai all contain x, there exists a
basic open D Q x that is formally included into their intersection. Since the
operator uses only positive information about its oracle, it will list E on input
tD,A1, ... , Aku as well, and thus (D,E) will be enumerated into F. %

2.6. Π0
1-classes. Π0

1 classes will be important for some of the work to
follow. Thus we give a brief reminder of the basic definitions and results.

We fix the standard computable presentation of 2� under the usual shortest
common initial segment ultra-metric. The space 2� can be viewed as [2ă�]
the set of infinite paths through the complete binary tree, so points are
paths. A closed subset C of 2� is called an a Π0

1 class if we can computably
enumerate the basic clopen sets whose union make up the complement of C
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in 2�. That is, C is the set of paths [T ] through a computable subtree T of
2ă�.

A moment’s thought reveals that in computable mathematics Π0
1 classes

occur everywhere. One of the fundamental correspondences is Π0
1 classes

and degrees of theories, pioneered by Jockusch and Soare in the early 1970s
[70–72], and even earlier by Kreisel [86] and Shoenfield [133]. That is, Π0

1
classes effectively correspond to (completions of) axiomatizable theories
under Stone duality.

We shall need the following elementary fact:

Fact 2.14. An isolated point in a Π0
1-class is computable.

Thus, for instance, if a Π0
1 class is countable, it must have a computable

point. Another well-known but less elementary fact that we will refer to is
the following result.

Theorem 2.15 (The Low Basis Theorem [72]). A non-empty Π0
1 class

contains a member P of low Turing degree, that is, P1 ”T H
1.

Since we are concerned with computable compactness, it seems reasonable
to see what computable compactness means in this context.

Example 2.16. Let C = [T ] Ď 2� be a Π0
1 class such that Ext(T ) = t� P

T | Dα P 2�(�α P [T ])u is computable.4 Then C = [T ] can be viewed as a
computably compact space. To see why, first use computability of Ext(T ) to
define a computable sequence of (uniformly computable) strings D = tαi |
i P �u Ď 2� so that D is dense in C; we omit the details. (The example will
be generalised in Section 3.5 where we will give a complete proof of a more
general result.) Clearly, being the completion of D, C forms a computably
metrized space under the ultra-metric inherited from 2�. Given n, we
compute a 2–n cover. Compute En = t� | � P Ext(T )^ |�| = n + 1u. Let
En = t�1, ... , �ku. For each i we can use the fact that Ext(T ) is computable
to calculate the leftmost extension αi of �i in C, and then the balls of radius
2–n around the αi X C cover C.

Many other facts about Π0
1 classes can be found in [29, 30] and Chapter 2

of [36].

§3. The definition of computable compactness is robust.

3.1. The other two standard definitions of computable compactness. Our
convention is that all of our spaces are nonempty Polish spaces. Definition of
computable compactness says that for every n we can compute a cover of the
space by basic 2–n-balls. This definition seems a weak form of compactness,

4Such Π0
1 classes (with Ext(T ) computable) have been given several names historically:

recursive, recursively closed, and decidable. See, e.g., [35, 127].
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as it seems that having a fixed cover for each 2–n does not seem quite as good
as having access to all finite covers. The following definition would seem to
give a stronger notion of computable compactness.

Definition 3.1. We define computably metrized space to be ˚-computably
compact if the collection of all finite covers of M by basic open balls can be
given as a c.e. collection of explicit finite sets.

We also note that Definition 3.1 is equivalent to:

Definition 3.2. We say that a computably metrized space is computably
countably compact if there is a partial computable operator that, on input
any potential c.e. open basic cover, halts if it is a cover and outputs some
finite sub-cover.

It is easy to see that a space is effectively ˚-compact iff it is computably
countably compact. To see why computable countable compactness implies
˚-computable compactness, we can enumerate all finite collections of basic
open balls and apply the algorithm: if the procedure halts output its subcover.
This enumerates a collection of finite covers, and to enumerate them all, we
consider the union of this collection with the collection of all finite sets of
balls. The other direction is also straightforward: if the space is ˚-computably
compact, given a c.e. cover wait till we enumerate a finite subcover. These
versions of countable compactness is essentially the approach used in reverse
mathematics (e.g., [135]).

Interestingly, the two potential definitions suggested above (and a few
more) turn out to be equivalent.

Theorem 3.3 (Folklore). For a computably metrized (compact) Polish
space M, TFAE:

(1) M is computably compact.
(2) M is ˚-computably compact.

Proof. The implication (2) Ñ (1) is obvious.
Assume (1). We prove (2). Take a finite collection (Bi) of basic open sets

and assume it is a cover. We must argue that eventually we will be able to
effectively recognise that it is indeed a cover. The idea is that there exists
an � = 2–n so small that every �-cover of M is formally contained in this
given cover. (This will be the Lebesgue number of the cover, in particular.)
This will also be true for the �-cover that will be given to us according to
the definition of computable compactness. Since formal inclusion is c.e., we
will be able to recognise that this formal inclusion has occurred. Noting
that formal inclusion does imply set-theoretic inclusion, so if some � cover
is formally included in some other finite collection of basic open balls, then
this other collection must also be a cover. Thus, if we succeed, it will show
that (Bi) is equivalent to saying that, for some n, every ball in the 2–n-cover
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given to us by the definition of computable compactness (and indeed, any
other 2–n-cover) is formally included in one of the Bi . This is, of course, a
Σ0

1-property.
It remains to prove that such an � exists. We argue non-computably. Let
ci be the center of Bi , and ri be its the radius. Define for every i, a function
fi(x) = ri – d (x, ci) if x is in the ball Bi , and 0 otherwise. This function
is continuous. Now take the supremum of the finite family (fi) to define a
new continuous g; g(x) = supi fi(x). If (Bi) indeed was a cover, then the
function g would be strictly positive, because each x is inside one of the Bi .

Let v be its infimum that is achieved somewhere, by compactness. Take
a rational � = 2–m less than v{2. Then for every point y, we have � ă ri –
d (y, ci); that is

d (y, ci) + � ă ri ,

equivalently, B(y, �) Ăform Bi . This inclusion will still hold if we replace
� with an even smaller �1. Thus, in particular, every basic open �1-ball is
formally included in one of the Bi . Consequently, (1) implies (2). %

Remark 3.4. The proof of (1) Ñ (2) above additionally tells us that, for
any given finite basic cover there is an � small enough so that any �-cover
formally refines the given cover. Also note that to recognize formal inclusion
in a c.e. way, we do not need the radii ri to be rational numbers; (uniformly)
computable ri will suffice.

In view of Theorem 3.3, henceforth we use computably compactness and
˚-computably compactness interchangeably, and without further comment.

3.1.1. Elementary properties of computably compact spaces. Examples
of computably compact spaces are the unit interval [0, 1], the unit circle
that can be viewed as the set of complex numbers having norm one:
t� P C : ||�|| = 1u, the Hilbert cube, cantor space 2�, and also “natural”
(rational) geometric realisations of finite simplicial complexes that are
central to algebraic topology. Simplicial complexes will be used as a tool
later in the paper, and indeed will be discussed in the next subsection. We
shall give much more intricate examples of computably compact spaces in
due course.

There are several properties of computably compact spaces that are imme-
diate from the definitions. These, for instance, include those summarised in
the following:

Proposition 3.5 (Folkore). (1) Let f :M Ñ R be computable and let
M be computably compact. Then supxPM f(x) and infxPM f(x) are
computable real numbers. Furthermore, this is uniform.

(2) The class of (non-empty) computably compact spaces is closed under
taking ( finite or computably infinite) direct products. More specifically,
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if (Mi)iPI is a uniformly computable sequence of spaces, where
I P � Y t�u, then the direct product

ź

iPI

Mi

under (say) the metric
ÿ

iPI

2–i d (xi , yi)
1 + d (xi , yi)

,

where xi denotes the ith projection of x P
ś

iPI Mi , is a computably
compact metric space5. (See, e.g., Lemma 3 of [126].)

(3) If f, g :Mn Ñ R are computable and M is computably compact, then
the following functions are also computable:

• supxPM f(x, x2, ... , xn) and infxPM f(x, x2, ... , xn);
• maxtf, gu and mintf, gu;
• f – g, f + g, αg for any computable real α.

This is also uniform in the strongest sense possible.

We omit the elementary proof. We remark that in (2), the choice of a
dense computable sequence is not canonical. One way of choosing a dense
computable sequence is to fix some (e.g., the first found) sequence of special
points α in the product, and then using elements that are “eventually α.”
That is the dense subset will be given by the collection of sequences of special
points that are equal to α for cofinitely many coordinates (projections).
There are other potential metrics that we can use instead of the one suggested
above, but the natural choices will be effectively equivalent (meaning that
the identity map will be computable with respect to one and the other metric
under consideration).

3.2. Continuous logic and decidability. In this subsection we discuss
continuous model theory and continuous logic. For a smooth introduction to
this subject, we cite [9]. We will not need the definitions of continuous model
theory in their full generality. Our structures are compact metric spaces of
diameter at most 1. The restriction on the diameter can be removed using
linear scaling of the metric. We view such spaces as structures in the signature
tdu, where d :M 2 Ñ [0, 1].

The idea is that every formula φ of continuous logic is (associated with)
a uniformly continuous function, and [φ] :Mn Ñ [0, 1]. In classical logic
the truth values tT, F u are built into the language, and continuous logic

5As was noted by one of the referees, it is not clear whether this observation holds in the
absence of the metric. Specifically, it is not known whether X� is computably compact for
an arbitrary computably compact represented space. For more about effective compactness
in general represented spaces, we cite [117].
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has [0, 1] similarly built into the signature. We therefore fix the standard
computably compact copy of [0, 1] given by QX [0, 1] and view it as a part
of the language, not a part of our structure. Traditionally, φ(x̄) is interpreted
as “true” if [φ(x̄)] = 0, and false if [φ(x̄)] = 1. But of course, there are
continuum many possibilities in-between. Having in mind this intended
interpretation of formulae, we write f, g, h ... to denote our continuous
formulae. Because of the aforementioned somewhat unusual interpretation
of the truth values, it makes sense to define the analog ´ of implication as
follows:

[f Ñ g] = [g ´ f] = [g] ´ [f] = maxt0, [f] – [g]u.

In particular, 1 (which is the “ultimate false”) implies any g. Also, we
interpret the disjunction as the minimum:

[f _ g] = mint[f], [g]u,

and we interpret the conjunction as the maximum of the two functions. The

analog of the negation of f is 1 ´ f. Also, we include
1
2
f to mean

1
2

[f].

Finally, instead of quantifiers we use sup and inf. For example, if f(x, y)
has already been defined, we can define g(x) to be

sup
y
f(x, y),

and in this case clearly

[g] = [sup
y
f(x, y)] = sup

yPM
[f(x, y)],

which is (uniformly) continuous if f was.6

Since our language is merely tdu, the atomic formulae are just d (x, y)
and the constant functions 0 and 1. We close these formulae under finite

iterations of sup, inf,^,_,
1
2
¨, and ´ to define the (full) continuous diagram

of (M,d ). The definition below is inspired by [10, Definition 9.9] and [25,
Definition 3.2]. Recall that we fixed the usual computable presentation on
the unit interval.

Definition 3.6. We say that a Polish space of diameterď1 is continuously
decidable if its continuous diagram is uniformly computable. That is, given
(the Gödel number of) a continuous formula φ(x̄) (from the full continuous

6In general, we should also include the moduli of uniform convergence into the definition
of our formulae, but in the language of just pure metric this is not needed. Since M is compact,
and indeed will be computably compact, we can potentially make the moduli implicit even
in more general signatures.
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diagram of M) we can uniformly produce an index for a Turing operator
that computes the function

[φ(x̄)] :Mn Ñ [0, 1],

where x̄ = x1, ... , xn.

In the definition above, we could allow M to have an arbitrary diameter
1 ď 	 ď m P N and use m–1[φ(x̄)] as an interpretation of our formulae.
Alternatively, we could scale the metric and used 1(x, y) = m–1d (x, y). Thus,
the theorem below is not really restricted to spaces of diameter ď 1; it is a
mere notational convenience.

Theorem 3.7. Suppose X is a computable Polish space that is compact and
has diameter ď 1. Then the following are equivalent:

(1) X is continuously decidable.
(2) X is computably compact.

Proof. (2) Ñ (1). The supremums and infimums of computable func-
tions are uniformly computable (see Proposition 3.5(1)), and so is f ´ g =
supt0, f – gu for every computable f and g. The proof then proceeds by
induction on the complexity of continuous formulae (with parameters).

(1) The distance function is computable by our assumption, and so are
the constant functions 1 and 0.

(2) Iff(x, ȳ), g(x, ȳ) are computable, then so are supx f(x, ȳ), f(x, ȳ) ´

g(x, ȳ), and
1
2
f(x, ȳ) (see Proposition 3.5(3)).

The latter also includes the case when there are no parameters, which
means that the function is just the constant function (a computable real).

(1) Ñ (2). Let (xi) be the computable dense sequence. There is a formula
of continuous logic saying that

Un(x0, ..., xm) = sup
xPX

min
iďm

(d (x, xi) ´ 2–n)

which we can computably evaluate with precision 2–n. If we discover that

Un(x0, ..., xm) ă 2–n,

then every point is at distance at most 2–n+1 from one of the xi , by the
triangle inequality. Since we can effectively list such formulae, and for every
n there exists an m for which the formula holds up to 2–n (by compactness),
we conclude that we can effectively produce at least one 2–n-cover for
every n. %

The result above should hold for any metric compact structures, e.g.,
compact Polish groups. Of course, (1) Ñ (2) remains the same, but (2) Ñ
(1) should be carefully verified. We leave this as a conjecture.
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Remark 3.8. Note that in the proof, we only need to decide formulae with
parameters special points. So it follows that a presentation is decidable with
parameters special points iff it is decidable with arbitrary parameters.

3.3. Deciding the intersection. The results in this section appear to be new
as state; however, similar arguments and some informal explanations closely
related to what we do here can be found in the literature (e.g., in [62, 119]).
One standard way of using a (finite) cover of a compact space in dimension
theory and algebraic topology is to use Alexandroff’s notion of a nerve.

Definition 3.9 (Alexandroff [2]). A nerve of a cover is a simplicial complex
in which the faces are the collections of basic open sets that have a non-trivial
intersection.

For example, each basic open set is a zero-dimensional simplex (a node),
and balls tB,C,Du form a two-dimensional face if B X C XD ‰ H. From
the computability-theoretic standpoint, the issue with this definition is that,
for a fixed finite open cover, the non-emptiness of each specific intersection is
merely Σ0

1; recall Example 2.9 in the preliminaries. Intuitively, most problems
arise when the notions “closed ball” and “closure of ball” disagree. This in
fact can happen only for countably many radii, and we can find sufficiently
small “acceptable radii” [119]. To state the result formally, we push the
notion of computable compactness to its limits.

Definition 3.10. A sequence of basic open balls isX-decidable if for every
finite sequence of balls B0, ... , Bk from the sequence, we can computably
decide whether

Ş

i=0,...,k Bi = H.

Before we proceed, we state and prove one elementary but important
lemma. Recall that, for a basic open B, we write Bc for the basic closed ball
with the same centre as B, and that the closure B of B does not have to be
equal to Bc in general.

Lemma 3.11. Suppose M is computably compact. Then, for basic closed
balls Bci and Bcj , the property Bci X B

c
j = H is c.e. uniformly in i, j. The same

is true for any finite collection of basic closed balls.

Proof. The open setMzBci is c.e. Indeed, we just list all the basic open
balls that are formally disjoint from Bci via a standard argument.7 Thus,
the union of the complements, which is the complement of the intersection
Bci X B

c
j , is also c.e. open. It covers the space if, and only if, the intersection

is empty. By computable compactness of M, this is c.e. The case of finitely
many balls is similar. %

7Every point inMzBci has the property d (cntr(Bi ), y) ą r(Bi ) = r, and if we takeB(y, q)

where 0 ă q ă
d (cntr(Bi ),y)–r(Bi )

2 then d (cntr(Bi ), y) ą r + q.
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Definition 3.12. A computably metrized (compact) M is nerve-decidable,
or ˚˚-computably compact, if for every n ą 0 we can computably find a finite
2–n-cover Kn (represented as a finite tuple of basic open balls) of M so that
Kn is X-decidable uniformly in n.

Theorem 3.13. A computably metrized M is nerve-decidable (˚˚-
computably compact) if, and only if, it is computably compact.

Proof. Obviously, ˚˚-computably compactness implies computable com-
pactness. To this end, we assume computable compactness of M. We will use
the equivalence of computable compactness and ˚-computable compactness
throughout the rest of the proof without explicit reference.

We need to show that, for every � ą 0, there exists a finite basic open
�-cover K of the space. Fix a finite �{2-cover of the space by basic open
balls, and replace each ball in the cover with an �-ball with the same centre.
Let S be this new �-cover. Recall that Bc denotes the basic closed ball with
the same centre as B. For each basic open B1, ... , Bk P S, (exactly) one of
the possibilities is realized:

(a)
Ş

iďk B
c
i = H, or

(b)
Ş

iďk Bi ‰ H, or
(c)

Ş

iďk B
c
i ‰ H but

Ş

iďk Bi = H.

Note that there are only finitely many conditions like that in total.
If we shrink the radii of allB P S by a 	 ă �{2 (but keep the same centres),

then the conditions of the form (a) will still hold, and the smaller balls
will still cover the space because the �-balls do. If 	 is small enough, then
the conditions of the form (b) will still be satisfied, since there are only
finitely many conditions like that involved.8 The third alternative (c) must
be witnessed only by points y such that, for some Bi = B(c, r), d (y, c) = r.
This means that, after the shrinking by �{2 ą 	 ą 0 so small that the
alternative (b) still holds for each tuple of balls, we completely exclude
the third alternative for the new cover.

This argument shows that such a cover exists. Since the conditions are
c.e. by Lemma 3.11, it remains to search for a cover such that each finite
collection of basic balls in the cover satisfies either (a) or (b). %

By Remark 3.4, we can additionally assume thatKn+1 formally refinesKn.
Clearly, we get the following corollary which will be useful later:

8Each such intersection is witnessed by a (special) point which must be at distance strictly
less than 2� to all centres, say, -less. If we shrink the radii by a value less than the minimum
of these  (which is a positive value since there are only finitely many Bi involved) then
the inequalities will still hold. Another way to think about it is as follows: B XD ‰ H is
an “open property” of the parameters (radii and centres), and a finite conjunction of open
properties is also open because open sets are closed under taking finite intersections.
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Corollary 3.14. Every computably compact space admits uniformly
computable sequence of 2–n-nerves (one nerve for each n), where the latter
are represented as a finite combinatorial simplices. Furthermore, the formal
inclusion between covers Kn+1 and Kn induces a simplicial map between the
respective nerves; these maps are uniformly computable in n. (We cite [108]
for the standard definitions from algebraic topology that we omit here.)

3.3.1. A stronger condition. It will be convenient to have a system of
covers (Kn) so that not only eachKn isX-decidable but the whole collection
Ť

n Kn is X-decidable. (We strongly conjecture that there is an elementary
counterexample.) For instance, we will see soon that having such a stronger
system of covers will allow us to computably map 2� onto the space; this is
(vii) of Theorem 1.1.

We are not sure whether such covers can be uniformly constructed for
basic open balls with rational radii (represented as a pair of integers), but
we can contract such a system for balls with centres in special points and
uniformly computable radii.9 We call such balls basic computable open.

Definition 3.15. A computably metrized M is strongly computably
compact if M admits a system of 2n-covers Kn, n P �, by basic computable
open balls such that

Ť

n Kn is X-decidable.

Theorem 3.16. A computably metrized M is computably compact if, and
only if, it is strongly computably compact.

Proof. By slightly increasing the radii of all the balls in a cover,
we can ensure their radii are rational. Thus, every strongly computably
compact space is computably compact. To this end, we assume the space is
computably compact.

The idea behind the proof is as follows. We would like to argue that the idea
from the proof of the previous Theorem 3.13 can be iterated. For example,
suppose we have come up with aX-decidableK0 and need to findK1 so that
K0 YK1 is X-decidable. But to find such a cover, we might have to slightly
shrink the radii of the balls that we have already put intoK0. This is because
it could be that for some B P K0 and C that we attempt to put intoK1, there
is a point at distance r(B) from the centre of B that lies in C and is isolated,
so there is nothing in B X C .

