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Abstract

The authors investigate
max min fiF(x) F(y)

for two standard distance functions F in R2, where /i denotes the area of {x e /?*; F(x)^ 1},
the maximum is over all (geometric) lattices A in /?2 and the minimum is over all positive points
x e A and y e A* (the polar lattice of A). An application is given to a problem on fractional
parts.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 E 05.

Let A be a (geometric) lattice in Rn and let

A* = {yeRn: y.xeZ for all

denote the polar lattice. It is well known that if A = 7T, where T is a nonsingular
linear transformation and F is the lattice of all points with integer coordinates, then
A* = T* T, where T* is the inverse transpose of T. Let F be a distance function
for which the set

CF = {xeRn:F(x)<l}

is a symmetric convex body. If /* denotes the volume of CF, then Minkowski's
convex body theorem states that there exists a point * / 0 of A such that

Since d(A*)d(A) = 1 we therefore have the existence of nonzero points xeA,
ye A* such that

(1) n*'nF
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[2] Positive points in polar lattices 349

For n = 2 this result is best possible when F(xx, x^) = | x1 \+\ x2 | and A is the lattice
generated by (1,0) and (1/2,1/2). In this particular case we can in fact choose
xeA, ye A* satisfying (1) and the further condition that they lie in the interior
P° of the positive cone

One is therefore led to ask what can be said about fi2/n F(x) F(y) with x, y nonzero
points of A, A*, respectively, when x and y are restricted to lie in either P or P°.
A little trial and error suggests that xeP°, yeP° is a little too strict a condition, f
Considering F(xltx^) = | Jtr̂  | -+-1 JC2 | and A generated by (1,0) and (—t, t), where t
is a positive integer, we have

for all xeP°, yeP°, and so any upper bound on y.F(x)F{y) under these conditions
would depend on both F and A. The next condition to be considered would be
xeP, yeP° (or, equivalently, xeP°,yeP), and the aim of this paper is to give an
upper bound depending only on F for a couple of standard distance functions F.
We show

THEOREM 1. Let Ft denote the distance function on R2 defined by

where t>0, and let A be a lattice in R2. Then there exist nonzero xePnA,yeP°nA*
such that

THEOREM 2. Let Gt denote the distance function on R2 defined by

where t>0, and let A denote a lattice in R2. Then there exist nonzero xePnA,
yeP°nA* such that

Theorems 1 and 2 are best possible in that, for example, equality holds for any
multiple of the lattice generated by (1,0) and (0,r-1).

The applications of these theorems are to lattices A containing F, for then A*
consists entirely of integral points. For example, we have

t Henceforth x will always stand for a non zero point of A and y a non zero point of A*.
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COROLLARY 1. Let A be a lattice in R2 containing F. Then there exists
(x^x^eAnP and positive integers I, m such that

(2) lxx+mx2eZ

and

This is just the case t = 1 of Theorem 1, though (2) is weaker than the requirement
that (xlt x^) and (l,m) lie in polar lattices.

COROLLARY 2. Let 8lt 02 be rationals. Then there exist positive integers I, m such
that ld1+m62eZ, and a positive integer t such that

(3)

where {x} denotes the fractional part ofx.

This is just Corollary 1 applied to the lattice of all points of the form
(tO1+a1,t62+a^) with av a2 integral. Of course using Theorem 2 in place of
Theorem 1 would replace (3) by

(3') 0 < W + W < 2 / ( / 2 + m 2 ) .

In addition, if || 6x\\ denotes min({x}, 1 -{x}), then, since || td\\^{tO} and || tO\\ = 0
only when {td} = 0, we can clearly replace {td} by || td\\ in (3) and (3').

It will be observed that Corollary 2 is best possible in some cases. For example,
if k is integral then when 8± = 62 = k~x and when 6X = k*1, 82 = 1 —k~x we are
dealing with lattices requiring equality in Theorem 1 (when t = 1) and Corollary 2.

The inequality (3) can be compared with the results for 6lt 02 not necessarily
rational, which are as follows.