Suppose we iterate the strategy form the proof of Theorem 3.13 and
allow the procedure to slightly shrink all the balls in K0, thus updating the
radii of balls in K0. But note that K0 must still satisfy the closed properties
Ş

iďk B
c
i = H and finitely many open properties

Ş

iďk Bi ‰ H. The former
is not an issue since the radii will decrease. The latter, however, needs to be

9The radii can likely be made rational if necessary, but they will be represented via Cauchy
sequences, not as a fraction.
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maintained more carefully. When we first discover the finitely many open
relations of the form of finitely many strict inequalities (when K0 is first
introduced), we also compute a rational parameter 	0 ą 0 such that the
relations will still hold if we decrease the radii of the balls by 	0. This is
possible since the conditions build down to finitely many strict inequalities
involving the radii and computable numbers:

d (ci , xj) ă ri ,

where ci are centres of the balls and xi are special points witnessing that a
certain intersection is not empty.

We then define 	0,n = 2–n–2	0 and note that
ř

i 	0,i ă 	0. We intend to
shrink the radii of each ball in K0 by at most 	0,s at stage s. This will
make the radii in the balls computable while maintaining the finitely many
conditions that K0 needs to satisfy.

We also iterate this. When we defineK1, we will have more open conditions
to maintain forK0 YK1. We compute a 	1 ą 0 and set 	1,n = 2–n–2	1. We also
ensure that 	1,n ď 	0,n, for every n. When we define (our first approximation
to balls in) K2 at stage t, we will allow balls in K0 to shrink by at most
	1,t ď 	0,t and balls in K1 by at most 	1,t . All the finitely many conditions
will still be satisfied.

We iterate this process until, in the end of the construction, we finally
get a collection of computable balls

Ť

n Kn. At no stage we are stuck. By
the choice of the parameters, all of the open conditions still hold, while the
closed conditions will be satisfied vacuously.

Hopefully, the explanation above is sufficiently convincing, but we shall
give a formal proof for completeness.

Formal proof.

Lemma 3.17. For every � ą 0 and 	 ą 0 and any finite collection K 1 of
basic open balls, there exists a finite basic open �-cover K of the space and a
collection of basic open balls K2 such that:

(i) Every ball in K2 has the same centre as some ball in K 1 but its radius is
at most 	-smaller.

(ii) For each basic open B1, ... , Bk P K
2 YK , either

Ş

iďk B
c
i = H or

Ş

iďk Bi ‰ H holds. %

Of course,
Ş

iďk B
c
i = H implies

Ş

iďk Bi = H, and thus K in the lemma
has computable nerve, and for the same reason K YK 1 is X-decidable.

Proof of Lemma 3.17. Fix a finite �{2-cover of the space by basic open
balls, and replace each ball in the cover with an �-ball with the same centre.
Let S be this new �-cover. Recall that Bc denotes the basic closed ball with
the same centre as B.

For each tuple of basic open B1, ... , Bk P S YK
1, (exactly) one of the

possibilities is realized:
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(a1)
Ş

iďk B
c
i = H, or

(b1)
Ş

iďk Bi ‰ H, or
(c1)

Ş

iďk B
c
i ‰ H but

Ş

iďk Bi = H.

Note that there are only finitely many conditions in total.
If we shrink the radii of all B P S by a 	1 ă mint	, �{2u (but keep the

same centres), then the conditions of the form (a 1) will still hold, and the
smaller balls will still cover the space because the �-balls do. If 	1 is small
enough, then the conditions of the form (b1) will also still be satisfied,
since there are only finitely many conditions like that involved. Note that
the third alternative must be witnessed only by points y such that, for some
Bi = B(ci , r), d (y, ci) = r. This means that, after we shrink the radii by
�{2 ą 	1 ą 0, (b1) will still holds for each tuple of balls, but we completely
exclude the third alternative. Define K2 to be the balls in K 1 after the
shrinking, and K is the shrunken balls from S. %

The rest of the proof proceeds by induction; we iteratively apply Lemma
3.17 to produce a system of covers that satisfies the properties required in
the definition of a strongly computably compact presentation. We produce
a sequence (Kn) of covers, as follows.

At stage 0, search for a finite collection of basic open balls K satisfying
conditions of Lemma 3.17 with � = 	 = 1 andK 1 = H. Define K̂0,0 equal to
the first found such K. Also, for the finite collection of strict inequalities that
witness non-emptiness of intersections in K0,0 calculate a parameter 	1 P Q

such that the inequalities would still hold if we decrease the radii by 	1. Set
	0 = 	1 and 	0,i = 2–i–2	0.

At stage s ą 0, suppose Ki,s–1 (i ă s) and 	s–1,s–1 have already been
defined. Search for a finite collection of covers K that satisfies the lemma with
K 1 =

Ť

iăs Ki,s–1, � = 2–s , and 	 = 	s–1,s–1. This will give a finite collection
of ballsK2 having the same centres as balls inK 1 but perhaps having radii at
most 	-smaller than the radii of the respective balls in K 1. For i ă s , define
Ki,s to be the collection of those balls in K2 that have the same centre as
some ball in Ki,s–1. Define Ks,s = K , where K is first found satisfying the
conditions of the lemma. Compute a rational 	1 ą 0 so small that the finitely
many strict inequalities that witness non-emptiness of finite collections of
balls in

Ť

iďs Ki,s will still hold if we decrease all the radii of all balls in
Ť

iďs Ki,s by 	1. Set 	s = mint	s , 	1u and define 	s,s = 2–s–2	s . Proceed to the
next stage.

The verification boils down to noting that at no stage of the construction
we are stuck, so Ki,s and 	s,s are defined for every s. This is because of
Lemma 3.11 implying that the conditions (a 1) and (b1) are uniformly c.e.,
and because of Lemma 3.17 saying that balls and parameters with the needed
properties exist. Thus, we just search for the first found balls and parameters.
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At every stage s, the radii of the balls in Ki,s shrink by at most 	s,s ď 2–s ,
which makes each of the radii uniformly approach a computable real number
as s goes to infinity. Set Ki equal to these balls that have their radii equal to
the limit of the radii of the balls with the same centre inKi,s . When compared
to the radius of the ball inKs,s when it was first introduced, the radius of the
respective ball in Ks will be smaller by at most

ř

nąs 	n,n ă
ř

nąs 	s,n ď 	s ,
and 	s is not greater than the parameter 	1 that was calculated at stage s
and that was sufficient to maintain the non-emptiness of finite intersections
in Ks,s . Since the radii can only decrease, the conditions that say that the
closed balls do not intersect will be preserved from a stage to a stage, and in
the limit.

It follows therefore that
Ť

n Kn consists of uniformly computable collec-
tion of basic computable balls and is X-decidable.

Remark 3.18. The reader should note that, instead of using basic open
covers, we could just as well used basic closed covers in the proof of
Theorem 3.16. For instance, for any finite collection of basic computable
ballsC0, ... , Ck , we have

Ş

iďk Ci = H ðñ
Ş

iďk C
c
i = H,whereCci is the

basic closed ball with the same centre and radius asCi . Also, by Remark 3.4,
we can always assume that Kn+1 is formally contained in Kn, and this will
still be true if we choose working with closed covers. For that, define a
new system of (closed or open) covers Kf(n) where f(n) is a computable
monotone function that grows sufficiently fast so that Kf(n+1) formally
refines Kf(n).

However, even when we are working with closed basic computable balls,
the intersection can always be witnessed by a special point, because the
respective open balls intersect too.

Recall that C denotes the closure of a basic computable open ball C, and
recall that

C Ă C Ă Cc,

and, in general, both inclusions can be strict. But these inclusions also
guarantee that we can use closures of the open balls to form covers in
Theorem 3.16 and still decide intersection. We can also come up with any
combination of open, closed, and closures (e.g., decide whether Bi X Bj X
Bck = H) for any computable balls in K constructed in Theorem 3.16.

Definition 3.19. If a computable sequence (Kn) of finite 2–n-covers of
computable balls satisfies the properties described in Definition 3.15 then
we say that (Kn) is a fully X-decidable system of covers of the space. Such
a K is given by a uniformly computable sequence of (finite sets Kn of)
indices of radii and special points, and we can choose whether we want to
consider open, closed, or closures of open balls that have these parameters
(see Remark 3.18).
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For instance, when we say “Bc(r, q) is in Kn” or “B(r, q) in Kn,” or the
same forB(r, q), we really mean that parameters xr, qy are listed inKn (where
q is given as an index of a computable real).

The following lemma will be useful later.

Lemma 3.20. Let K =
Ť

n Kn be a fully X-decidable system of covers of a
space M. Then, for every closed ball Dc in K we can enumerate all basic open
B in M such that B XDc ‰ H.

Proof. Suppose B XDc ‰ H and let x be any (not necessarily special)
point in the intersection. Suppose the radius of B is 	, and let c1 be the centre
of B, and r1 its radius. For some positive 	, we have

d (x, c1) = r1 – 	.

Fix n so that 2–n ă 	{2, and consider the finite set Kn. Since Kn is a (closed
or open) cover of the whole space, there must exist some C P Kn such that
x P C . Since x P Dc , it must be that

C XDc ‰ H,

and (by our assumption) this can be recognised computably. We claim that
for this C, we have that C is formally included into B.

Indeed, if c2 is the centre of C and r2 is it radius, then we have that
d (x, c2) ă r2 ď 2–n ă 	{2, and therefore

d (c1, c2) + r2 ď d (x, c1) + d (x, c2) + 	{2 ă r1 – 	 + 	{2 + 	{2 = r1,

which is the same as to say that C is formally included into B.
It follows that B intersects Dc if, and only if, there is an n ą 0 and a ball
C P Kn such that C XDc ‰ H and C is formally included into B. This is a
Σ0

1-property. %

3.4. Isometry-invariance of computable compactness. Iljazovič [65]
discovered that the notion of computable compactness admits another
characterization that entails that it is isometry-invariant, i.e., every
isometrically isomorphic computable metrization of the space must also
be computably compact. This property has recently been independently
rediscovered in [120].

Theorem 3.21. Suppose M is computably compact and N is a computably
metrized space isometrically isomorphic to M. Then N is computably compact
as well.

We claim that the theorem can be derived as a consequence of condition
(v) in Theorem 1.1:

There is a computable sequence of computable reals (�n)nP� such that
�n ď 2–n and so that, for every n, we can compute the maximal number
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of points in the space that are at least �n-far from each other (in the
sense of strict inequality).

We first prove Theorem 3.21 assuming that (i) Ø (v) in Theorem 1.1, and
then we prove (i) Ø (v).

Proof of Theorem 3.21. Assume that, in M, we can compute (�n)nP�
and the maximal number D(n) corresponding to �n. In N, search for D(n)-
many special points that are �n-far from each other. The �n-balls around
these points will give a finite cover of the space. We can slightly enlarge the
radii to make sure that they are rational. %

Proof of (i) Ø (v) in Theorem 1.1. The proof of Theorem 3.21
above essentially shows that (v) implies (i). Thus, we assume computable
compactness and prove (v).

The reader perhaps wonders why we did not use �n = 2–n in (v). To clarify
this subtlety, we shall attempt to show that, in a computably compact M,
the following invariant D(M, 2–n) is uniformly computable in n:

D(M, 2–n) is the maximal number of points of the space M that are
ą 2–n-apart from one another.

The issue that we will face will clarify why we need to adjust our �n’s.
Also, it will be easy to modify this naive attempt and obtain a procedure
that actually works for some �n ď 2–n.

We describe our attempt. Given x̄ PMm, we can calculate inf iăjďm
d (xi , xj) and then

sup
x̄PMm

inf
iăjďm

d (xi , xj).

If this supremum is ă 2–n, then m is too large, i.e., m ą D(M, 2–n). Note
that this is a c.e. event. On the other hand, by searching through all possible
m-tuples we can bound the maximal number of such points from below.
The issue is that the supremum could be exactly equal to 2–n, so we may end
up with a pair of integers n0, n0 + 1 each of which can potentially be equal
to the invariant D(M, 2–n); here n0 + 1 corresponds to the situation when
there are n0 + 1 points at distance exactly 2–n from one another.

In this case we shall wait long enough so that any (n0 + 2)-tuple has at
least one pair of points at distance ą 2–n, and for some small �n ă 2–n–1

there exist n0 + 1 points at distance 2–n – �n. Then

D(M, 2–n – �n) = n0 + 1.

This allows us to compute a computable sequence of rationals

�n = 2–n – �n,
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where clearly �n ď 2–n, such that D(M, �n) is a computable sequence of
natural numbers. Indeed, for this �n there is an n0 + 1 tuple ȳn of points that
satisfy the desired properties. We can assume these points are special. %

It follows from the proof above that these �n can be chosen rational and
indeed, computed in the strong sense (as fractions). Note that we also obtain:

Corollary 3.22. Suppose that M and N are isometrically isomorphic com-
putable metrized spaces. Then both admit the same modulus of compactness
up to Turing degree.

3.5. Calculus of effectively closed sets. In this subsection we present some
well-known basic results about effectively closed sets, and we also derive
several pleasant consequences of these results that will be important in the
sequel. The notion of an effectively closed set is a generalisation of a Π0

1
class, and it is especially useful if the ambient space is effective compact. We
will need some basic facts of this generalised theory, but of course a lot more
is known (see the very recent large survey [67]).

Definition 3.23. A closed subset C of a computably metrized M is
effectively closed ifMzC is c.e. open.

It should be clear that effectively closed sets are closed under finite
unions and arbitrary computable intersections (meaning that the effective
procedures listing the complements must be uniformly indexed). The
following lemma is also an immediate consequence of the definition:

Lemma 3.24 (Folklore). Suppose f : AÑ B is a computable surjection,
and assume C is effectively closed in B. Then f–1(C ) is effectively closed
(in A).

Proof. This is because Azf–1(C ) = f–1(BzC ) is c.e. open. To see why,
recall that f is computable if, and only if, it is effectively open. If a basic
open D is enumerated into BzC , then we will list all pairs (D 1, D2) in
the continuous name of f such that D2 is formally included in D. Since
every x P D is contained in such a D2 (by surjectivity), this will give an
enumeration of f–1(D). Putting these enumerations together for all such D
in BzC , we will list its preimage. %

Another observation is an easy generalization of a well-known fact about
Π0

1 classes.

Fact 3.25 (Folklore). Suppose P = tpu is effectively closed singleton in
a computably compact space X. Then the only point p of P is (uniformly)
computable.10

10As has been pointed out by one of the referees, this seemingly obvious and tame fact is
indeed rather useful in many applications of effective compactness. We will discuss some of
these applications in due course.
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(This can of course be pushed to show that isolated points can also be
computed, though non-uniformly.)

Proof. Given n, wait for a basic open ball D of radius 2–n and finitely
many basic open B1, ... , Bn P X zP such that D,B1, ... , Bn cover X. Then
p P D. %

The fact above admits various generalisations, but we will encounter one
such generalisation (specifically, in the proof of Corollary 4.11). More
generally, effectively closed sets, Π0

1-classes, computable functions, and
computably compact spaces are closely technically related. To make this
relationship explicit, we need one more definition. As usual, we identify
basic open balls with their indices.

Definition 3.26. A closed subset of a computably metrized M is c.e. if
tB : B basic open and B X C ‰ Hu is c.e.

Sets that satisfy the definition above are sometimes called computably overt
in the literature. For more about effectively overt spaces, we cite [19, 23].
The fact below is well-known; we are not sure who was the first to observe
this. We cite, e.g., [19, Corollary 3.14(1)].

Lemma 3.27. A closed subset C of a computably metrized space M is
computably enumerable if, and only if, C possesses a uniformly computable
(in M) dense sequence of points.

Note that the dense sequence makes C a computable Polish space under
the induced metric.

Proof of Lemma 3.27. Suppose C possesses such a computable sequence
(αi)iPN. Then the density of the sequence in C implies that Bi X C ‰ H iff
Djαj P Bi , which is a uniformly Σ0

1 statement.
Now suppose C is a computably enumerable closed subset of M. Our goal

is to construct a uniformly computable (finite or infinite) sequence of points
(αi)iPI that is dense in C. The proof below does not have to be non-uniform,
but for notational convenience we split it into two cases, namely, when C is
finite or infinite.

If C is finite, then it clearly contains only computable points. To see why,
assume it is not empty (in this case there is nothing to prove) and let x
be any point in C. Take a ball small enough so that txu P B X C . To get
a 2–n-approximation to x, wait for a basic open B 1 of radius ă 2–n so that
B 1 X C ‰ H and additionally B 1 is formally contained in B.

Without loss of generality, we assume C is infinite. We uniformly
approximate a computable sequence by stages. Before we describe stage s,
recall that two basic open balls U and W are formally s-disjoint if
r(U ) + r(W ) ă d (cntr(U ), cntr(W )) and this can be seen after calculating
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the radii and the distance with precision 2–s . Then U and W are formally
disjoint if they are formally s-disjoint for some s.

At stage 0, search for a basic open ball B0,0 of radius ă1 such that B0,0 X

C ‰ H. If such a ball is never found then do nothing. If it is every found,
go to the next stage.

At stage s ą 1 first check whether there exists a basic open ball with
indexă s which is formally s-disjoint fromB0,s–1, ... , Bs–1,s–1. If such a basic
open B exists, then choose the first fund Bs,s Ďform B and Bi,s Ďform Bi,s–1,
i ă s such that Bj,s X C ‰ H, the Bj,s are pairwise formally disjoint and
r(Bj,s) ă 2–s , j = 0, ... , s . Otherwise, if no such B exists, fix the first found
pairwise formally disjointB0,s , ... , Bs,s that intersect C, have radiiă 2–s , and
such that Bi,s Ďform Bi,s–1 for i ă s (note there is no further restriction on
Bs,s). This ends the construction.

Let αi be the unique point of the Polish space such that tαiu =
Ş

jěi Bi,j .
Since the construction is uniform and the radii of balls are rapidly shrinking,
the points αi form a uniformly computable sequence. Since each of the Bi,j
(j = i, i + 1, ...) intersects C and C is closed, each αi P C . It remains to
check that (αi)iPN is dense in C. Let (αi)iPN be the completion of (αi)iPN.

Suppose c P C . We claim that c P (αi)iPN. Assume c R (αi)iPN, and there
is a ball U centred in c which is outside (αi)iPN. There will be a basic open
ball B 1 Q c of radius at most 2–n and which is formally contained in U with
precision 2–n:

d (cntr(U ), cntr(B 1)) + r(B 1) ă r(U ) + 2–n.

Then at every stage s ą n + 4 the balls Bi,s–1, i = 0, ... , s – 1 will be
formally s-disjoint from B, as will be readily witnessed by the metric. At
some late enough stage s 1 we will get a confirmation that B X C ‰ H.
There exist only finitely many basic balls that have their index smaller than
the index of B. Therefore, eventually B will be used to define Bt,t Ďform B ,
contradicting the assumption that U X (αi)iPN = H. %

Definition 3.28. A closed subset of a computably metrized M is
computable if it c.e. and effectively closed.

As we mentioned immediately after the statement of Lemma 3.27, a c.e.
closed subset of a computable metric space M can be viewed as a computably
metrized space under the induced metric. It thus makes sense to ask when
this subspace is computably compact. If M is computably compact, then it
is both computable compact subset of itself and an effectively closed subset
of itself. Interestingly, this trivial example is not misleading. The proposition
below is also folklore (see, e.g., [19, Corollary 4.14(1)]).

Proposition 3.29. For a closed subset C of a computably compact M, the
following are equivalent:
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1. C is a computably compact subspace of M.
2. C is computable.

Before we proceed to the proof, the reader might well wonder what is wrong
with the following analog of the classical argument that closed subsets of
compact spaces are compact:

Suppose that C is an effectively closed subset of a computably compact
space P, then C is computably compact. Applying computable compactness
we can compute a finite subcover and then attempt to “throw away” C
(that can be listed). One obvious problem with this idea is that we can
never be sure whether a basic open ball B (in P) intersects C, and thus we
can never be sure whether we can keep B in our cover of C. By Lemma
3.27, this is equivalent to locating a computable dense sequence in C. This
problem cannot be circumvented as C might not contain a computable dense
sequence. Indeed, as Kleene showed in the 1950s there are effectively closed
subsets of 2� containing no computable points at all. We discuss more about
this issue in Section 4. We turn to the proof of Proposition 3.29.

Proof. Assume (1). It is clear that C is c.e. (by Lemma 3.27). To list its
complement, fix x PMzC . Let 	 = infcPC d (x, c). Then any 	{4 -cover of
C must be formally disjoint from any ball centred in y with d (y, x) ă 	{4.
For every n, fix a finite 2–n-cover K of C. It follows thatMzC is equal to the
union of the (uniformly) effectively open sets Un, where

tB : B basic open and B is formally disjoint from every ball in Ku.
It follows that (2) holds.

Now assume (2). C is computably metrized by Lemma 3.27; let (yj) be the
computable dense subsequence. Fix � = 2–n. We need to find an �-cover of C
by basic open balls.11 Regardless of whether the balls involved are basic or
not, as long as their centres and radii are computable, the relation of formal
containment remains c.e.

If a finite collection K of basic open (in C) balls formally contains a cover
K1 by basic open (in M) balls, then clearly K is a cover of C. We claim that
this condition is also necessary (for K to cover C).

From the proof of Lemma 3.3 we know that, for a given cover K of C by
(basic or not) open balls there is a small enough � such that every �-cover of
C will be formally contained in at least one ball of K.

11Note that yj does not have to be special in M, and thus basic open balls in C do not
have to be basic open in M. Nonetheless, an open ball of M centred in a computable point y
and having a computable (more generally, left-c.e.) radius r is effectively open:

B(y, r) =
ď

tB(x, q) : d (x, y) + q ă ru,

that is, B(y, r) is the union of basic open balls formally contained in it. Note that effective
openness of B(y, r) is uniform in y and r.
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Take 	 = �{4. Fix a finite 	-coverK1 of C by balls that are centred in special
points of M, not C. Every B 1 P K1 intersects C at some point x, and by the
choice of 	, d (x, cntr(B 1)) + 	 ă �, thus B(�, x) Ąform B 1. By transitivity
of formal inclusion,12 we have that B 1 must be formally contained in some
ball in K.

By computable compactness of M and computability of C, we can produce
at least one 	-cover K1 of C by basic open balls of M, uniformly in 	. (To see
why, replace every basic open ball in the c.e open name of MzC by the
effective union of balls of radii at most 	 that are formally contained in
it. This gives a new c.e. enumeration of the complement of C but with
balls of radii at most 	. Then take the c.e. collection of all basic 	-balls
that intersect C. Together these sets of balls cover M. Initiate the combined
enumeration of these two c.e. sets and wait until at some finite stage we
discover that we have a cover of M.)

Since formal inclusion is c.e., this gives a procedure of listing covers of C
by basic balls (in C). %

We see that computable compactness and computability of a closed set
are very closely related notions. We have already mentioned above that an
effectively closed set does not have to be computable, in general. However,
suppose C is an effectively closed (Π0

1) subset of, say,R3, and suppose further
that we know that it is a sphere or a ball. Is it computably closed? Miller
[103] used algebraic topology to answer this question in the affirmative
(in fact, in any dimension). The idea is that, roughly, we can non-uniformly
localise it to a compact box in Rn and then use that a computably compact
ball will eventually be contained in a simplex that “looks like the ball”;
algebraic topology helps to make this formal. The results of Miller have
been extended (e.g., to compact manifolds under some extra conditions) in
[24, 64, 66, 68]. But of course, if we are interested in presentations of spaces
and especially up to homeomorphism, then a sphere or a compact surface
is clearly homeomorphic to a computably compact space (e.g., given by a
geometric realisation of its triangulation).

In general, there is no good reason why a basic closed ball (or the closure
of a basic open ball) in an abstract Polish space needs to be computable
closed; pathological examples similar to Example 2.9 can be constructed.
Interestingly, it follows that there are always enough closed balls with
computable radii that are computable closed as sets, and indeed uniformly
so.13 More specifically, an immediate consequence of the proposition above

12This is because d (x, y) + r2 ă r1 and d (y, z) + r3 ă r2 (together with the triangle
inequality) imply d (x, z) + r3 ă r1.

13Issues of this sort are investigated in detail in [119].

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.16


COMPUTABLY COMPACT METRIC SPACES 207

is that, in Theorem 3.16, we can additionally state that the basic closed balls
in the covers are computable closed sets:

Proposition 3.30. Suppose K =
Ť

n Kn is a fully X-decidable system of
covers of a computably metrized M. Then each computable closed ball Dc in
K is a computable closed set (thus, is a computably compact subspace of M),
and this is uniform.

Proof. Lemma 3.20 says that each such Dc is c.e. closed. If x PMzDc ,
then x is inside an open ball C that is formally disjoint from Dc , and such
balls can be computably enumerated14. Thus, the c.e. union of such open
balls formally disjoint from Dc makes up the complement of Dc . %

The fact above will be useful when we talk about the universality of 2�.
More generally, it seems to be useful in any iterated recursive argument
in which a space is eventually replaced by its compact subset, and then a
subset of this subset, etc. The lemma below will also be useful throughout
the rest of the paper. It is also well-known (see [147, Theorem 3.3] and [117,
Proposition 5.5]).

Lemma 3.31. Suppose f : X Ñ Y is a computable map, and assume X is
computably compact. Thenf(X ) is c.e. closed (in Y) and computably compact.

Proof. Let (xi) is a computable dense sequence in X. Then (f(xi))
is dense in f(X ). (Every α = limj xj for some subsequence (xj) and,
by continuity, f(α) = limj f(xj), so f(X ) Ď cl(f(xi)). Suppose � P
cl(f(xi)), say � = limj f(xj). By compactness, (xj) has a convergent
subsequence (xjk ), so let z = limk xjk P X be its limit. Then f(z) =
limk f(xjk ) = limj f(xj) = �.)

Given a cover Bj of f(X ) by basic open (in f(X )) balls of radius
2–n centred in f(xj), calculate the c.e. names of each Bj in Y and begin
enumeration of f–1(C ) for each such open basic C; note that it could be
that some of these f–1(C ) will be undefined. At some stage the preimages
must cover the whole X. We can see which Bj included the basic open (in Y)
balls whose images were sufficient to cover X. This gives a way of producing
at least one 2–n-cover of f(X ) uniformly in n; now apply Lemma 3.3. %

Combining Lemma 3.31 with Proposition 3.29, we get:

Corollary 3.32. Suppose f : X Ñ Y is computable and X is computably
compact.

14To see why, let c be the centre of Dc and r its radius, and assume d (c, x) = r + 	. There
must be a special xi such that d (xi , x) ă 	{2. Take the basic open ball C = B(xi , 	{2).
Then the distance between their centres is d (c, α) ą r + 	 – d (xi , x) ą r + 	 – 	{2 = r +
	{2, which is the sum of their radii. So the balls are formally disjoint.
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• If f is surjective then Y = f(X ) must be computably compact.
• If Y is computably compact thenf(X ) is a computable closed subset of Y.

In computable algebra, the inverse of a computable bijective map is clearly
computable as well. In contrast, there is no reason why the inverse of a
computable bijection between spaces has to be computable even if its inverse
is continuous (we mention here that this is actually true for isometric maps).
The theorem below is elementary and is folklore (e.g., [20, Corollary 6.7]),
but it is rather important because it tells us that effectively continuous maps
are the right morphisms in the category of computably compact spaces.

Theorem 3.33. Suppose f : X Ñ Y is a computable bijection between
computably metrized spaces, and assume X is computably compact. Then
Y is also computably compact, and f–1 is computable.

It is easy to see that f is indeed a homeomorphism.15 Our task is to produce
a more subtle computable version of this observation.

Proof. Computable compactness of Y follows from the corollary above.
Given a (not necessarily) special point y P Y , act computably relative to y.
The set Y ztyu is effectively open relative to y. Indeed, for every z ‰ y there
must exist formally disjoint basic openB Q y andD Q z. Thus, it is sufficient
to list, effectively in y, all basic open balls formally disjoint from some ball
in the name of y.

Since f is computable, f–1(Y ztyu) is effectively open relative to y. Since
f is bijective, we have that

X zf–1(Y ztyu) = tf–1(y)u.

To list a basic open D into the name of x = f–1(y), wait for finitely many
basic open balls B1, ... , Bk in X zC0 = f–1(Y ztyu) such that D,B1, ... , Bk
cover X. Note that, for each D Q x, such a finite collection must exist by
compactness. Since X is computably compact, the process described above
is uniformly computable in y, and thus f–1 is computable. %

One useful consequence says that partial inverses also exist under some
conditions.

Corollary 3.34. Supposef : C ÑM is a computable injective embedding
of a computably compact C into a computably compact M. Then f–1 is
computable on f(C ) (when viewed as a map between the induced computable
structure on f(C ) and C).

15For every open Z in X, its complement is closed and thus is compact. Since the continuous
image of a compact set is compact and therefore closed, f(X zZ) is closed. Since f is a
bijection, f(X zZ) = f(X )zf(Z) = Y zf(Z), which makes f(Z) open.
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Proof. Let N be the computably compact induced computable metriza-
tion of f(C ) that exists because of Lemma 3.31 and which is furthermore
computably compact by Corollary 3.32 and Proposition 3.29. The map
f : C Ñ f(C ) can be viewed as a computable map from C to the induced
computable metrication on C, as follows. When (B,C ) is enumerated in the
name of f, find a basic open ball D in f(C ) that formally contains C. The
basic open balls in C are balls with centres that are special in f(C ) but
are computable in M, but formal containment is still c.e. So we enumerate
(B,D) into the new name of f.

Another way to view this is to replace an �-approximation xi PM tof(y)
by a 2�-approximation ci P C to f(y); it must exist.

To compute f–1, apply the previous theorem. %

We also include another nice fact connecting computable compactness
with computable closed sets proved by Brattka [17]. The result will be used
later (in Corollary 4.3) to clarify one of the well-known applications of
computable compactness.

Theorem 3.35. Let X and Y be computably compact spaces and f : X Ñ
Y . Then f is computable if and only if graph(f) is effectively closed and if and
only if graph(f) is computable closed.

Proof. We know that X ˆ Y is computably compact. Suppose f is
computable. Then f(x) = y is clearly a Π0

1 property.
Now assume graph(f) is effectively closed. The subspace txu ˆ Y is

effectively closed relative to x, thus graph(f)X txu ˆ Y is an effectively
closed singleton relative to x. By Fact 3.25 relativized to x, given x we can
compute (x,f(x)) and, thus f(x).

It remains to note that graph(f) is actually c.e. closed for a computable f,
because if a basic open B (in X ˆ Y ) intersects the graph then we will
eventually recognise it. %

We did not really have to assume that Y is computably compact; the proof
would still work. But of course, by Theorem 3.33 the space f(X ) has to be
computably compact, so we can always replace Y with f(X ).

3.6. Computable universality of the Hilbert cube. We now discuss another
way of looking at computably compact spaces, using the Hilbert cube H.
In H = [0, 1]�, we define the distance as d ((xi), (yi)) =

ř

i 2
–id (xi , yi).

A canonical dense sequence is given by rational sequences that are eventually
zero.

The Hilbert cube is a universal space for computably compact spaces. To
see this, recall that all our spaces are complete with respect to their metric.
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We embed a given compact computably metrized space M into the Hilbert
cube, as follows. Assume the diameter of M is at most one.16 Map a point
x PM to the sequence (d (x, xi))iPN inH = [0, 1]�.

It is easy to see that this embedding is computable and its image is c.e.
closed. We will see that the image does not have to be effectively closed, and
hence the image does not have to be computable by Proposition 3.29. This
embedding gives yet another characterisation of computable compactness,
but this time up to homeomorphism:

Theorem 3.36. For a computably metrized compact M, the following are
equivalent.

(1) M is homeomorphic to a computably compact space.
(2) M is homeomorphic to a computable closed subset of H.

Proof. Note that H being a (computable) product of computably
compact spaces is itself computably compact by Proposition 3.5.

If the space has a computably compact presentation, then its image under
the canonical embedding will also be computably compact (Proposition
3.29 and Lemma 3.31), and thus the image will be computable closed by
Corollary 3.31. On the other hand, if a closed subset of H homeomorphic
to the space is a computable closed subset, then it gives a computably
compact homeomorphic presentation of the space by Proposition 3.29
because H, being a (computable) product of computably compact spaces, is
itself computably compact. %

Remark 3.37. We note that, by Theorem 3.33, if (the fixed computable
complete metrization of) M is computably compact, then it is computably
homeomorphic to f(M ), meaning that both f and f–1 (when restricted
to M) have to be computable (see Corollary 3.34).

In other words, we can always effectively reduce the study of computably
compact spaces up to homeomorphism to the investigation of computable
closed subsets of H. One pleasant and well-known (e.g., [19, Corollary 3.14])
characterization of computably closed sets in H is given below.

Lemma 3.38. A closed subset C of H is computable if, and only if, D(x) =
d (x,C ) is a computable function.

16If it is ą 1, then replace the metric with the new metric
1
n
d (¨, ¨), where n is a large enough

positive integer. You can also redefine the metric to be equal to one on a pair x and y if the
original distance between x and y is greater than 1. The latter method is computably uniform
and gives a metric computably compatible with the original one, i.e., the identity map is a
computable homeomorphism between the old metrized space and the newly metrized one.

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.16


COMPUTABLY COMPACT METRIC SPACES 211

Proof. We can list the basic open balls B(xi , r) for which D(xi) ą r,
and they must coverMzC . But we can also list the balls B(xj, q) such that
D(xi) ă r, and these are exactly the basic open balls that intersect C. %

Note that we can uniformly list r such that D(xi) ą r, i.e., D is left-c.e.
(lower semi-computable) iff C is effectively closed, and we can uniformly list
r such that D(xi) ă r, i.e., D is right-c.e. (upper semi-computable) iff C is
c.e. closed. We omit details. We also note that there is really nothing special
about the choice of H in the lemma above; it could as well be some other
computably compact space.

The closed subsets of H give us yet another way to look at computably
compact spaces. Recall that compact spaces correspond to c.e. closed subsets
of H, and computably compact ones to computable closed subsets of H.
Note that the space of all compact (or closed) subsets C(H ) of H is a Polish
metric space in which the metric is given by the Hausdorff distance and the
countable dense set is given by finite discrete subsets of special points of H.

Fact 3.39 (Folklore). For a c.e. closed subset C of H, C is computable iff
C is a computable point in C(H ).

Proof. If C is computable then it is computably compact by
Proposition 3.29. If (Bi) is a finite 2–n cover of C and xi is a special
point in Bi , then every point of C is at most 2–n+1-far from one of the xi .

On the other hand, assume c P Bi X C ; indeed c is contained inBi together
with an �-ball. Thus, there is � so small that any D that is �-close to C in
C(H ) contains a special point in Bi . This will be eventually recognised, and
thus such Bi can be computably enumerated, making C c.e. closed. %

Of course, there is again nothing really special about H is the fact and the
remark above, and it can be replaced by some other computably compact
space if necessary. For instance, one could look at computability of graphs
of functions f : [0, 1] Ñ [0, 1] and see that f is computable iff it can be
approximated by piecewise linear functions iff the graph is a computable
closed set (cf. Theorem 3.35). Generalizations of this fact can be found
in [17].

3.7. Computable universality of Cantor space. We assume that our spaces
are non-empty Polish ones, and so that our metrics are complete.

We identify 2� with its standard computable presentation of Cantor space
by infinite strings under the usual ultrametric. It is well-known that every
compact metric space is a homeomorphic image of 2�; this is the classical
Hausdorff–Alexandroff theorem. The following computable version of this
fact fully characterises computable compactness.
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Theorem 3.40 [20]. A computably metrized (non-empty) compact M is
computably compact if, and only if, there is a computable continuous surjective
f : 2� ÑM .

If M is a computable image of 2� then it has to be computably compact by
Theorem 3.33. To this end, we therefore assume M is computably compact.
We give two proofs of the harder direction of the theorem. The first proof
exploits the strongest so far combinatorial characterisation of computable
compactness given in Section 3.3 (specifically, Theorem 3.16) and basically
follows the standard textbook argument pretty closely. The second proof is
more indirect. It handles the combinatorics differently using a space-filling
curve and a technical Lemma 3.41 that is of independent interest.

The first proof. Fix a fullyX-decidable system of covers (Kn) of M that
exists by Theorem 3.3. By Remark 3.18, we can use finite basic computable
closed covers throughout.

We follow the standard classical topological proof very closely, and we
use X-decidability of

Ť

n Kn throughout. Suppose K0 = tD1, ... , Dku, and
fixDi P K0. ThenK1 contains finitely many balls that coverDi ; denote them
Di,j . These can be computed and indeed, these Di,j are exactly the closed
balls in K1 that intersect Di , because the rest are disjoint from it. Define
D̂xi,jy = Di XDi,j .

We can computably proceed by recursion and define D̂� , which is a
finite non-empty intersection of basic closed balls, where � ranges over
a computably branching tree T with no dead ends (observe that � ‰ �
does not necessarily imply that D̂� ‰ D̂�). Equip the set of all infinite paths
through [T ] with the standard (longest common prefix) ultrametric; then
[T ] is computably metrized space in which the dense sequence is given by
�1�, � P T . We identify � with the basic clopen ball of [T ] consisting of all
strings with prefix �.

Also recall that, by the construction of (Kn), without loss of generality
we can assume that basic open balls intersect whenever the respective closed
balls intersect, and thus we can always calculate a special point x� in each
D̂� (see Remark 3.18). We could view x� to be an �-approximation to any
path in [T ] extending �, where � = 2–n+1 for the largest n such that a ball
from Kn is mentioned in D̂� . So we define f(�) = x� with precision 2–n+1.

For an infinite path � P [T ], D̂�æn Ď D̂�æm wheneverm ď n are prefixes of
�, and since the diameter of D̂�æn is at most 2–n+1 and it is non-empty, we
conclude that

č

n

D̂�æn = tαu

for some α PM . So we set f(�) = α PM . It is routine to show that the
procedure above defines a computable and surjective f : [T ] ÑM . It is not
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difficult to see that [T ] is a computable image of 2�; as we promised in the
preliminaries, we include a proof of this well-known fact.

Claim 1 (Folklore). (1) If T is a computable, computably branching tree
with no dead ends then there is a computable surjective map from 2�

onto [T ].
(2) For every computable, non-empty Π0

1 class C there is a surjective
computable map from 2� onto C.

%

Proof. We first reduce (2) to (1). Realise C as the set of (infinite) paths
through a computably branching tree T without terminal nodes, as follows.
Computably rearrange T into a new tree Γ such that [T ] is computably
homeomorphic to [Γ] and Γ is (at most) binary. To do so, split a node only
if both basic clopen sets associated with the two successors of the node in
T contain elements of C. (Note that, given a basic clopen set, we can decide
whether it intersects C.) Neither Γ nor T has terminal nodes, and there is a
computable homeomorphism between C and [Γ].

For (1), we can also reduce the case of an arbitrary computably branching
tree to the case when the tree is at most binary. If a node splits into n
successors, where n ą 2, replace it with a gadget in which every node has at
most two successors. This gives a computable and (at most) binary tree Γ
with no dead ends such that [Γ] is computably homeomorphic to [T ].

Thus, it remains to prove (1) for such a Γ. Define the map g from 2� onto
[Γ] by recursion. We define the name of g by mapping clopen sets (on)to
clopen sets. We also identify finite strings with the respective clopen sets in
both trees.

At a stage s, assume g has already been declared on paths/basic clopen sets
of length s-1. Suppose g(�) = � P Γ such that |�| = |�| = n – 1. If �0 and
�1 both exist in Γ, then set g(�1) = �1 and g(�0) = �0. Otherwise, without
loss of generality, only �0 exists. In this case, set g(�i) = �1 for i = 0, 1. Do
that for every string of length n, and then go to the next stage. The map is
clearly computable and surjective, and thus induces a computable surjective
map of 2� onto C. %

In combination with f defined above, this gives a computable surjection
of 2� onto M.