Firstly, if 0l5 d%, 1 are independent over the rationals then the right-hand side
of (3) can be replaced by e for any s > 0. A similar situation occurs when 8lt 82

satisfy a relation of the type I81—m82 = n with /, m, n positive integers. However,
if 6lt 62 satisfy a relation of the type I81+m82 = n with /, m, n positive integers, then
if (l,m,n) = 1 the best that can be said is that the right-hand side of (3) can be
replaced by I/max(l,m).

PROOF OF THEOREM 1. The proof uses the fact that (d,c)/d(A) lies in A* when
(—c,d)eA. Let ax = (a, b)#(0,0) be a point of AnP such that a+bt is minimal
and let (—c,d) be a point of A in the second quadrant

Q = {(jc1,x2)e.R2: J C 1 < 0 , X 2 > 0 }
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such that ct+d is minimal. It is clear that

contains no nonzero point of A, and so by Minkowski's linear forms theorem
(Cassels (1959), p. 73) we have

d(A) >(a+bt) (ct+d)/(l +t2).

The theorem now follows immediately on setting x = a1; y = (d, c)/d(A) and
it. = 2t~\

PROOF OF THEOREM 2. The basic idea behind the proof of this theorem is the
same as for the previous theorem, but Minkowski's theorem is not strong enough
in this case. Let x = (a,b)^(0,0) be a point of AnP such that A2 = a2 + t2b2 is
minimal, and let (—c,d) be a point of An Q such that B2 = t2c2 + d2 is minimal.
Since y = (d, c)/d(A) lies in A* nP°, we only need to show

(4) r ^ B ^ ( ( ! + r ! ) ! ( / ( A )

in order to prove the theorem. We assume without loss of generality that a^O
and that m 4, t where b = am, for interchanging the roles of the coordinates replaces
m by m~x and / by t~\

Since x is a primitive lattice point there is a basis {x, y) of A, and replacing y by
—y if necessary we may take y to lie on the line

*2 = m x \

where e > 0. Furthermore, the lattice points y+nx, for integral n, lie on L at equally
spaced intervals of length lx = a{\ +/n2)* and so L cannot intersect

: t2x2+x2<B2}u{(xuX2)eP: x2 + t2x2<A2}

in a continuous segment of length greater than lv We now establish the inequality

(5) Be-l

which is equivalent to (4).
We note firstly that (5) is trivial if B^e and so we assume B>e. We let

/= H
and

h = e^Ae-1)2 (l+m2t2)- t2f - mt2}/(l + m21*).

Furthermore, we set ax = (—f,e—mf), a2 = (—em~l,0), px — (0,e), p2 = (h,mh + e)
and e0 = At-1 = a(

Then L meets T in a continuous line segment, of length /2, say, from the point a,
which is either ax or w2, to the point p, where p = p1 if e^e0 and p = p2 if e<e0.
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We consider the various possibilities,
(i) If e ̂  e0 then em'1 > a and so /2 > lx if a = az. However, when a = ax we have

which is an increasing funtcion of Be'1. When

(6) Be-1

we see that

/2 e-1 = {m(l + m2 f2)*+(t6+m2)*} (1 + m2)* (m2 + f V 1 0

> (/n2f+*3)(1 +m2f(m2+t2)-x(\

Hence if (5) is false we have, since e > e0, that

k > (k e~x) eo>t{\+ m2)* (1 + m2 /2)"* e0 =

which is impossible. Hence (5) must hold if e > e0.
(ii) If e < e0 we note that /2 < /x is equivalent to the inequality / + h 4, a. Since for

fixed e,f+h is an increasing function of B, (5) will follow on showing tha t /+A>a
when (6) holds. Suppose to the contrary t h a t / + A < a when (6) holds, that is,

(7) {m + [(t6+m2) (1 + m212)]*} (m2+f2)"1 - mt 2(1 + w2 f V

+ m2 f2)-1,

on writing o> for ae~x and re-arranging. The right hand side of this inequality
decreases as u> increases, and a> > (/w2 + /~2)~* and so (7) implies that

m + [06+w2) (1 + m212)]* (w2 +12) '1 <t(l+m21*)-\

Since squaring this yields

[0«+m2) (1 + /w2 f2)]* < /w(f4 - 1 ) ,

which is obviously impossible, we have reached the desired contradiction, and our
proof of Theorem 2 is complete.
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