The second proof. Recall that we assumed that M is computably
compact. Without loss of generality, we can assume it is a computable
closed subset of H (see Remark 3.37). Recall that there is a computable
map from 2� onto [0, 1]; for instance, map every infinite sequence � in 2�

into the binary expansion
ř

iP� 2–i–1�(i). Also, the famous Hilbert’s curve
computably maps [0, 1] onto H = [0, 1]� (see, e.g., [130] for a primitive
recursive version due to Schoenberg). (See [5] for a detailed explanation
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of computability of this particular construction. We also cite [32] for
more about computability of space-filling curves.) This gives a computable
surjectivef : 2� Ñ H ĚM , and we know from Lemma 3.24 thatf–1(M ) is
a Π0

1-class which, unfortunately, does not have to be computable in general.
Recall that, in the beginning of the subsection, we assumed that M (thus, P)
is non-empty. If it were a computable Π0

1 class, then we would be able to
computably surjectively map 2� onto it by Claim 1. But first, we must be in
the position to apply the claim. The lemma below helps.

Lemma 3.41. Suppose f : 2� Ñ K is computable, surjective, and K is
computably compact. If P Ď K is (non-empty) computable closed, then there
is a computable f̃ : 2� Ñ K and a computable Π0

1-class C Ď 2� such that
f̃(C ) = P. %

Furthermore, f̃ can be chosen so that f̃ agrees with f on f–1(P) and
f̃(2�zC ) Ď KzP; we will also include the verification of these properties in
our proof below. Also, we will see that the simultaneous construction of f̃
and C is uniform. The proof below is somewhat informal: after all, we have
already proven the theorem. We hope that the elementary formal details that
are missing should be easy to reconstruct.

Proof. This is done as follows. We use a c.e. formal open name of f
and computable compactness of K and computability of P throughout. In
particular, we will use that f is uniformly computably continuous. This is
done by listing 2–n-covers Kn of K and using the formal name of f to find a
cover S of 2� such that, for every � P S there is aD P Kn so that (�,D) is in
the name.

Since P is computable and thus is a computably compact subspace (see
Proposition 3.29), we can assume that we know which open sets in Kn
intersect P and which do not. To see why, create two lists: one is the list of
all finite covers of P, and the second list includes finite collections of basic
open balls in K that are formally disjoint from some cover from the first list.
For every �, there is a finite �-cover K 1 YK2 of K, where K 1 is from the first
list and K2 is from the second list.17 The finite set of balls K2 can be empty,
but K 1 is never empty. If � = 2–n then we can set Kn = K 1 YK2.

The construction of C and f̃ proceeds as follows.

17Every point in KzP is contained in a basic ball formally disjoint from some finite cover
of P by basic open balls. If we take the collection of all such balls around all such x P KzP
of radius at most �, then, together with any (finite) cover of P, they must cover the whole
space K. Thus, there is a finite subcover in which we can keep all the finitely many �-balls that
cover P and intersect P. By our assumption, K is computably compact/computable closed,
and thus all these conditions are c.e.; we just wait until such a finite �-cover of K is found.
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Suppose at a stage we see that, for some basic open set � in 2�, f(�) Ď B
for some �-ball B such thatB X P = H. Then declare � outside of the closed
set C that we build, and let (the name of) f̃ copy (the name of) f.

Now suppose, using the same notation and premises, B X P ‰ H. It still
possible that f(�)X P = H (because all we know is that f(�) Ď B , so it
can miss P), but we do not know that yet. In this case declare that � intersects
C and proceed to the next stage. (As we made sure above, for any such B
and � that we use at the stage we can decide whether B intersects P or not.)

At the next stage we will find a refined cover of K and 2� and, in particular,
of �. If at least one such � 1 refining (extending) � has the property that
f(� 1) Ă B 1, where B 1 X P ‰ H (here B 1 is taken from the more refined
cover of K and B 1) then we let (the name of) f̃ copy (the name of) f.

Of course, it is entirely possible that we discover that for all of the finitely
many extensions � 1 of �, the respective ball B 1 (such that f(� 1) Ď B 1) does
not intersect P. However, we have already declared that � X C ‰ H.

In this case, go to the previous stage and find a computable point x P
B X P (that can be uniformly extracted from the proof of Lemma 3.27) and
declare

f̃(�) = x

for every � P B . In this case we also say that the clopen ball B is declared
artificially in C. (This is also the only case when f̃ does not agree with f ; we
set f and f̃ equal in all other cases.)

By construction, f̃ is well-defined on all of 2� and is computable. We need
to argue that it additionally has the properties claimed in the statement of
the lemma.

If � P B then clearly f̃(�) P P. If � P f–1(P) then at no stage it can be
declared in a ball which is out or artificially in C, so it must be that f̃ and f
agree on �.

If � is such that it is never in any ball that is artificially in or out, it means
that for every 2–n there must be a point αn P P that is 2–n-close to f̃(�), and
we see that �̃ = limn αn P P because P is compact and thus closed.

Finally, f(2�zC ) Ď KzP follows from the fact that if a basic clopen � is
declared out of C, we let f̃ follow f in its definition within �. %

It follows that M is a computable surjective image of a computable Π0
1-

class. It remains to map 2� to such class surjectively using Claim 1. This
finishes the second proof.

Note that, in the second proof, the combinatorics is handled using
Lemma 3.41 rather than using X-decidable covers; we did not need them
here.
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§4. Applications.

4.1. A few elementary applications of Π0
1-classes. In this subsection we

briefly discuss several applications of effectively closed sets and Π0
1 classes in

classical computable analysis. Most of these applications are well-known and
are not difficult. However, they serve as a good illustration of the convenience
of the techniques we have described in the previous sections. Indeed, in each
case we can come up with a brute-force direct proof which would, however,
be much less pleasant and often would give a less general result too.

Consider a computable function f : [0, 1] Ñ R. Then the set of zeroes
Zf = tx P [0, 1] : f(x) = 0u is effectively closed in [0, 1]. The following
result shows that any Π0

1 class can be “realized” as the set of zeros of a
computable function. This allows for simple applications of Π0

1 classes in
real analysis.

Theorem 4.1 (Nerode and Hwang [110]). Given a Π0
1 class C (C is thought

of a subset of the Cantor set) there is a computable function f : [0, 1] Ñ R

whose zeroes Zf = tx : f(x) = 0u exactly the members of C.

Sketch. Define a computable function by stages on the Cantor set (linear
elsewhere) so that, while an interval is not yet declared out of C, f keeps
getting closer to 0, say, from below. If the interval is declared out, freeze the
function at this interval and, thus, keep it away from zero. It shall approach
zero but only at points that correspond to paths in C.

Ignoring the Π0
1 coding, this method of diagonalization sketched above

goes back to Specker [138] and is a mainstay of Aberth [1], and arguably
has roots in the work of Bishop [11]. We also cite [20, Corollary 3.14] for a
more general version of Theorem 4.1.

Here are well-known (cf. [20, Theorem 11.8.3 and Corollary 11.8.4]) easy
applications:

Corollary 4.2. For a function f : [0, 1] Ñ R, let Zf = tx : f(x) = 0u
denote the set of its zeros.

(1) There is a computable function f : [0, 1] Ñ R with uncountably many
zeroes and no computable zeroes.

(2) If f : [0, 1] Ñ R is computable and Zf ‰ H, then Zf contains a low
point.

(3) If Zf ‰ H is finite then all of its members are computable.
(4) If Zf is infinite and countable, then it contains infinitely many

computable points.
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Proof. (1) Fix an uncountable Π0
1-class P without computable points

and apply Theorem 4.1; for example, some Π0
1 class consisting of only

Martin-Löf random reals (e.g., [36]).
(2) By Theorem 3.40, there is a computable surjection g : 2� Ñ [0, 1], and

by Lemma 3.41 the pre-image of the effectively closed X = f–1Zf
is also effectively closed in 2�, that is, it is a Π0

1 class. Using this
argument, we easily see that if Zf is nonempty then it has a low
point, by the Low Basis Theorem.

(3) This is because isolated members of effectively closed sets are
computable.

(4) If Zf is infinite and countable, and thus it has no perfect kernel.
In particular, there must be infinitely many isolated points; apply
(3). %

The elementary corollary below entails that the intersection of two
computable closed sets is not computable in general. This unfortunate
property of computable closed sets is well-known. The issue is that, although
we can list balls that intersect both sets, some balls like that can have no points
from the intersection of the closed sets.

To see why the corollary implies this counter-intuitive property of closed
sets, note that every non-empty computable closed set has at least one
computable point (since it has to be effectively overt).

Corollary 4.3. There exist two computable compact subsets of the unit
square [0, 1]2 that intersect but have no computable points in the intersection.

Proof. In view of Theorem 3.35, it is sufficient to take C1 = graph(f)
for f in (2) of the theorem above, and C2 = [0, 1] (the “x-axis”) which is
clearly computable too. %

Another application of Π0
1-classes, similar technically to (1) of Theo-

rem 4.2, is concerned with Markov computability. As mentioned in the
introduction, the original definition of computable function used by Turing
in [143] was that f is computable if there is a Turing operator taking any
computable index of a computable real � to some index of the computable
real f(�). Note that we could define this notion of computability for
a function that is not even defined on non-computable reals, let alone
continuity. It is of course much more interesting to have a continuous
counter-example.

Theorem 4.4 (Folklore; see Remark 4.5). There is a continuous, Markov
computable f : [0, 1] Ñ R such that supxP[0,1] f(x) is not computable and,
thus, f is not computable (by, e.g., (1) of Proposition 3.5).
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The function constructed below, when viewed as a function on computable
reals only, has a unique continuous extension on the whole interval [0, 1] that
cannot be (uniformly, type II, Kleene) computable. Thus, another way to
state the theorem is that there is a Markov computable function (which,
by definition, can be merely defined only for computable reals) that has a
continuous extension on [0, 1] but has no computable continuous extension
on [0, 1].

Sketch. This is somewhat similar to the proof of Theorem 4.2(1). Fix
a Π0

1 class without computable members and define f on the Cantor set
(and linearly elsewhere), but this time make its value approach a left-c.e.
non-computable real α. Note that, if a point x is computable, then it has
to be either on a segment of the Cantor set that was declared out at some
stage, or it is on a linear segment connecting two such points that have been
declared out. Observe also that each linear segment connects computable
points. In either case, we can wait for the point to be listed in the effectively
open complement of the homeomorphic image of the Π0

1 class, go to the
stage of the construction where that happened, and compute the index of
the image.

Remark 4.5. The first example of a Markov computable function not
extendible to a continuous computable one was provided by Aberth (see
[1, Theorem 7.3]). We are not sure who was the first to construct such an
example with domain restricted to [0, 1]; this seems to be folklore. The history
according to Aberth is in the back of his book [1, pp. 178–179]. Zaslavskii
[149] was certainly among the first to study various basic properties of
Markov computable functions. Similar ideas and constructions are routinely
used in reverse mathematics. For example, see [135, Theorem IV.2.3(2)],
which can be viewed as a slight modification of the construction found in
Specker [138]. Specker used a Π0

1 class with no computable members to
construct a Markov computable function that approaches a computable
real from below but does not attain the supremum at any computable point.
Simpson uses the same idea to (essentially) construct an example of a
Markov computable function on [0, 1] that is not even bounded, but the
key idea remains the same. We simply slightly modify this construction and
make the supremum approach a left-c.e. non-computable real instead of
driving it to8 or to a computable value; the rest remains the same.

Another more recent application of Π0
1 classes in computable analysis is

by Barrett, Downey, and Greenberg [6], and concerns Cousin’s lemma. This
is a core lemma in the theory of the Denjoy integral. Recall that a gauge is
a function 	 : [0, 1] Ñ R+. A tagged partition is a partition 0 = a1 ă a2 ă

¨¨¨ an = 1 together with a sequence zi P (ai , ai+1). For a gauge 	 we say that
a tagged partition is 	-fine iff for all i, [ai , ai+1] Ă (zi – 	(zi), zi + 	(zi))).
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Cousin’s lemma states that for any gauge 	, there is a 	-fine partition. Using
similar codings to those of Theorem 4.2, we have the following theorem.

Theorem 4.6 (Barrett, Downey, and Greenberg [6]). There is a computable
gauge 	 with no computable 	-fine partition.

Actually this was stated in [6] as “RCA0 proves that ‘Cousin’s lemma
for continuous functions’ is equivalent to WKL0.” Many results in Reverse
Mathematics concerning WKL0 correlate to coding Π0

1 classes. (See [135].)
In passing we remark that in [6], the authors looked also at Borel gauges 	.
We say that f is effectively Baire 0 if it is computable, and effectively Baire
n + 1, if it is the pointwise limit of a computable collection of effectively
Baire n functions. In [6] it is shown that if α is a computable ordinal, then
there is an effective Baire 2 function f such that any 	-fine partition computes
H(α).

4.2. The space of isometries. An isometry is a metric-preserving map.
It is clearly continuous. Note that an isometry is always injective, and if
f is surjective then we say that it is an isometric isomorphism. Using a
brute-force search, we can easily show that the inverse of a computable
isometric isomorphism is always a computable map even if the spaces are not
computably compact. In particular, we do not need to refer to Theorem 3.33
to compute the inverse of an isometric isomorphism.

Remark 4.7. However, we can argue that its proof can be used to find a
more satisfying way to compute it. For instance, we might be able to argue
that a primitive recursive procedure might be possible under the right choice
of definitions. The subject of primitive recursive or “punctual” analysis (see
[7, 39]) is largely unexplored. Moreover, connections between polynomial
time analysis ([81, 82]) and compactness also remain to be analysed.

The following result was stated in [99] without proof. As correctly noted
in [44] the space of isometries between any computable Polish spaces can
be viewed as a Π0

1-class in Baire space, but since we are only interested in
compact spaces and classes we shall not explain this. The details can be
found in [43].

Theorem 4.8 (Melnikov and Nies). Suppose X is computably compact
and Y is computably metrized and is isometrically isomorphic to X . Under
an appropriate coding, the collection of all isometric isomorphisms Iso(X,Y )
can be viewed as a Π0

1-class18.

18More formally, Iso(X,Y ) admits a natural representation as a Π0
1 class [B] in the sense

that there is a Turing functional turning infinite paths through B into isometries from X to
Y, and so that every member Iso(X,Y ) has a code in [B].
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Proof. Unfortunately, the space C (X,Y ) of all continuous maps from
X to Y does not have to be compact. Nonetheless, there are still ways to
appeal to the theory of effectively closed and computably compact sets. But
it seems easier to just do the coding explicitly.

Recall that an �-isometry is a function f such that |d (x, y) –
d (f(x), f(y))| ď �, where � ą 0 and x, y range over the space. By
Theorem 3.21, Y has to be computably compact as well. Let h be a
computable compactness modulus of Y as defined in Definition 2.7. The
idea is that we have at most h(n)-many essential refinements of a given
partial 2–n+1-isometry from X to Y since any other choice will be within a
2–n-error. We will also use the fact that every isometric embedding X in Y
has to be onto, by compactness, and because X is isometric to Y . Suppose
the special points of Y are given by the sequence (ri)iPN, and let (pi)iPN be
the dense computable sequence in X . We define a computably bounded tree
B Ď �ă�.

Definition 4.9 (The definition of the tree). The n-th level of B is given by
Gödel numbers of (some) tuples from

tr0, ... , rh(n)u
n

that satisfy the Π0
1 condition

|dY (ri , rk) – dX (pi , pk)| ď 2–n+1

for each i ă k ă n. (Recall h is a computable compactness modulus for
Y .) %

We view these tuples r = xr0, ... , rn–1y as possible isometric images of
xp0, ... , pn–1y, up to an error of 2–n+1. Thus, we require the Π0

1 condition
that |dY (ri , rk) – dX (pi , pk)| ď 2–n+1 for each i ă k ă n. For a tuple u at
level n and a tuple v at level n + 1, we posit as a further Π0

1 condition that v
is a child of u if d (ui , vi) ď 2–n for each i ă n. We let B consist of all strings
� such that for each n ă |�|, �(n) is on level n, and if n ą 0 then �(n) is
a child of �(n – 1). Then B is Π0

1; furthermore, clearly there is a function
ĥ ďT h that bounds any f P [B].

We claim that [B] codes Iso(X,Y ), in the sense that there is a map from
[B] onto Iso(X,Y ). Furthermore, we claim that the map is computable in
the sense that there is a computable functional that turns any infinite path
through B into an isometry from X to Y.

This is verified below.
Suppose there is an isometric embedding Θ : X Ñ Y . Then let �(n)

be a tuple of special points on level n that is at distance less than 2–n

from xΘ(p0), ... ,Θ(pn–1)y. Then � P [B], and using � we can effectively
reconstruct Θ.
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Now suppose f P [B]. We claim that f uniformly computes an isometric
embedding Θf : X Ñ Y . For each i, we have a Cauchy sequence sin = f(n)i
(where n ą i). Thus f uniformly computes the function Θf given by Θf(i) =
limnąi f(n)i . For each i ă k ă n we have

|dY (sin, s
k
n ) – dX (pi , pk)| ď 2–n+1.

Thus, Θf is an isometric embedding. Note that this is all uniformly effective.

We can now appeal to facts about Π0
1 classes.

Corollary 4.10. For a computably compact space X, if Y –iso X then
there is a low isometric isomorphism witnessing this.

Using different methods, Iljazović [65] proved a special case of the next
corollary for the case when Autiso(M ) is finite.

Corollary 4.11. Suppose a computably compact X has only at most
countably many self-isometries. If Y –iso X then there is a computable
isometric isomorphism witnessing this.

Proof. This follows from the fact that Iso(X,Y ) must contain an isolated
point. To see why, fix an arbitrary� : X Ñ Y . Then every isometryφ fromX
toY gives an automorphism�–1φ� ofX , and since there are only countably
many isometric isomorphisms, there could be only countably many members
in Iso(X,Y ). Thus, it cannot be a perfect space, so it must contain an isolated
point Θ.

Take any neighbourhood U in C (X,Y ) under the metric

d (f, g) = sup
xPX
dY (f(x), g(x))

so that it contains a unique member Θ P Iso(X,Y ). If F : [B] Ñ Iso(X,Y )
is the computable functional from Definition 4.9, then F –1(Θ) does not have
to be a singleton in [B]. On the other hand, C (X,Y ) does not have to be
compact. Thus, we cannot appeal to Fact 3.25 directly. However, this is not
really an issue, because all paths through F –1(Θ) eventually give very close
approximations to Θ and, thus, we can use any extension that looks good
so far (to be clarified). As was pointed out by one of the referees, Fact 3.25
and the argument that we present below admit a generalisation that would
suffice, but we give a direct proof.

Fix an n so that 2–n is smaller than the diameter of U. Fix a sufficiently
long � P B that:

(1) � is extendible to an infinite path in [B], and
(2) the F-images of all its extensions in [B] lie in U.

Note that for any such extension � P [B], we must have F (�) = Θ.
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Givenm ą n, wait for a late enough stage s so that all extensions of � that
have not yet been declared out of B have their potential F-images at distance
at most 2–m from each other. Since Θ is isolated in U Ď Iso(X,Y ) and [B]
is a Π0

1 class, it follows that such a stage must exist. Choose any such �m
extending � that has not yet been declared out of B. It determines a finite
partial map that can be used to calculate Θ to precision 2–m+1. It follows
that Θ is computable. %

It is natural to ask whether the isomorphism in the corollary above can be
reconstructed uniformly from a given pair of compact presentations of the
space. The answer to this question is (perhaps, not surprisingly) negative;
an intricate example can be found in [53]. The cited paper also contains a
subtle definability-theoretic analysis of computably unique metric spaces,
i.e., up to computable isometry. It is also known that every compact Polish
space admits a Scott sentence of very low complexity (see [99]).

In their very recent paper [69], Iljazović and Validžić prove two
further interesting results generalising Corollary 4.11 and the techniques
that Iljazović used in [65]. Both results from [69] can be derived from
Theorem 4.8. For example, using clever combinatorial techniques, they
show:

Corollary 4.12. In a computably compact metric space, the orbit of a
computable point under the action of the self-isometry group is Π0

1.

We give a proof that uses Theorem 4.8.

Proof. Suppose X is computably compact and consider the presen-
tation P = [B] of C (X,X ) as a computably bounded Π0

1 class given in
Definition 4.9. Without loss of generality, we can assume that the computable
point that we care about is actually special; if it is not, add it to the
computable dense sequence. We can therefore assume x = p0.

We examine the class P of all potential partial 2–n-isometries and see
whether there is an f P P such that f(p0) = y. By compactness, this is
the same as to say that, for every n, there is a � P P of length n that codes
some 2–n+1-isometry gn mappingp0 to some ri P Y with d (y, ri) ď 2–n. Note
that the existential quantification over such � is computably bounded, since
there are only finitely many such � at level n of P, and we can computably
bound this number. Also, the condition d (y, ri) ď 2–n is Π0

1 uniformly in
n and y. Thus, the overall property of being in the orbit of x = p0 is Π0

1,
uniformly in y and n. In other words, the orbit is effectively closed.19 %

19As was pointed out by one of the referees, one of the many convenient features
of computable compactness is that in certain scenarios quantification over a computably
compact set can be treated as computably bounded search. For instance, c.e. openness (or
being Π0

1) is typically preserved under such quantification.
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We see that a careful use of Π0
1 classes and effective compactness can help

to simplify proofs. Nonetheless, we emphasise again that in this subsection
we view spaces up to isometric isomorphism. When we study spaces up
to homeomorphism, the situation usually becomes more complex. We will
discuss spaces up to homeomorphism a bit later; here we only cite [111]
where it is shown that the closure of the set of orientation-preserving
self-homeomorphism of the unit square forms a computable closed set in
C ([0, 1]2, [0, 1]2).

We now discuss another corollary that uses index sets to estimate the
complexity of the classification problem for compact spaces, up to isometry.
Fix an effective listing (Mi) of all (partial) computable Polish spaces. Each
such Mi is given by a dense sequence that can be identified with � and a
(partial) computable metric on it. (The spaceMi represents is the completion
Mi ofMi .) We could list all partial computably compact spaces in a similar
way, but this approach is not standard and has never been used in the
literature.

Corollary 4.13 (Melnikov and Nies [99]). The following index sets are
arithmetical:

(1) The characterisation problem ti :Mi is compactu.
(2) The isometric isomorphism problem txi, jy :Mi –isom Mj &Mi,Mj

are compactu.

Sketch. For (1), say that the metric is total, is indeed a metric, and for
every n there is a 2–n-cover of the space by closed basic balls.

To see why (2) holds, note that (by Corollary 4.10) it is sufficient to state
that there exists a 01-computable isometry. All conditions that express that
it “works” are arithmetical.

In contrast with compact spaces, the characterisation problem for locally
compact Polish spaces is Π1

1-complete as conjectured in [99] and then
formally clarified in [113] (the sketch contained in [99] is incorrect). We
will return to index sets later when we discuss computable Stone duality.

We now discuss potential converses to Theorem 4.8. Miller (personal
communication with Nies) suggested the following example.

Proposition 4.14. Let A,B Ď N be disjoint c.e. sets. There are isometric
computably compact computable metric spaces L,R such that any represen-
tation of an isometry computes a set S such that A Ď S and B X S = H.

Let A and B be disjoint c.e. sets. The collection of separating sets P =
tX : X Ě A and X X B = Hu is a non-empty Π0

1 class. A pair of c.e. sets
A and B is effectively inseparable if there is no computable set C, such
that C Ě A and C Ě B . For example, by the proof of the incompleteness
theorem, for Peano Arithmetic (PA), the c.e. sets of (Gödel codes for)
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provable formulaeA = t#� : PA $ �u and B = t#� : PA $ 	�u form an
effectively inseparable pair. (For a more straightforward example, consider
A = te : ϕe(0) = 0u and B = te : ϕe(0) = 1u.) If we chooseA,B effectively
inseparable, then this shows that the Π0

1 class of isometries from X to Y is
Medvedev complete within the Π0

1 classes, meaning that whenever there is a
member of some other class of degree d then this Medvedev-complete class
also has a member of that degree. Thus, the isometries are as complicated
as allowed by Theorem 4.8. In particular, there exist isometric computably
compact spaces that are not computably isometric.

Proof. We describe the metric spaces by giving a connected graph of
special points. If there is an edge the distance is defined directly. All the
other distances between pairs of special points p, q will be given indirectly
as the path distance. We ensure in the construction that this distance function
is consistent and computable. There will be only one limit point in the space.
Thus the space has Cantor–Bendixson rank 2.

Let 	n = 4–n. For each n, there are special points an, un, vn, an+1 in L that
have pairwise distance 	n. We call this basic configuration the n-th diamond.
The space R looks similar with special points a 1

n, u
1
n, v

1
n, a

1
n+1 sharing the

same properties.
At any stage of the construction, the procedure mark(x, ), where x is a

special point already introduced, adds a new special point y withd (x, y) = .
Construction of L,R. We may assume at most one number enters AY B

at any stage.
If n enters A at stage s, call mark(un, 3–s) and mark(u1

n, 3
–s).

If n enters B at stage s, call mark(un, 3–s) and mark(v1
n, 3

–s).
It is clear that L,R are isometric. Each space is computably compact:

let h(n) be so large that the special points up to h(n) include the first
n + 1 diamonds, and the points used for marking up to stage n. Then in
either space the special points up to h(n) form a 2–n-net. Now suppose that
Θ: LÑ R is an isometry. The special points an and a 1

n (n ą 0) are singled
out by having three points at distance 	n, and three points at distance 	n+1.
Thus, Θ(an) = a 1

n. Therefore Θ(un) P tu1
n, v

1
nu. Let S = tn : Θ(un) = u1

nu.
Then A Ď S and B X S = H as required.

Since d (u1
n, v

1
n) = 	n, using a term sufficiently far out in the Cauchy name

for Θ(un), we can decide whether n P S using the representation as an
oracle. %

We conjecture the following.

Conjecture 4.15. Every Π0
1-class can be realised (e.g., up to m-degree) as

Iso(M,N ) for two isometric computably compact spaces.

Conjecture 4.15 holds for computable discrete algebraic structures in the
place of effective compact spaces [44] and we conjecture that it should be
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possible to turn such structures into compact spaces. Also, as was noted by
one of the referees, the simple construction above should have implications at
the level of the Weak König’s lemma, under the appropriate coding and in the
spirit of the results found in, e.g., [49, Section 6]. Specifically, among other
things [49] studies the computability-theoretic and reverse mathematical
strengths of the Hahn–Banach theorem in Banach spaces. The cited paper
also utilises the technique of effective compact sets, but we will not discuss
these results here. Instead, we shall discuss the recent results about bases in
Banach spaces.

4.3. Basic sequences in Banach spaces. Some of the most used Polish
Spaces are Banach spaces, and there is a reasonably well-developed theory
of effective Banach spaces beginning with Pour-El and Richards [123]. We
note that Banach spaces are usually viewed under isometric isomorphism,
and it is well-known that every isometric isomorphism has to be affine (this
is the Mazur–Ulam theorem).

Definition 4.16. A computable Banach space is a computably metrized
Banach space in which the Banach space operations are computable.

This definition means that any computable Banach space needs to be
separable, since it needs a computable dense set. We regard this as presented
with a computable norm || ¨ ||, and for simplicity will consider the space as
a complete normed vector space B over the reals, although the results also
work if the field is the complex numbers.

Some consequences of computable compactness, such as an effective
version of the open mapping theorem, can be found in [15]. We will
give a couple of recent applications of computable compactness to the
theory of computable Banach spaces. A simple application of computable
compactness is Pour-El–Richards’ [124] result that linear independence in a
Banach space is Σ0

1. To see this, we note that tx1, ... , xnu is independent iff

min
�iPRzt0u

||

n
ÿ

i=1

�ixi || ą 0.

But by normalizing we can consider the ball

S =
!

(�1, ... , �n) P Rnzt0u |
n

ÿ

i=1

|�i | = 1
)

,

for the quantification, and this is computably compact, meaning that the
minimum min(�1,...,�n)PS ||

řn
i=1 �ixi || is Σ0

1.
Almost all elementary linear algebra works via the fact that vector spaces

have bases. However, the analog for Banach spaces is not so easy. The most
accepted candidate of a basis for a Banach space is called a Schauder Basis.
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Definition 4.17. A sequence X = txi | i P �u is called a Schauder Basis
for B iff for each z P B there is a unique sequence t�i | i P �u such that

8
ÿ

i=1

�ixi = z.

Brattka and Dillhage [18] showed that the theory of computable Banach
spaces with well-behaved computable Schauder bases20 is relatively well-
behaved. In particular, many theorems using duality lift quite smoothly to
have computable versions.

However, one of the unfortunate aspects of Banach space theory is that
not only don’t (computable) Banach spaces necessarily have computable
Schauder bases, but in fact some don’t have Schauder bases at all. This is
a remarkable result of Enflo [40]: There is a separable Banach space with
no Schauder basis. (This result solved a question of Banach that had been
open for 45 years.) Bosserhoff [13] proved that Enflo’s construction could
be made computable to give a computable Banach space.

The fundamental fact about Schauder bases is the following characteriza-
tion by Banach.

Lemma 4.18 (Banach). Let X = x1, x2, ... be a sequence of elements of B.
Then this sequence forms a Schauder basis iff :

(1) xi ‰ 0 for all i.
(2) The finite span of txi | i P �u is dense in B.
(3) There is aK P R such that for allm ă n, and all sequences of scalars �i ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i=1

�ixi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď K

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

�ixi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

K in (3) above is called the Basis Constant bc(X ) of the Schauder basis.
The hard direction of this lemma is to suppose that X is a basis and consider
the projections Sk(

ř8

i=1 �ixi) =
řk
i=1 �ixi . We need to prove that

ř

j ||Sj ||

is finite, and this is achieved by considering the equivalent norm || ¨ ||1

defined by ||
ř8

i=1 �ixi ||
1 = supm ||

řm
i=1 �ixi ||. This is bounded by the Open

Mapping Theorem.
Note that we can also define the basis constant of a space as the infimum

of the basis constants of Schauder bases for the space. We remark that there
are even finite dimensional spaces without a basis with K = 1. But in the
finite dimensional case, we can at least get a computable basis constant for
the whole space. That is, a simple application of computable compactness
yields the following:

20Specifically, those with “monotone” or “shrinking” bases.
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Lemma 4.19. Let X be a computable Banach space.

(1) (Bosserhoff [13]) Assume x1, ... , xn P X is a (computable) independent
sequence. Then bc(x1, ... , xn) is a computable real.

(2) (Downey, Long, and Greenberg [90]) For a finite dimensional X, bc(X )
is a computable real.

Notice that Lemma 4.19 means that each finite dimensional projection
in the proof of the existence of K must have a computable basis constant.
Therefore the sup K is a computable sup of computable reals. That is K is
a left c.e. real for a computable Schauder basis X. In fact, in Long’s M.Sc.
thesis [90] it is shown that any left c.e. real can be the basis constant of a
computable Banach space. It is presently unknown what can be said about
the basis constants of computable spaces.

The one theorem we will look at is the following. It provides a counterpoint
to the theorem of Metakides and Nerode [100] where they constructed a
computable vector space over Q where every c.e. independent set is finite.

Theorem 4.20 (Downey, Long, and Greenberg [90]). If B is an infinite-
dimensional computable Banach space, then B has an infinite dimensional
subspace with a computable Schauder basis Z = z1, z2, ....

Sketch. Let E = tei | i P �u be an effective dense set for B. We begin
with a lemma of Mazur: If B is an infinite dimensional Banach space and Y
a finite dimensional subspace, � ą 0 then there is x P B with ||x|| = 1 and

||y|| ď (1 + �)||y + �x||,

for all y P B and � P R. Since E is dense, it is not hard to show that we may
choose x = ei for some i, by playing with the triangle inequality, choosing
one close to x. Now we can follow the classical argument of Banach. Choose
a sequence of reals �i with

ś8

i=1(1 + �i) ă 8. Then construct the basic
sequence in stages. Having constructed z1, ... , zn, find an ei in the effectively
dense sequence E with bc(x1, ... , xn, ei) ď

śn+1
i=1 (1 + �i), and we know by

computable compactness, that this procedure is computable.

We will return to Banach spaces a bit later, when we discuss the effective
content of Banach–Stone duality that establishes a 1–1 correspondence
between computable presentability of Banach spaces in a broad class with
computably compact presentability of totally disconnected compact spaces.

4.4. Computable Stone duality with applications. Recall that two basic
open balls B(c1, r1) and B(c2, r2) are formally disjoint if r1 + r2 ă d (c1, c2).
Two sets of basic open balls are formally disjoint if any pair of basic open
balls, one coming from the first set and the other from the second, are
formally disjoint. A clopen split of M is a pair of (cl)open sets X,Y such
that X \ Y =M .
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4.4.1. Computable Stone duality. Various versions of the elementary
lemma below can be found in [21, 59, 62, 95], but is some of the cited
papers the proof contains minor but misleading errors, thus we give a proof.

Lemma 4.21. Suppose an oracle X can effectively enumerate all basic finite
covers of M. Then X can also effectively enumerate all clopen splits of M.

Proof. SupposeM = X \ Y is a split, and let 	 be the infimum-distance
between these compact open sets

	 = inf
(x,y)PXˆY

d (x, y).

(Since X ˆ Y is compact and d is continuous, it attains its infimum at some
pair (x0, y0). In particular, 	 ą 0.)

Suppose 0 ă � ă 	{4. Then every finite �-cover will consist of two formally
disjoint subsets of basic open balls. Indeed, every ball covering a point in
X cannot contain a point in Y, and every ball covering a point in Y cannot
contain a point in X. If a basic open B has its centre in X and D has its
centre in Y, then the distance between their centres is at least 	, while the
sum of their radii is at most 	{2 ă 	, making them formally disjoint.

On the other hand, if a finite open cover of M consists of two formally
disjoint subcovers, then these subcovers induce a split of M into clopen
components. Since the property of being formally disjoint is a c.e. property,
X is able to list all such covers. %

Another way to state the lemma above is that any modulus of compactness
of M can computably enumerate the clopen splits of M. Also note that we
could have used X-decidable covers in the proof of the lemma above, and
this way we can additionally assume that, for the clopen sets that we list,
we can additionally decide whether they intersect or not. This will be very
convenient in the proof of the next result.

Theorem 4.22 [62]. Let M be a computably compact Stone space (a totally
disconnected compact Polish space). Then the Boolean algebra of its clopen
subsets admits a computable presentation.

Proof. Fix a X-decidable system of covers K =
Ť

nP� Kn. Using the
previous Lemma 4.21, effectively list all clopen splits of M into (open,
formally disjoint names of) pairs of clopen sets. Let (Xi, Yi) be the
enumeration of these clopen splits. Note that we can also wait and see
whether both Xi and Yi are non-empty; just wait for a special point to
appear in one of the two. In this case we say that the split is proper. This
is a c.e. event because Xi and Yi are both given by their open as well as
their closed covers, whichever is more convenient. Thus, without loss of
generality we can assume that we list only the proper splits. WriteX –1

i for the
corresponding Yi in a proper split; and let X 0

i be another notation for Xi .
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The Boolean algebra is generated by the empty set and arbitrary finite
non-empty conjunctions of the form

Ź

i X
�i
i , where �i P t0, 1u. Since the

system of covers K is X-decidable, we can indeed decide whether such a
finite intersection is empty. In other words, if F is the free Boolean algebra
generated by the Xi , then the Boolean algebra of clopen sets of M is
isomorphic to F

I , where I is a computable ideal. This makes the Boolean
algebra computable. %

Remark 4.23. For a computably compact Stone space, we can uniformly
produce the dual Boolean algebra of its clopen sets. (As usual, we assume
our spaces are non-empty. Alternatively, we can stretch our terminology a
bit and view the one-element lattice as a Boolean algebra.) It is also not
difficult to see that the construction is also locally uniform in the following
sense. Using clopen components we can produce a computably branching,
computable tree T without dead ends such that the space is homeomorphic
to [T ]. If we take the usual ultrametric on the infinite paths through T, then
this metric will be computably compatible with the original metric in the
sense that Id :M Ñ [T ] is a computable map.

This result allows us to establish the following representation theorem.

Theorem 4.24 [59]. Let M be a computably metrized Stone space. Then the
Boolean algebra of its clopen subsets admits a computable presentation.

Proof. Let M be the computable space. Recall that 01 can compute a
modulus of compactness of the space. Relativize the previous theorem to
get 01-computable presentation of the Boolean algebra of clopen sets. Given
an element of the Boolean algebra, we can use its representation via a finite
union of basic computable balls and ask whether there exist two unequal
special points x, y that are contained in this clopen set; this is a Σ0

1 property.
This element is an atom if, and only if, no such pair of points exists. Thus,
the atom relation is also 01-computable. It is well-known that every 01-
computable Boolean algebra in which the atom relation is also 01-computable
has a computable presentation (see [80] for the explicit statement and [37]
for the first implicit use of this property). It follows that the Boolean algebra
of clopen sets has a computable copy. %

Given a computable Boolean algebra B, it is not difficult to represent
its dual Stone space pB as the collection of infinite paths [T ] through a
computably branching, computable tree T without dead ends (see [50] for
the details). Thus, we have:

Theorem 4.25 [59, 62]. For a countable Boolean algebra B, B has a
computable presentation iff its dual Stone space pB can be computably metrized
iff pB has a computably compact metrization.
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Corollary 4.26 [59]. Every computably metrized Stone space is homeo-
morphic to a computably compact Stone space.

4.4.2. Computable topological vs. computable Polish spaces. The following
result is folklore (see, e.g., [31, 142]).

Theorem 4.27. For a countable Boolean algebra B, the following are
equivalent:

(1) B admits a c.e. presentation.
(2) The dual Boolean algebra pB is homeomorphic to a Π0

1-class.

Idea. To see why (1) ñ (2) should hold, think of a B = A{I , where A is
atomless and I is a c.e. ideal. One can view A as a full binary tree in which
some nodes can be declared equal. Instead of making them equal, we can
declare them to be outside of a Π0

1 tree T such that the Stone space of B is
[T ]. To understand why (2) ñ (1) should hold, define a c.e. ideal by setting a
node x to be equal to the left-most node y at the same level that still remains
in the tree (representing the Π0

1 class).

Working independently, Bazhenov, Melnikov, and Harrison-Trainor [8]
proved another closely related and much more subtle computable version
of Stone duality. To state it, note that the basic notion of computable
compactness (Definition 3.1) can be defined without the assumption that the
metric is computable. Definition 3.1 also works for computable topological
spaces: just say that we can effectively enumerate all finite covers of the space
by basic open sets. In this case we say that the computable topological space is
effectively compact. Recall that right-c.e. spaces are computable topological
spaces, where the base is given by the basic open balls (see Proposition 2.4).
An example of such a right-c.e. “effectively compact” space is any non-empty
Π0

1 class. (This requires a relatively straightforward inductive argument that
can be found in, e.g., [8].)

Theorem 4.28 [8]. For a countable Boolean algebra B, the following are
equivalent:

(1) B admits a c.e. presentation.
(2) The dual space pB is homeomorphic to an effectively compact right-c.e.

completely metrized space.

Idea. The proof of (1) ñ (2) is similar to the proof of (1) ñ (2) the
previous theorem. (A non-empty Π0

1 class can be viewed as a right-c.e.
metrized space.)

To prove (2) ñ (1) use a theorem of Odintsov and Selivanov [116] who
showed that a Π0

2-presented Boolean algebra admits a c.e. presentation. It is
therefore sufficient to show that the Boolean algebra of clopen sets has the
form �{I , where � is the atomless algebra and I is its Π0

2 ideal. This can be

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.16


COMPUTABLY COMPACT METRIC SPACES 231

done using methods similar to the techniques described in this section; we
omit the details.

Recall again that every right-c.e. space is a computable topological space
(Proposition 2.4). Recall also that Feiner [42] constructed an example of
a c.e. presented Boolean algebra that does not admit a computable
presentation. Thus, Theorems 4.27 and 4.28 imply:

Corollary 4.29 [8]. There exists a computable topological Polish space
that is not homeomorphic to any computably (completely) metrized space.

In spite of appearing as a standard classical result, Corollary 4.29 is very
recent. We really have a stronger consequence. In view of Theorem 4.27, it
follows also that effective compactness for computably metrized and right-
c.e. metrized spaces differ up to homeomorphism.

4.4.3. Applications to classification problems. The next corollary measures
the classification problem for compact computable Polish spaces up to
homeomorphism. Recall that we fixed an effective listing (Mi)iP� of all
(partial) computable Polish spaces. (We identifyMi with the completion of
the respective dense computable sequence.)

As was pointed out by Selivanov (in personal communication with the
second author), it seems that the corollary below has actually never been
explicitly stated in the literature. The corollary is, of course, not really new.
Compare the corollary below with Corollary 4.13.

Corollary 4.30. The homeomorphism problem txi, jy :Mi –hom Mj &
Mi,Mj are compactu for computable compact Polish spaces is Σ1

1-complete.

Proof. The Σ1
1-hardness follows from the Σ1

1-completeness of the isomor-
phism problem for computable Boolean algebras [51] and the fact that Stone
duality is computably uniform.

We need to argue that the index set is Σ1
1. We give only a sketch since this

fact seems to be well-known. A rather similar fact is folklore in descriptive
set theory [47]. A detailed proof in the lightface case (and in the harder
context of topological groups) can be found in [95]. A very closely related
(and, in some sense, stronger) argument is Lemma 3.6 of [58].

It is arithmetical to say that Mi is a (presentation of a) compact Polish
space (see (1) of Corollary 4.13). To say that there is a homeomorphism
f :Mi ÑMj , it is sufficient to state that there exist continuous surjective
f1 :Mi ÑMj andf2 :Mj ÑMi such thatf1 ˝ f2 = IdMi . Every g : X Ñ
Y between compact X and Y can be represented by, e.g., a pair (g̃, m) where
g̃ : �2 Ñ � andm : � Ñ �, where the function g̃(n, k) is interpreted as the
image of the nth special point with precision 2–k , and m as the modulus of
uniform continuity.

It is arithmetical to say that (g̃, m) represents a continuous function
limk g(¨, k) : X Ñ Y . This is because totality is arithmetical, and also one
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can express that m is a modulus of continuity that works for g̃ as a closed
property. Thus, as before, if it fails then it must fail for some special points.
Since the continuous image of a compact space is closed, it is arithmetical
to say that (g̃, m) represents a surjective function. (If it does not, then again
there is a special point in the complement witnessing this.)

This allows to state the existence of f1 and f2 in a Σ1
1 way. Finally, to

say that f1 ˝ f2 = IdMi , it is sufficient to say that it is true for special points
because the property is (again) closed. This can be expressed arithmetically
(in the presentations of) f1 and f2. %

Of course, the result above can be relativized to any oracle, thus implying
the classical descriptive-theoretic result saying that the homeomorphism
problem for compact Polish spaces is analytic complete.

Remark 4.31. The Σ1
1-completeness in the proof above is witnessed by

computably compact Stone spaces. It is also not difficult to see that the
index set of Stone spaces is arithmetical, and thus the homeomorphism
problem is actually complete within the class of Stone spaces (that can
further be assumed computably compact). To see why saying that Mi is a
Stone space is an arithmetical property, iterate the process of splitting the
space and search for a non-trivial connected component using Lemma 4.21.
Every connected component can be expressed as a finite union of basic open
balls, and thus the existence of a non-trivial connected component can be
expressed as a first-order, arithmetical property.

A substantially different proof of Corollary 4.30 can be extracted from a
closely related result for topological groups established in [95]. A computably
metrized topological group is a computable Polish space with computable
group operations defined on the space. We say that it is computably compact
if the space is furthermore computably compact.

Theorem 4.32 [95]. The topological isomorphism problem for computably
metrized connected compact abelian groups is Σ1

1-complete.

The proof of the result above uses a computable version of Pontryagin
duality that was proved in [95] and has recently been extended in [91]; we
omit the definitions. In fact, it follows from the version of computable duality
established in [91] that the Σ1

1-completeness is witnessed by computably
compact groups. We now explain how the theorem above gives a different
proof of Corollary 4.30. As we shall discuss later in the paper (see Section 4.7,
the second proof of Theorem 4.40), using algebraic topology it is possible to
show that two compact connected abelian Polish groups are homeomorphic
(as spaces) if, and only if, they are isomorphic as topological groups.
Assuming this result, Corollary 4.30 follows from the theorem above, but this
time the corollary is witnessed by connected computably compact spaces,
not totally disconnected computably compact spaces.
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To conclude the subsection, we mention one more application of
computably compact Stone spaces, this time to Banach spaces. Recall
that computable Banach space is a computably metrized Banach space in
which the Banach space operations are computable. Recall that Banach–
Stone duality states that C (K0;R) and C (K1;R) are linearly isometrically
isomorphic if, and only if, the respective compact spaces K0 and K1 are
homeomorphic. In [8], a computable version of Banach–Stone duality has
been established:

Theorem 4.33. For a countable Boolean algebra B, B has a computable
copy iff the space C ( pB ;R) is a computable Banach space.

In view of Theorems 4.27 and 4.28, this correspondence gives an explicit
application of computable compactness to computable Banach space theory.
In particular, we obtain the following corollary. Fix a computable list (Bi)iP�
of all (partial) computable linear spaces over Q with a computable norm,
and write Bi for the completion of Bi with respect to its norm.

Corollary 4.34. The linear isometric isomorphism problem txi, jy :
Bi –iso Bju for computable separable Banach spaces is Σ1

1-complete.

Proof. We have that C (xB0;R) –iso C (xB1;R) iff xB0 –hom
xB1 (iff B1 –

B2). The proof of aforementioned result from [8] is uniform when passing
from computably compact Stone spaces to the respective Banach spaces. So
Σ1

1-hardness follows from the previous corollary.
It remains to note that the upper bound is also Σ1

1. It is sufficient to state
that there is an isometry that works for special points, maps zero to zero,
and is, furthermore, surjective (these properties are closed). The well-known
Mazur–Ulam theorem asserts that every isometry with these properties has
to be linear. %

Further results and open questions related to index sets in analysis, and to
compact spaces and compact groups more specifically, can be found in [38].

4.5. Profinite groups. Profinite groups are the Galois groups. They are
inverse limits of finite groups. The study of effective profinite groups began
with Metakides and Nerode [101], La Roche [127, 128], and Smith [136,
137], where they defined the group to have a co-r.e. presentation if it was
isomorphic to a computably bounded Π0

1 class [T ] (in Baire space) where the
group operations were computable. La Roche and Smith defined the group
to be recursively presentable (computable) if the set of extendible nodes in
T forms a computable set. If F is a computable (countable) field, and K is a
c.e. subfield of F, then the Galois groupG(F zK) is a co-r.e. profinite group.
As Smith [137] observed, Waterhouse’s result [145] can be effectivized to
show that each co-r.e. profinite group is effectively isomorphic to G(F zK)
for some computable F and K.
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A profinite group is recursive if it can be represented as the projective limit
of computable linear sequence of finite groups (Fi) given by their strong
indices and computable surjective fi : Fi+1 Ñonto Fi . Smith [137] showed
that a profinite group is recursive if, and only if, it is isomorphic to a
decidable computably bounded Π0

1 class [T ] where the group operations were
computable. Since every infinite profinite group is homeomorphic to 2�, and
any two computably compact presentations of 2� are computably homeo-
morphic (e.g., [8]), without loss of generality we can assume that [T ] = 2�.

A natural question arises what happens when the metric on the group is
not necessarily an ultrametric. For example, it is sometimes convenient to
think of abelian profinite groups as subgroups of an infinite direct power of
the unit circle group.

We give a classification of profinite groups with an arbitrary compatible
metric that have a recursive presentation. The result below is new. A similar
result that establishes an arithmetical bound without the assumption of
computable compactness can be found in [95]. Recall that the notion of a
computably compact group was defined before Theorem 4.32.

Theorem 4.35. For a profinite group G, the following are equivalent:

(1) G has a recursive presentation.
(2) G has a computably compact presentation.

Proof. Clearly, every recursive presentation is computably compact.
Now assume we are given a computably compact presentation. Using
Lemma 4.21, computably list all clopen components of the group. At this
stage there are two ways we can proceed to prove the theorem.

The first possibility is to use the materials of the previous section to
construct a computably branching tree T with no dead ends such that the
domain of G is [T ], and note that the natural shortest-prefix ultrametric
inherited from the tree is computably compatible with the original metric (in
the sense that the identity map G Ñ [T ] is computable; see Remark 4.23).
Then we can use the aforementioned result of Smith and conclude that
G admits a recursive presentation (i.e., via a surjective linear computable
inverse system). We will not give any further details.

The second possibility is to directly calculate the recursive presentation
without any reference to effective compatibility and the result of Smith. To
make the paper self-contained, we give the details below.

To say that a clopen component is a normal subgroup, use the fact that
every clopen component is a computable subspace of the group, and thus is
computably compact, by Proposition 3.29. To see if a clopen C is a subgroup,
search for a pair of finite covers, say (Bi) and (Dj), of C such that for every
i, j there is a k with the property

Bi ¨ B
1
j Ď Dk
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and for every i there is a k such that

B–1
i Ď Dk.

We also search for a finite cover (Un) of G such that for all n,m, and i there
is a k with

U –1
n ¨ Bi ¨Um Ď Dk.

We argue that such a cover exists, and this will imply that we can
computably list all clopen subgroups of G. Then we explain how to use
these subgroups to build a recursive presentation of the group.

Since the clopen component C can be expressed as a (finite) union of
open balls, the preimage of the clopen component under the computable
maps x, y Ñ xy, x Ñ x–1 and z, x Ñ z–1xz in the respective product
space (respectively, C ˆ C , C, and G ˆ C ˆG) can be uniformly listed.
If C were not a normal subgroup then there will be special points witnessing
this, and these would be witnessed together with sufficiently small basic open
balls containing them. On the other hand, if C is a normal subgroup then
every equation of the form, say,

z–1xz = y,

where x, y P C and z P G , would be witnessed by small enough basic open
balls containing these points, i.e.,

U –1
¨ B ¨U Ď D,

where z P U , x P B , and y P D. These products of these balls would give a
cover of the respective compact product space (in the case of conjugation
and in the notation above, B ˆU ˆD cover G ˆ C ˆG .) It follows that
we can find a finite subcover.

We conclude that we can list all clopen normal subgroups of G. Note
that, by the uniform computable compactness of each such clopen C,
we can compute the diameter of C, which is supx,yPC d (x, y). Using
the techniques of Lemma 4.21 and Theorem 4.22—that basically can be
summarised by saying that we take the next cover by very small balls—we
can furthermore produce a nested sequence of (finite open names of) clopen
normal subgroups tCi : i P �u such that:

(1) Ci+1 Ď Ci is formal.21

(2) diam Ci ă 2–i .
(3) For every i there exists a computable finite tuple (xi,j) of special points

(given by its strong index) such that (xi,jCi) is a cover of G.

21Meaning that each ball from the open cover ofCi+1 is formally included into some basic
open ball in the fixed cover of Ci . Similar for condition (4) below.
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(4) For every i, j, n, if xi,jCi+1 Ď xi+1,nCi+1 then this inclusion is formal.
(5) When j ‰ j 1, xi,jCi+1 X xi,j1Ci+1 = H.

If we succeed, then
Ş

iP� Ci = t0u, so it is a uniformly computable basis of
clopen normal subgroups of G. We will then use the cosets to calculate the
finite G{Ci and the homomorphisms from G{Ci+1 onto G{Ci .

More formally, we proceed by recursion. Assume Ci–1 has been defined.
We search for aCi that satisfies all these four conditions. If we drop “formal”
in all these conditions, then it should be clear that such a Ci and xi,j must
exist. Then fix such a Ci .

By Lemma 4.21 and the analysis of normality above, a normal clopen
Ci will eventually be found, and furthermore both Ci and the finitely many
cosets modCi will be represented as a finite collections of balls. Our task it to
show that we can effectively recognise that these finite parameters describing
the cosets define what we need. For that, we might need to adjust the finite
covers by refining them so that, for instance, the inclusion is witnessed by
formal inclusion of covers. This is done as follows.

We satisfy (1) by choosing the radii of a finite cover describing Ci small
(see Remark 3.4), and we satisfy (2) by evaluating the computable diameter
of the clopen set (this is again essentially done by further refining the cover).
Here we use that Ci is indeed a computable closed set because of Lemma
4.21, so we can apply Proposition 3.29.

We elaborate why we will eventually find special points (xi,j) and will
eventually recognize that they satisfy (3). For that, note that each coset of
Ci is open, and thus in particular contains a special point, say x. In particular,
every coset mod Ci has the form xCi . Since for every special x its coset xCi
is the image of Ci under the computable map y Ñ xy and Ci is computably
compact with all possible uniformity, by Lemma 3.31 we conclude that xCi
is also computably compact, and with all possible uniformity. By refining
the cover of xCi (see Remark 3.4), we can ensure that all set-theoretical
inclusions of xCi into the clopen sets seen so far in the construction hold
formally. We can also ensure that if two cosets do not intersect then this
is also witnessed formally.22 This gives a way of computably recognising
condition (5). We can also wait for finitely many such special points xi,j so
that the respective cosets xi,jCi cover the whole space.

To reconstruct the computable operation on G{Ci , calculate the product
and the inverse on the special points xi,j with a sufficient precision until you
see that the result is in one of the cosets modulo Ci . This is all computable
because the cosets xi,jCi are (uniformly) given by their finite open covers,
and the operations on G are computable.

22Just take the radii of open balls much smaller than the pairwise distances between the
finitely many clopen sets to see that it can be done. It is crucial here that the sets are clopen
(see, e.g., Corollary 4.3 for a potential issue in general).
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Finally, use effectiveness of condition (4) to calculate the surjective group-
homomorphism φi : G{Ci+1 Ñ G{Ci that maps every xi+1,jCi+1 to the
unique coset xi,j1Ci that contains it. This gives a computable surjective
inverse system

(G{Ci , φi)iP�

the (inverse, projective) limit of which is topologically isomorphic to G.
Since the system is uniformly computable (in the sense of strong indices of
finite sets), this gives a recursive presentation of G. %

Remark 4.36. In view of the results in the previous subsection that
connect c.e.-presented Boolean algebras with Π0

1-classes, we conjecture that
co-c.e. presented profinite groups should correspond to computably compact
right-c.e. metrized groups. Melnikov [95] gives the first example of a profinite
computably metrized group that does not admit a recursive presentation.
In view of our theorem above and the results of Smith, the notion of a
recursive profinite group seems to be the “right” notion of computability
for profinite groups. See [95] for a complete description of computably
categorical profinite abelian groups and an effective version of Pontryagin
duality that works for such groups.

4.6. Computability of Čech cohomology. The earliest application of
simplicial homology in computable analysis we are aware of can be found
in Miller’s thesis [103] (this application has already been discussed above).
Simplicial (co)homology is computable in its nature, and this can be made
formal. For example, Chapter 1 (Section 11) of [108] contains a careful
verification of the computability of the homology groups for finite simplicial
complexes. This of course entails computability of cohomology groups as
well. More specifically, given a (strong index of a) simplicial complex, we
can uniformly compute its ith homology group represented as

À

iďkxaiy,
where a0, ... , ak are the generators of the group such that the orders of the
cyclic xaiy are also uniformly computable. Since Ai = Hom(Ai,Z), we can
easily observe that respective cohomology groups are also computable in
this strong sense.

In this section we extend these results to arbitrary computably compact
spaces and their Čech cohomology groups that will be defined shortly. For a
finite simplicial complex, its Čech cohomology is isomorphic to its simplicial
cohomology (see the last chapter of [108]). One of the convenient features
of Čech cohomology is that it does not rely on triangulation and works for
an arbitrary compact metric space.

4.6.1. Background from algebraic topology. Given a compact M, let N be
the directed set of all its finite open covers (under refinement). Since the
covers by basic �-balls, where � ranges over positive rationals, are cofinal
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among all covers, without loss of generality we can restrict ourselves only
to covers by basic open balls with rational radii. For instance, N could be
the X-decidable system of covers nested under formal refinement instead of
the usual refinement (at this stage, computability of these conditions is not
important).

For each member C of N , recall that its nerve N (C ) is the collection of
all sets in the cover that intersect non-trivially. One can view N (C ) as a
(finite) simplicial complex in which the n-dimensional faces are exactly the
n-element subsets X of N (C ) such that

Ş

tY : Y P X u is a non-empty set.
For these finite simplicial complexes we can define their cohomology groups
H ˚(N (C )) (with coefficients in Z) as follows.

We follow Section 73 of [108] and define the Čech cohomology group of
a compact metrized space as follows. For a fixed finite set of basic open
balls C P N and the respective simplex N (C ), define the simplicial chain
complex as usual:

¨¨¨ Ñ	3 A2 Ñ	2 A1 Ñ	1 A0,

where Ai are finitely generated free abelian groups and 	i are boundary
homomorphisms, and then define the associated cochain complex Ai =
Hom(Ai,Z) and define di : Ai Ñ Ai–1 to be the dual homomorphism of
	i+1. ThenHi(N (C )) = Ker(di){Im(di–1) is the ith cohomology group23 of
the simplex N (C ) which is a finitely generated abelian group which can be
thought of as given by finitely many generators and relations. Let H ˚(M )
be the direct limit ofH ˚(N (C )) induced by the inverse system N under the
refinement maps.

4.6.2. The result. Recall that a (discrete, countable) group is c.e.-
presented if it is isomorphic to a factor of a computable free group by
its computably enumerable subgroup. In other words, the operations of the
group are computable by equality is c.e., thus the name.

Theorem 4.37 [91]. For a computably compact M, its ith Čech cohomology
group admits a c.e. presentation uniformly in i.

A version of this proof for computably compact spaces can be found
in [91], and similar result for computable Polish spaces (and with a simpler
proof, but giving merely 01-computable nerves) is contained in [96]. The
proof in [91] relies on a new constructive version of Čech cohomology that
was designed to circumvent the following obvious obstacle: for a given cover,
we cannot (in general) compute its nerve. However, Theorem 3.16 tells us
that this difficulty can be circumvented even if we use the standard notion
of a nerve. Thus, we do not need to out-source to the notationally heavy

23We are not really interested in the case when i = 0 when d–1 is not really defined; just
assume Im(d–1) = t0u.
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apparatus of algebraic topology compared to which the somewhat tedious
proof of Theorem 3.16 looks rather tame.

Proof of Theorem 4.37. As we noted above, we can assume that we
a given a system of 2–n covers N that is linearly nested under formal
inclusion and is X-decidable; by Theorem 3.16 and Remark 3.18 this can
be done computably. We say that a sequence of finitely generated uniformly
computable abelian groups (Aj) is strongly completely decomposable if each
Ai uniformly splits into a direct sum of its cyclic subgroups, and furthermore
the sets of generators of the cyclic summands are given by their strong
indices.

Fix a X-decidable finite cover C.

Claim 2. The groups Hi(N (C )) are strongly completely decomposable
(uniformly in C and i).

Proof. The finite complex N (C ) is computable because the cover C is
X-decidable. A close examination of the definitions shows that, given C
(as a finite set of parameters) and i, we can compute the generators of
Ai = Hom(Ai,Z) and compute di . We will need the fact below which is
well-known (see [45] for a proof).

Fact 4.38. Let G ď F be free abelian groups. There exist generating sets
g1, ... , gk and f1, ... , fm (k ď m) of G and F, respectively, and integers
n1, ... , nk such that for each i ď k, we have gi = nifi .

We can computably find the set of generators (aj) of Ker(di) and a
set of generators (bs) of Im(di–1) such that for each s there is an integer
m and an index i such that mai = bs ; we know that such generators
exist so we just search for the first found ones. It follows that the factor
Hi(N (C )) = Ker(di){Im(di–1) is strongly completely decomposable with
all possible uniformity. %

Recall that a group admits a Σ0
1 presentation if it is isomorphic to a factor

of a computable group by a Σ0
1 subgroup.

Claim 3. The direct limit limCPN Hi(N (C )) admits a Σ0
1 presentation.

Proof. We can list the �-covers and decide whether two given basic open
balls intersect in the listed covers. The refinement relation between two covers
C Ďform C

1 in N induces a simplicial map between the respective nerves
N (C ) andN (C 1), and this induces a homomorphism between the respective
cohomology groups Hi(N (C )) Ñ Hi(N (C 1)). By Claim 2, these finitely
generated abelian groups are effectively completely decomposable uniformly
in C and i. Note that Im φ is generated in Hi(N (C 1)) by the images of the
generators of Hi(N (C )). Similarly to the proof of Claim 2, choose new
generators ofHi(N (C 1)) and Im φ so that the latter are integer multiples of
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the former. In particular, it is easy to see that Im φ is a computable subgroup
ofHi(N (C 1)). This means that we can augment Im φ with extra generators
in a computable way to expand it to Hi(N (C 1)). It follows that

lim
CPN
Hi(N (C )) = Hi(G)

can be consistently defined as the “union” of the Hi(N (C )), C P N , to
obtain a group in which the operations are computable and the equality
is Σ0

1. (The equality is merely Σ0
1 because an element a P Hi(N (C )) can

be mapped to 0 in some Hi(N (C 2)) which appears arbitrarily late in the
directed system.) %

This finishes the proof of the theorem.

We will also see that in Theorem 4.37 “uniformly c.e. presented” cannot be
improved to “uniformly computably presented”; this is Corollary 4.43. (In
fact, in the example given in the next subsection each individual cohomology
group will actually have a computable presentation, just not uniformly so.)

4.6.3. Applications. Perhaps the most significant application to date is
computability of Pontryagin duality for computably compact connected
groups (see [91]); we omit the definitions. Further applications of com-
putability of cohomology include various index set results in topology
(see [91]). One sample result is:

Corollary 4.39 [91]. The index set of solenoid spaces24 is arithmetical
among all compact Polish spaces.

It follows that in any class of compact manifolds in which non-
homeomorphic members have non-isomorphic cohomology groups (for
some i), the homeomorphism problem is arithmetical provided that the
respective cohomology groups have arithmetical isomorphism problem. The
significance of this fact is that, in general, even if a computably metrized
manifold admits a triangulation, it is not known whether it always admits
an arithmetical triangulation.25 Indeed, even in the seemingly trivial case
of compact surfaces, producing an arithmetical triangulation based entirely
on the given metric takes some 18 Turing jumps [58]. It is believed that
complexity is likely close to being optimal. In contrast, calculating Čech
cohomology groups allows to completely avoid triangulation (that does not
even have to exist, let alone an arithmetical triangulation). Some further
discussion can be found in [58].

24A solenoid (space) is a compact connected topological space which the inverse limit
of a system (Si , fi ) with fi : Si+1 Ñ Si , where each Si is a circle and fi is the map that
uniformly wraps Si+1 ni ě 2 times around Si . These constructions are important in the area
of hyperbolic dynamical systems.

25Classically, classification of manifolds works via triangulations.
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In the next subsection we discuss how Čech cohomology can be used
to find a computably metrized space not homeomorphic to a computably
compact one.

4.7. Computably metrized spaces not homeomorphic to computably com-
pact ones. As we noted in the introduction, finding an example of a
computably metrized compact space not isometric to a computably compact
one is easy: just take [0, α] for a left-c.e. non-computable realα. The situation
is significantly more difficult if we want to work up to homeomorphism.
For instance, we have seen that every computably metrized Stone space is
homeomorphic to a computably compact one, so no such example can be
found among totally disconnected compact Polish spaces.

It seems that constructing such an example necessarily requires some
relatively advanced techniques. A few years ago, a closely related result was
established by Bosserhoff and Hertling [14]: For any n ě 2 there exists a c.e.
compact subset C Ď Rn such that φ(C ) is not computable compact for any
self-homeomorphism φ of Rn. However, the result and the techniques that
were used to establish it are restricted to Rn. Hoyrup, Kihara, and Selivanov
[62] were the first to announce a general construction of a computably
metrized space that is not homeomorphic to any computably compact space.
Using completely different techniques, a connected example has recently
been suggested in [91].

We outline two constructions of a compact computable space not
homeomorphic to any computably compact space. The first proof is more
similar to what Hoyrup, Kihara, and Selivanov [62] announced; it will be
given in almost complete detail. The second proof can be found in [91].
It produces a relatively natural example using Pontryagin–van Kampen
duality; because too much background is necessary to fully explain the
proof, we will only briefly sketch it here. Both proofs rely heavily on Čech
cohomology. Finally, we will briefly discuss whether we can completely avoid
cohomology to prove the theorem below.

Theorem 4.40. There exists a computably (completely) metrized compact
Polish space not homeomorphic to any computably compact space.

First proof of Theorem 4.40. The proof is very similar to the one
given in Hoyrup, Kihara, and Selivanov [62]. The proof that we give here
replaces the most complex definability part of their proof with an argument
that involves computability of Čech cohomology first established in [91] and
then improved in the proceeding subsection.

The definition below “encodes” a set into a space. We view an isolated
point as a 0-sphere S0.

Definition 4.41. For a set X Ď �, let CP(X ) be the one-point compact-
ification of the disjoint union of spheres Sk , with infinitely many copies for
each k P X .
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One way to think about CP(X ) is as follows. Fix a fishbone (a 1-atom) in
the Cantor space 2� in which every isolated path (an atom) is replaced with
a copy of Sk for some k ě 0.

Proposition 4.42.

(1) X is Σ0
3 if, and only if, CP(X ) is computably (completely) metrizable.

(2) X is Σ0
2 if, and only if, CP(X ) admits a computably compact

presentation.

Proof. (1) Recall that using a modulus of compactness we can find a
split of a computable Polish space into two clopen subspaces, as explained
in Section 4.4. Recall also that 01 can compute a modulus of compactness.
Also, a space is connected if it does not have a non-trivial clopen split.
Thus, 02 can produce a uniform list of computable indices of the clopen
connected subspaces of CP(X ). Each such index is a finite collection of
(open or closed) open balls that contain (only) the component. For a
(finite) simplicial complex, Čech cohomology groups are isomorphic with
the respective simplicial cohomology groups (see the final chapter of [108]).
For the n-sphere we have:

Hp(Sn) – Z iff p = 0, n,

and it vanishes otherwise.
Suppose that we know that a computably mertrized M is homeomorphic

to Sk , k ą 0, but we do not necessarily know what this k is. The modulus of
compactness of each connected component of M is 01-computable uniformly
in the finite set of parameters that isolates this component. Since the
Čech cohomology groups are uniformly Σ0

2-presentable (by Theorem 4.37
relativized to 01), in this case M – Sk is equivalent to saying that Ȟ k(M )
contains at least one non-zero element, which is a Σ0

3 property (the equality
in the group is Σ0

2). It follows that 02 can list the components for which the
kth cohomology group is non-trivial, and it can also list such k ą 0. The set
of these k is equal to X.

Now we prove that, given X P Σ0
3, we can produce a computable metric

on CP(X ). Represent Σ0
3 as the set of all k such that DxD8yR(x, y, k), for

some computable predicate R Ď �3 (see [129]). Say we are testing whether
k P X , k ą 0. For each existential witness x corresponding to k, create a
new component and do more steps in making it look like Sk . This is done by
enumerating more points into the components when more D8-witnesses are
found for the given existential witness x; abandon the finitely many points
until the next expansionary stage.

This gives a uniformly computable sequence of spaces; each space is either
finite discrete or is equal to Sk . We can make sure there are infinitely many
copies Sk for each k P X . Put them together (uniformly shrink the ith
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component by 2–i and use an ultra-metric of the Cantor space to define the
distance between different components).

(2) It follows from the material in Section 4.4 that, using computable
compactness we can list indices (names) clopen connected components of
a (compact) space using 01. It also follows from Proposition 3.30 that each
component can be viewed as a computable closed subset of M (being a
finite union of computable sets), and thus it is also computably compact
uniformly in its name.

Computable compactness makes the Čech cohomology groups uniformly
c.e.-presented, and saying that it is not trivial is now merely Σ0

2. This makes
X a Σ0

2-set.
For the other direction, given a Σ0

2 infinite X, represent it via D@. Assume we
are guessing whether k P X . For each D-witness keep building a computably
compact copy of Sk unless a counterexample to the universal quantifier is
found (in which case abandon the component). Then put the spaces together
as before, but this time observe the space is computably compact since each
component can be easily made uniformly computably compact. %

It remains to fix a Σ0
3-complete set X. %

Corollary 4.43. Theorem 4.37 cannot be improved to state that the Čech
cohomology groups are uniformly computably presented.

Proof. Let X be Σ0
2-complete and consider CP(X ) defined above. Then

CP(X ) admits a computably compact presentation. In fact, the construction
ofCP(X ) is based on the uniform construction of a sequence of computably
compact disjoint components, each being either Sk or a finite union of
isolated points.

Assume that the Čech cohomology groups were uniformly computably
presented in general (and for these components in particular). It is well-
known that the cohomology of a finite disjoint union is the direct sum
of the cohomologies of the components; this follows from Mayer–Vietoris
sequence calculations [108]. Thus, the components that are a finite union
of isolated points will have trivial cohomology groups for i ą 0. Also, by
assumption, saying that the ith computable cohomology group has a non-
zero element is now Σ0

1. Thus, to decide if i P X (i ą 0) it is sufficient to ask
whether there is a component whose ith cohomology group is non-trivial,
and this is also Σ0

1 contradicting the choice of X. %

As we already mentioned above, Khisamiev [78] showed that every c.e.
presented torsion-free abelian group has a computable presentation. All
known proofs of this result are non-uniform, but the only non-uniformity
comes from deciding whether there is a non-zero element on the group. As
a biproduct of the proof of the corollary above, it follows that this obstacle
cannot be circumvented.
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The basic idea of the first proof above was to code information into
connected components of the space. Producing a connected example seems
to necessarily require some advanced techniques that are outside the scope
of this paper. We outline an argument that relies on the recent results from
[91, 96] and which gives a connected example of covering dimension 1. We
leave many terms and notions undefined (see [91, 96] for the definitions and
more explanation).

Second proof (sketch). For a discrete torsion-free abelian group G,
the first Čech cohomology group of the space of its compact connected
Pontryagin–van Kampen dual pG is isomorphic to G (see, e.g., Part 5 of
Chapter 8 of [61]). Using the aforementioned result of Khisamiev and two
new computable versions of Pontryagin–van Kampen duality from [91, 96]
we can conclude that, for some broad enough class of groups, namely q-
divisible groups, G has a Δ0

2-presentation iff pG is computably metrizable,
and G has a computable presentation iff pG has a computably compact
presentation. As there are plenty of Δ0

2 q-divisible groups that have no
computable presentation (including examples having X -computable copies
iff X is non-low [93, 96]), the result follows. Indeed, we can find a subgroup
of the rationals with this property; this will give a connected example of a
solenoid space that satisfies the theorem. In particular, there exist examples
like that having covering dimension 1. %

We conjecture that one can completely avoid using homological algebra
to prove Theorem 4.40. We suspect that one way to do this would rely on
a combinatorially involved construction similar to one that can be found
in [59]. We outline a plan of this argument; a detailed verification would
take too much space (if it works).

Cohomology-free proof idea (for Theorem 4.40). An n-star is a Wedge
sum of n-copies of the unit interval (identify the left most-points of n copies
of [0, 1]). The basic idea here is to replace n-spheres with n-stars in the
previously discussed proof of Theorem 4.40. A 0-star is just an isolated point.
One can use a fairly basic technique of �-chains to produce a Σ0

4-enumeration
of the set of n P N such that the space has an n-star component. As has been
suggested by Ng (personal communication with the second author), under
the assumption of computable compactness, this definition should become
Σ0

3. It remains to prove that, given a Σ0
4-set, we can produce a computably

metrized (compact) space that codes the set into its n-star components. This
requires a relatively involved priority construction that can be viewed as
a 03-argument (see [59]). In [59], we can find a construction of this sort
that produces a locally compact space. As explained in [59], we can use the
1-point compactification of this space to produce a compact space. %
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It is not clear at all whether this approach (if it works) is any simpler than
the approach that uses cohomology since it relies on a 03-argument.

4.8. Computable universality of C [0, 1]. Fix the standard computable
presentation ofC [0, 1] under the supremum metric given by piecewise linear
functions with finitely many rational breaking points. We should note that
there are also “non-standard” computable presentations of this space that
are isometric but not computably isometric to the standard one. We also
cite [8, 98] for further results about the computability-theoretic aspects of
this space. The theorem below has recently been established in [5] using a
direct combinatorial argument. We give a new proof that uses computable
compactness to sort out the combinatorics.

Theorem 4.44. Every computably (completely) metrized Polish space can
be computably isometrically embedded into C [0, 1].

It is known that C [0, 1] is actually not computably unique up to
computable linear isometry [94, 98]. We prove the theorem for the “natural”
computable presentation of the space given by, e.g., piecewise linear
functions with rational parameters.

Proof. It is sufficient to computably embed the Urysohn space U into
the natural computable presentation of C [0, 1]. It is known (and is not hard
to show) that it is computably universal in the sense that every computable
Polish space can be computably isometrically embedded into the Urysohn
space (see [5, 77]). There is no ambiguity here because the Urysohn space
admits a unique computable presentation, up to computable isometry [94].
It is also known that the original construction of Urysohn is actually
primitively recursively universal [5], but unfortunately the space is no longer
primitively recursively unique (categorical). For the present proof, we shall
only need the (general recursive, Turing) computable universality of U. For
a related construction of the Urysohn metric space in constructive setting
without choice principles, we cite [89].

We return to the proof. Recall that QU = (pi)i , the rational Urysohn
space, is dense in U. It is also known that the distances between special
points pi and pj are rational numbers uniformly computable from i, j (as
fractions).

In the Hilbert cube, basic open box is a product of intervals only finitely
many of which are open rational sub-intervals of [0, 1] and the rest are [0, 1].
It is clear that basic open boxes are effectively open. We computably adjust
the metric in the Hilbert cube and view it as H = [– d (p0, pn), d (p0, pn)]�,
and thus adjust the notion of a basic open box accordingly.

Observe that

– d (p0, pn) ď d (p, pn) – d (p, p0) ď d (p0, pn),
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for any pn. Say that a point � in H = [– d (p0, pn), d (p0, pn)]� corresponds
to pj if the projections �n(�) of the point to the edges of the cube are exactly
the

n(pj) = d (pj, pn) – d (pj, p0),

and let U be the collection of all such points. We can effectively enumerate
U as a sequence of computable points.

Lemma 4.45. P = cl(U ) is computable closed. %

Proof. Since we can list U which is dense in cl(U ), by Lemma 3.27 it is
sufficient to show that cl(U ) is effectively closed. One way to do this is as
follows.

Say that reals d1, ..., dk are legit if there is a real d such that

td (pi , pj), d, d1 + d, ..., dk + d, i ă j ď ku

is a diagram of a metric space (on points pi , p), where di = d (p, pi) –
d (p, p0) and d = d (p, p0). Recall also that U has the extension property;
in other words if there is a finite metric space extending p0, ... , pk then it
is isometrically embeddable to U over p0, ... , pk . The existence of a 1-point
extension p, p0, ... , pk is equivalent to saying that d0, ... , dk are legit, where
di = d (p, pi) – d (p, p0), as witnessed by d = d (p, p0).

Claim 4. We can decide whether a given basic open box in H contains a
legit tuple. %

Proof. There is a first-order formula in the language of (R,+,ˆ, 0) that
says that, for some real d and reals d1, ... , dk that range between some
fixed rational parameters (describing the intervals in a given open box),
td (pi , pj), d, d1 + d, ..., dk + d : i, j ă ku is a diagram of a metric space.
Recall that d (pi , pj) are rational. Using Tarski’s elimination of quantifiers,
we can computably find an equivalent quantifier-free formula with rational
parameters. It follows that the property is decidable because equality and
order are decidable for rational numbers. %

Recall that QU = (pi)i , the rational Urysohn space, is dense in U. Since
QU is dense in the Urysohn space, a basic open box of H (determined by
the projection onto the first k coordinates) contains a tuple of legit reals if,
and only if, it contains d (pj, pi) – d (pj, p0), where pj is sufficiently close
to p, where p P U are such that di = d (p, pi) – d (p, p0) and d = d (p, p0)
witness that the tuple is legit.

Since we can decide whether a basic open box is free of legit tuples, it
follows that we can decide which basic open box contains no (i(pj))i for
any j. Since the collection of such sequences U is dense in cl(U ), and since
basic open boxes are uniformly effectively open and form a basis of topology

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.16


COMPUTABLY COMPACT METRIC SPACES 247

in H, we conclude that we can effectively enumerate the complement of
cl(U ).

We effectively identify 2� with the ternary Cantor setC in [0, 1] (in the sense
that we do not distinguish between these computably homeomorphic spaces;
see also Theorem 3.33). This is where we get to use effective compactness
(which is implied by Claim 4 and the effective compactness of the Hilbert
cube). Using Theorem 3.40 and Proposition 3.29, fix a computable surjective
g : C Ñ P, and let gi = �ig, where �i is the ith projection in the cube. Define
a computable fi to be equal to gi on the Cantor set, and to be linear
otherwise (this standard technique was discussed in Section 4.1). We define
a computable embedding of U into C [0, 1] by mapping pi into fi .

To show that the map pn Ñ fn is isometric, first note that

d (pi , pk) = (d (pk, pi) – d (pk, p0)) – (d (pk, pk) – d (pk, p0))
= i (pk) – k (pk) = fi (tk) – fk (tk) ,

where tk is any pre-image (under g) of the point in H corresponding to pk .
It thus follows that

d (pi , pk) ď dsup (fi , fk) .

On the other hand, for any i, k P � and any t P C with g(t) = limj(s(pj))s P
cl(U ), we have

fi (t) – fk (t) = �i(lim
j

(s(pj))s) – �k(lim
j

(s(pj))s)

= lim
j
i (pj) – lim

j
k (pj) = lim

j
(d (pj, pi) – d (pj, pk)).

By the triangle inequality we get |d (pj, pi) – d (pj, pk)| ď d (pi , pk) for
every j, and therefore

|fi (t) – fk (t)| ď d (pi , pk) ,

for any t P C. By the definition of fn, any maximum difference must be
attained on C. Thus

dsup (fi , fk) ď d (pi , pk) .

Since the maps pi Ñ fi are uniformly computable in i, it follows that
the isometry defined above for (pi)iP� induces a computable isometric
embedding UÑ C [0, 1].

4.9. Covering dimension and embeddings into Rn. Fix a compact Polish
space M.

Definition 4.46. The covering dimension of M is the least n P NY t8u
such that every open cover of M has a refinement of order n + 1, i.e., each
point belongs to at most n + 1 sets.
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We know that every compact space is homeomorphic to a subspace of
the Hilbert cube [0, 1]�, and we have seen that this also holds effectively.
It is well-known that a compact space of covering dimension n can be
homeomorphically embedded into R2n+1 (and indeed, into [0, 1]2n+1). Is
this also computably true? One pleasant application of X-decidable covers
is the following theorem that answers the question in the affirmative:

Theorem 4.47. Let M be a computably compact Polish space of covering
dimension n. Then there is a computable homeomorphic embedding of M into
R2n+1.

The proof is an improved version of a result of Melnikov and Harrison-
Trainor [58] that states that every computably metrized compact Polish space
of covering dimension n can be 01-computably homeomorphically embedded
into R2n+1. The proof that we give below is more subtle and relies heavily
on a classical argument from [121] but with some modifications. It uses
computability of nerves, so strictly speaking ˚˚-computable compactness
would be enough to run the proof.

Proof. We say that a continuousf :M Ñ R2n+1 is an �-homeomorphism
if f–1(x) has diameter at most � for every x in the range. We will need to
prove a computable version of the following well-known fact:

Fact 4.48. The set of �-homeomorphisms form a dense open set in
C [M,R2n+1]. %

Let’s first explain how at least one �-homomorphism can be found. The
proof below is an adaptation of the argument that can be found in [121] (see
Theorems 4 and 5); however, our definition of an �-homomorphism is a bit
different.

Fix � = 2–m for some m. Construct a computable �-homeomorphism of M
to R2n+1 as follows. Use Theorem 3.16 and fix a strongly X-decidable basis
of computable balls K in M, recall that this means that the non-emptiness
of intersection (of finite families) is decidable. (By Remark 3.18, we could
alternatively use computable closed balls with the same centres and same
radii.)

(1) Find an open �-cover C1, ..., Ck of M having order n + 1, where each
Ci is a finite union of open computable balls from K.

(2) Compute the nerve N of C1, ... , Ck .
(3) Find special points c1, ..., ck in R2n+1 and a (geometrical) simplicial

complex on vertices c1, ..., ck isomorphic to N via a simplicial map
which maps vertices to vertices.

(4) Define di(x) as follows. First, assume Ci = YjPJiB(ki,j , ri,j) and set
di,j(x) = suptri – d (x, ki,j), 0u. (In Theorem 4 of [121] Pontryagin
uses the distance from x to the complement of Ci .) Then define
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di(x) = sup
jPJi

di(x),

let u(x) = d1(x) + ¨¨¨+ dk(x). Noting that u is strictly positive
(because C1, ... , Ck cover the space), set �i(x) = di(x){u(x), and
finally define

f(x) =
ÿ

i

�i(x)ci .

We will argue that f is an �-homomorphism of M to R2n+1 with some
additional properties. But first, we argue that the steps above can be
performed computably. The first step is possible because some �-cover
C 1

1, ... , C
1
r having order n + 1 exists. By compactness, each C 1

i can be
replaced with a finite union Ci of (closed or open) basic computable balls
from K of radii at most � and that are contained in C 1

i , and so that together
C1, ... , Cr cover the space. The new cover C1, ... , Cr has order at most the
order of C 1

1, ... , C
1
r because Ci Ď C 1

i . We conclude that, in (1), such a cover
exists among finite subsets of K. We can decide intersection for computable
balls in K, and therefore we can also decide which finite families (representing
Ci) intersect. The diameter of each Ci can be easily computably estimated
from above.26 Together with X-decidability of K this implies that, given
� = 2–m, we can computably search for such an �-cover satisfying (1). This
also implies that the nerve formed in the second step is uniformly computable
(as a finite object, i.e., is uniformly given by its strong index).

The third step is possible because in topology we prove that finite simplicial
complexes are realizable in Euclidean spaces, this is done using points in a
general position, and being in a general position is an open property.27 If
the (combinatorial) dimension of the simplex is n then this can be done in
R2n+1 using points that are in general position, which is a c.e. property. See,
e.g., Theorem 3 of [121]. There is much freedom in the choice of points in
general position, in particular, those can be found in any collection of open
balls V1, ... , Vk in R2n+1; this is Theorem 2 of [121]. Theorem 1 of [121] also
implies that c1, ... , ck can be chosen special. Searching for a simplicial map
is a finitistic task and can be done in finite time.

26This can be done using, e.g., the distances between the centres and the radii. Alternatively,
replace all computable balls in Ci with the respective closed balls that are computable closed
sets by Proposition 3.30. Then use that the union of finitely many computable closed sets is
computable, and that the diameter is a supremum of a computable function defined on the
computably compact space (see Proposition 3.5). This gives an arbitrary tight upper estimate
on the diameter of Ci , with all possible uniformity.

27Points c1, ... , ck P Rd are in general position if any subset of at most d-many points of
tc1, ... , cku is linearly independent.
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The third step uses elementary properties of computable functions to
define a computable f.

The proof that f is an �-homeomorphism is essentially literally the same as
the proof of the analogous property of the �-homeomorphism constructed
in the proof of Theorem 4 of [121], because our function satisfies the
same properties (sufficient to prove that it is an �-homeomorphism) as
the function built in the proof of the aforementioned Theorem 4 of [121].
More specifically, �i is continuous and has support Ci , and also for every x
we have that

ř

i �i(x) = 1. For instance, it follows that a face in the nerve of
the cover is mapped to the corresponding face in the geometric complex on
c1, ... , ck . We refer the reader to Theorem 4 of [121] for further details.

It is rather important that in step (3) of the definition of f we only needed
that c1, ... , ck were in general position. By the aforementioned Theorem 2 of
[121], such points can be found in any collection of open neighbourhoods of
R2n+1. In particular, this is exploited in the proof of Theorem 5 of [121]
to show that the set of �-homeomorphisms forms a dense open set in
C [M,R2n+1]. Although our definition of f is different from that in [121],
it shares all the properties needed from an �-isomorphism in the proof of
Theorem 5 of [121]; in particular, all that is needed is that it maps a face of
the nerve to the respective face of the geometric complex.

In other words, we have:

Fact 4.49. For every g P C [M,R2n+1] and every m, k ą 0, there exists a
computable 2–k-homomorphism f such that

sup
xPM

||f(x) – g(x)|| ă 2–m.

Such an f from the fact above will have a rather clear definition given
by the construction described above, and for some specific choice of special
points c1, ... , ck .

We thus iterate this process. Given a 2–n-homeomorphism fn, search
for a 2–n–1-homeomorphism fn+1 (according to (1)–(4) above), such that
supxPM ||fn(x) – fn+1(x)|| ă 2–n. The limit of the process exists and gives
a computable injective continuous embedding of M into R2n+1; thus, it is a
homeomorphic embedding (as injective continuous functions on compacta
are homeomorphisms).

4.10. Probability spaces and Haar measure. For a computable compact
space X, the space of all probability measuresP(X ) is a computably metrized
space under the Wasserstein metric defined to be

dw(�, �) = sup |
ż

fd� –
ż

fd�|,

where the supremum is taken over all 1-Lipschitz functions upon X ; that is,
|f(x) – f(y)| ď d (x, y) for every x, y P X . The dense set is given by Dirac
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measures which are the probability measures concentrated at finitely many
special points of X. We refer the reader to [63] for further background
on computability of measure spaces. Gács [46] initiated a systematic
investigation of the effective content of abstract probability and measure
spaces in the context of algorithmic randomness.

Perhaps the first known construction of a surjective computable Φ : 2� Ñ
P(2�) can be found in Day and Miller [33], but a very closely related
argument can be found in the earlier paper [63]. Computable compactness
of P(2�) was later used in [125]. Interestingly, this is a special case of
Theorem 3.40 and the lemma below due to Marcone and Valenti [92]. We
also note that in the special case of P(2�) the lemma essentially becomes a
triviality; its two-line proof can be extracted from [33].

Lemma 4.50 [92]. If X is computably compact then so is P(X ).

Proof. To cover P(X ), take a finite 2–n-cover of X and let (xi) be the
finitely many centres of the open balls forming the cover. Say, there are
N such balls. Take the finite collection of Dirac measures concentrated

in the points (xi) and taking the values of the form k
2–n

N 2 , where k P �.

There are only finitely many such measures, let D be the set of these measures.
We claim that balls of radius 2–n+2 centred at these points cover the whole
space.

Take any other Dirac measure � concentrated at finitely many points (yj).
We can find, for each j, the least index i = c(j) such that the ball centred at
xi contains yj . For each i, let

Ci = tyj : c(j) = iu,

and note that d (xi , yj) ă 2–n for every yj P Ci . Define

�(xi) =
ÿ

jPCi

�(yj),

and let � P D be a measure (from the fixed above finite set) that differs by

at most
2–n

N
from � at every xi . Fix any 1-Lipschitz function f and assume it

takes value 0 at x0 (recall this means |f(x) – f(y)| ď d (x, y)) and assume
the diameter of the space X is 1, which makes the absolute value of f also
bounded by 1. Then

ˇ

ˇ

ˇ

ˇ

ż

fd� –
ż

fd�

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iăN

f(xi)(�(xi) – �(xi))

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iăN

(�(xi) – �(xi))

ˇ

ˇ

ˇ

ˇ

ˇ

ď N
2–n

N
= 2–n.
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On the other hand,

ˇ

ˇ

ˇ

ˇ

ż

fd� –
ż

fd�

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iăN

(
ÿ

jPCi

f(yj)�(yj) – f(xi)�(xi))

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iăN

ÿ

jPCi

(f(yj) – f(xi))�(yj)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

and noting that d (xi , yj) ă 2–n for every yj P Ci , this is bounded from above
by 2–n ř

j �(yj) = 2–n. It follows that the distance between � and� is at most
2–n+1. To finish the proof, recall that such Dirac measures are dense in the
space, and the choice of � was arbitrary. %

A few years ago Jason Rute suggested the proof below in a personal
communication with Melnikov and Nies. A proof sketch similar to the one
that we give below can be found on the logic blog edited by Nies (see [112,
Section 17]). Recently this result has been rediscovered in [120] (see [120]
for a complete and detailed proof).

Theorem 4.51. For a compact computable group G, the Haar measure is
computable iff G is computably compact.

Sketch. Suppose G is computably compact. The property of being
translation invariant is a Π0

1 property. So the Haar measure is contained in
an effectively closed singleton of the computably compact (by Lemma 4.50)
space P(G). Therefore, the Haar measure is computable by Fact 3.25.

Now take a computable compact group G that has a computable Haar
measure. We want to show it is computably compact. Replace d (x, y) with
the (integral) average of d (gx, gy), where the average is taken in the Haar
measure as g varies across the group. This gives a computable G-invariant
metric compatible with the original metric.

Now, to show that G is computably compact (in this new metric), it is
enough for each rational k, to effectively find a finite set of points ak0 , ..., a

k
n–1

for which every point in G is within distance 2–k of one of these points. Fix k.
Using our Haar measure find the measure of a ball of radius 2–(k+1). Call
this measure 	. (Since the new distance is G-invariant, all balls of the same
radius have the same measure.) Find a collection of balls B0, ..., Bn–1 with
radius 2–(k+1) whose union C = B0 Y ¨¨¨ Y Bn–1 has measure ą 1 – 	; recall
that the measure is left-c.e. Now, consider any point x not in this union C.
It has to be at distance ă 2–(k+1) from the union. Otherwise, there would be
a ball centred at x with radius 2–(k+1), and hence having measure 	, which
is disjoint from the union C. But the union C has measure ą 1 – 	, so this
cannot happen. Therefore all points of G are within distance 2–k of the
centres of B0, ..., Bn–1. This algorithm shows that the space is computably
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compact in the new metric. To show it is computably compact in the original
metric, for any finite list of rational balls in original metric, convert it to a
list of balls in the new metric. Now, if this list of balls covers the space G, by
computable compactness, we will eventually find this out.

It follows from Theorem 4.35 that a profinite group admits a recursive
presentation iff it has a computably metrization with computable Haar
measure iff it admits a computably compact presentation. (In the latter
two cases we need to also assume the operations are computable.) It was
established in [95] that recursive profinite groups are exactly the Pontryagin
duals of computable torsion groups, and it is not difficult to construct
an example of a procyclic, computably metrized group whose dual has
no computable copy [95]. (A similar result has recently been established
in [120].) In the connected case, one of the proofs of Theorem 4.40
actually builds a computably metrized group with computable operations
whose space is not homeomorphic to any computably compact space. We
summarise this below:

Corollary 4.52 [91, 95]. In the classes of connected compact abelian and
profinite abelian groups there exist examples of computably metrizable groups
no computable metrization of which can compute Haar measure.

4.11. Some further open questions. In Section 4.4 we explained why
the characterisation problem and the isometric isomorphism problem for
compact sets are arithmetical, and also why the homeomorphism problem
for compact Polish spaces is Σ1

1-complete. Similar results for compact Polish
groups can be found in [95]. The following related questions are left open:

Question 4.53.

(1) (Melnikov and Harrison-Trainor28) What is the complexity of the
isomorphism problem for (not necessarily compact) Polish spaces?
(Is the naive upper bound optimal?)

(2) (Melnikov and Harrison-Trainor) What is the complexity of the
characterisation problem ti :Mi –hom S3u for the 3-sphere S3? What
about the 2-ball? More generally, is it true that the (topological)
characterisation problem ti :Mi –hom Su for any compact manifold
S is arithmetical?

It is known that the characterisation problem or every compact 2-surface
(including the 2-sphere, obviously) is arithmetical [58]. They key step in
their proof produces an arithmetical atlas of a given computable surface.

Question 4.54 (Melnikov and Harrison-Trainor [58]). Suppose S is a
computably compact manifold. Does S admit an arithmetical atlas?

28This question and question (2) below have been posed in [58] in a slightly different form.
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We have already mentioned above that the index set approach has not
yet been applied to the effective enumeration of all (partial) computably
compact spaces. This seems reasonable assuming the thesis of the article
(that computable compactness is a natural approach to computability in the
compact case). Also, there are not many arithmetical completeness index
set results in the literature (some can be found in [95]). The approach
via computable compactness seems rather natural for such potential
completeness results in the compact case (cf. Remark 4.31).

Question 4.55.

(1) Develop the index set approach to classification using the enumeration
of all (partial) computably compact spaces.

(2) Prove completeness results for the arithmetical index set estimates
stated above and also for other results that can be found in, e.g., [38,
58, 91].

In Section 4.4 we also explained how to construct a compact computable
Polish space not homeomorphic to any computably compact space; this
is Theorem 4.40. We also conjectured that a 03 proof can be used to
replace algebraic topology, but this approach is by no means elementary (if
it works). It is rather natural to ask whether there is a less involved proof of
Theorem 4.40. The question below is, of course, loosely stated.

Question 4.56. Find an elementary (elegant?) proof of Theorem 4.40.

In Section 4.3 we discussed an application of computable compactness
to constructing basic sequences in computable Banach spaces. Bosserhoff
[13] constructed a computable Banach space with a Schauder basis and no
computable Schauder basis, and Downey, Long, and Greenberg [90] showed
that the index set of computable Banach spaces with computable bases is
Σ0

3 complete. Using the characterisation of Schauder bases together with
computable compactness, it is possible to show [90] that having a basis is a
Σ1

1 property. The following question seems rather challenging.

Question 4.57. Is the complexity of the index set ti |Wi is a computable
Banach space with a Schauder basisu Σ1

1 complete?

There are many interesting open questions in the area of computable
Banach spaces (see, e.g., [90]). It is highly plausible that computable
compactness can be used to attack some of these questions.

Algebraic topology has played a considerable role in many proofs
throughout the paper. We believe that there is much more to be said about
the algorithmic content of algebraic topology, so we state:

Problem 4.58. Develop a general theory of computable algebraic topol-
ogy and computable homological algebra.
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Classically, the class of locally compact spaces is perhaps the narrowest
natural class that contains both compact and discrete spaces. There have
been many attempts to define effective local compactness in the literature
(e.g., [119]). Nonetheless, it seems that there is no commonly accepted and
robust notion that would be considered “standard.”

Problem 4.59. Suggest a robust (and useful) notion of effectively locally
compact Polish space.

We of course do not exclude the possibility that some of the known
definitions will already be good enough, but certainly we need to accumulate
more results to draw any conclusions.

Our last problem is concerned with primitive recursive analysis. His-
torically a lot of elementary computable analysis was in fact developed
primitively recursively (see, e.g., book [52]). However, gradually, primitive
recursiveness was abandoned, perhaps because of technical difficulties that
arise while dealing with primitive recursive procedures. Beginning with the
1980s pretty much all computable analysis has been done using general
Turing computability (see [124, 146]). On the other hand, there has been an
increasing interest in polynomial-time analysis of continuous functions (see
book [81]). Recently in [39, 131, 132], it has been proposed to revive primitive
recursive analysis using modern methods; this program could potentially
serve as a link between abstract computable analysis and the more practical
polynomial time and computational analysis.

For instance, say that a Polish space is punctual is the distances between
special points are uniformly primitive recursive nonzero reals (to avoid
dealing with equality). Some recent results about punctual spaces can be
found in [5]. The role of compactness in primitive recursive analysis is very
poorly understood. For example, using computable compactness of [0, 1],
it is easy to show that every computable continuous function on [0, 1] is
effectively uniformly continuous, i.e., has a computable modulus of uniform
continuity. The last section of [39] outlines a primitive recursive version of
this elementary fact. The proof also uses compactness, but it uses it rather
differently from the usual proof. On the other hand, one of the main results
in [5] relies on the standard computable compactness (in the sense of this
paper) to establish a primitive recursive result. So perhaps more insight is
needed to attack the following:

Problem 4.60. Give a robust (and useful) definition of a punctually
compact space.

We suspect that there are several potentially useful definitions of a
punctually compact space that are not equivalent. For instance, we
would like to know whether the results discussed in this paper, especially
Theorem 1.1, hold primitively recursively.

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.16


256 RODNEY G. DOWNEY AND ALEXANDER G. MELNIKOV

Acknowledgments. We thank our colleagues Arno Pauly, Victor Selivanov,
and Andre Nies for providing us with many useful references. We also thank
the two anonymous referees for many useful suggestions, comments, and
further references.

Funding. Downey was partially supported by the Marsden Fund of New
Zealand. Melnikov was supported by the Rutherford Discovery Fellowship
(Wellington) RDF-MAU1905, Royal Society Te Aparangi.

REFERENCES

[1] O. Aberth, Computable Analysis, McGraw-Hill, New York, 1980.
[2] P. Alexandroff, Untersuchungen über gestalt und Lage Abgeschlossener Mengen

Beliebiger dimension. Annals of Mathematics. Second Series, vol. 30 (1928/29), nos. 1–4,
pp. 101–187.

[3] C. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland, Amsterdam,
2000.

[4] J. Avigad and V. Brattka, Computability and analysis: The legacy of Alan Turing,
Turing’s Legacy: Developments from Turing’s Ideas in Logic (R. Downey, editor), Lecture
Notes in Logic, vol. 42, Association for Symbolic Logic, La Jolla, 2014, pp. 1–47.

[5] R. Bagaviev, I. Batyrshin, N. Bazhenov, D. Bushtets, M. Dorzhieva, R. Kornev,
A. Melnikov, K. M. Ng, and H. T. Koh, Computably and punctually universal spaces,
preprint, 2021.

[6] J. Barrett, R. Downey, and N. Greenberg, Cousin’s lemma in second-order
arithmetic. Proceedings of the American Mathematical Society Series B, vol. 9 (2022),
pp. 111–124.

[7] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov, Foundations of online
structure theory, this Journal, vol. 25 (2019), no. 2, pp. 141–181.

[8] N. Bazhenov, M. Harrison-Trainor, and A. Melnikov, Computable Stone spaces,
preprint, 2021, arXiv:2107.01536.

[9] I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov, Model theory
for metric structures, Model Theory with Applications to Algebra and Analysis, vol. 2 (Z.
Chatzidakis, D. Macpherson, A. Pillay, and A. Wilkie, editors), London Mathematical
Society Lecture Note series, vol. 350, Cambridge University Press, Cambridge, 2008, pp.
315–427.

[10] I. Ben Yaacov and A. P. Pedersen, A proof of completeness for continuous first-order
logic. Journal of Symbolic Logic, vol. 75 (2010), no. 1, pp. 168–190.

[11] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
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Science, Birkhäuser, Boston, 1991.
[82] K.-I. Ko and H. Friedman, Computational complexity of real functions. Theoretical

Computer Science, vol. 20 (1982), no. 3, pp. 323–352.

https://doi.org/10.1017/bsl.2023.16 Published online by Cambridge University Press

https://arxiv.org/abs/2004.06872
https://doi.org/10.1017/bsl.2023.16


260 RODNEY G. DOWNEY AND ALEXANDER G. MELNIKOV

[83] M. Korovina and O. Kudinov, Towards computability over effectively enumerable
topological spaces, Proceedings of the Fifth International Conference on Computability and
Complexity in Analysis (V. Brattka, R. Dillhage, T. Grubba, and A. Klutsch, editors),
Electronic Notes in Theoretical Computer Science, vol. 221, Elsevier, Amsterdam, 2008,
pp. 115–125.

[84] ———, The Rice–Shapiro theorem in computable topology. Logical Methods in
Computer Science, vol. 13 (2017), no. 4, Paper no. 30, 13 pp.

[85] ———, Highlights of the Rice–Shapiro theorem in computable topology, Perspectives
of System Informatics (A. Pnueli, I. Virbitskaite, and A. Voronkov, editors), Lecture Notes
in Computer Science, vol. 10742, Springer, Cham, 2018, pp. 241–255.

[86] G. Kreisel, A variant to Hilbert’s theory of the foundations of arithmetic. British
Journal for the Philosophy of Science, vol. 4 (1953), pp. 107–129; errata and corrigenda, vol.
357 (1954).

[87] O. Kudinov and V. Selivanov, First order theories of some lattices of open sets.
Logical Methods in Computer Science, vol. 13 (2017), no. 3, Paper no. 16, 18 pp.
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