ON THE NUMBER OF BINOMIAL COEFFICIENTS WHICH ARE DIVISIBLE BY THEIR ROW NUMBER: II

BY
NEVILLE ROBBINS

Abstract

If n is a natural number, let $A(n)$ denote the number of integers, k, such that $0<k<n$ and n divides $\binom{n}{k}$. Let $\phi(n)$ denote Euler's totient function. Necessary and sufficient conditions are given so that $A(n)=\phi(n)$ when n is square-free.

Introduction. Let n be a non-negative integer. In Pascal's triangle, we find $\binom{n}{k}$ in the $k^{\text {th }}$ position of row n, with $0 \leq k \leq n$. We therefore say that n is the row number of $\binom{n}{k}$. Following [3], Definition 1, if n is positive, let $A(n)$ denote the number of integers, k, such that $0<k<n$ and $n \left\lvert\,\binom{ n}{k}\right.$. Let p denote a prime. $\phi(n)$ denotes Euler's totient function.

In [3], we showed that (i) $A(n) \geq \phi(n)$ for all n; (ii) $A(n)=\phi(n)$ if $n=p^{e}$, $e \geq 1$, or n is twice a Mersenne prime. In this note, we find necessary and sufficient conditions that $A(n)=\phi(n)$ when n is square-free. We then consider in some detail the cases where n is a product of 2 or 3 distinct primes. In the former case, a number of solutions of $A(n)=\phi(n)$ are presented in Table 1 below; in the latter case, one solution is obtained, thus disproving a conjecture of P. Erdös [2].

Let $\omega(n)$ be the number of distinct prime factors of n, while $d(n)$ is the number of divisors of n .

Definition 2. $O_{n}(m)=k$ if $n^{k} \mid m$ but $n^{k+1} \nmid m$, where $k \geq 0$.
DEFINITION 3. $t_{p}(n)=\sum_{i=0}^{r} a_{i}$ if $n=\sum_{i=0}^{r} a_{i} p^{i}$, where $0 \leq a_{i}<p$ for each i.
Remark. Definitions 2 and 3 above correct errors which appeared in Definitions 2 and 3 of [3].

Preliminaries.

$$
\begin{align*}
& {[a]+[b] \leq[a+b] \leq[a]+[b]+1} \tag{1}\\
& O_{p}(a b)=O_{p}(a)+O_{p}(b) \\
& O_{p}(n!)=\sum_{k=1}^{\infty}\left[n / p^{k}\right] \\
& O_{p}\left(\binom{n}{k}\right)=\left[\left\{t_{p}(k)+t_{p}(n-k)-t_{p}(n)\right\} /(p-1)\right]
\end{align*}
$$

Received by the editors January 17, 1984 and, in revised form, August 23, 1984.
AMS Subject Classification: 10A99.
(C) Canadian Mathematical Society 1984.

TABLE 1

p	j	a	q	p	${ }^{j}$	a	q
2	2	1	3	13	2	12	2027
2	3	1	7	17	1	4	67
2	5	1	31	17	1	6	101
2	7	1	127	17	1	16	271
2	13	1	8191	17	2	2	577
3	1	2	5	17	2	6	1733
3	2	2	17	17	2	8	2311
3	3	2	53	17	2	12	3467
3	7	2	4373	17	3	16	78607
3	8	2	13121	19	1	2	37
5	1	4	19	19	1	6	113
5	4	2	1249	19	1	8	151
5	6	2	31249	19	1	12	227
7	1	2	13	19	2	8	2887
7	1	6	41	19	3	12	82307
7	2	2	97	23	1	6	137
7	2	6	293	23	1	10	229
7	4	2	4801	23	1	16	367
7	5	2	33613	23	2	8	4231
11	1	4	43	23	2	18	9521
11	1	10	109	29	1	6	173
11	2	2	241	29	1	12	347
11	2	8	967	29	1	16	463
11	3	4	5323	29	1	18	521
11	3	10	13309	29	1	28	811
13	1	8	103	29	2	12	10091
13	2	2	337	29	2	18	15137
13	2	6	1013	29	2	24	20183

(5) $\quad O_{p}\left(\binom{b p^{k}}{a p^{j}}\right)=O_{p}\left(\binom{b p^{k-j}}{a}\right)$ if $p \nmid a b, \quad j \leq k$, and $0<a<b p^{k-j}$
(6) $\quad A(n) \geq \phi(n)$ for all n
$\omega\left(2^{j}-1\right) \geq d(j)-1$ if $j \neq 6$
Remarks. (1) through (4) are elementary; (5) is [3], Theorem 3; (6) is [3], Corollary 1. (7) follows from Theorem V in [1].

The main results.

Lemma 1. (i) $A(n)=\phi(n)$ if and only if (ii) $n\}\binom{n}{k}$ for all k such that $0<k<n$ and $(k, n)>1$.

Proof. Follows from (6) and from the fact that (ii) is equivalent to: $A(n) \leq \phi(n)$.
Lemma 2. Let $p<t$. Then (i) $p \nmid\binom{t}{m}$ for all m such that $0<m<t$ if and only if (ii) $t=a p^{j}-1$, where $0<a<p$ and $0<j$.

Proof. (ii) implies (i): hypothesis implies $t=(a-1) p^{j}+\sum_{i=0}^{j-1}(p-1) p^{i}$. Let $m=\sum_{i=0}^{j} b_{i} p^{i}$, with $0 \leq b_{i} \leq p-1$ for all i. Now $m<t$ implies $b_{j} \leq a-1$. Therefore $t-m=\left(a-1-b_{j}\right) p^{j}+\sum_{i=0}^{j-1}\left(p-1-b_{i}\right) p^{i}$, so that $t_{p}(t-m)=t_{p}(t)-t_{p}(m)$. Therefore (4) implies $p \nmid\binom{t}{m}$.
(i) implies (ii): Let $t=\sum_{i=0}^{j} c_{i} p^{i} \neq a p^{j}-1$. Let r be the least integer such that $0 \leq r \leq j-1$ and $c_{r}<p-1$. (By hypothesis, r exists.) Let $m=\left(c_{r}+1\right) p_{r}$. Therefore

$$
t-m=\sum_{i=r+2}^{j} c_{i} p^{i}+\left(c_{r+1}-1\right) p^{r+1}+(p-1) p^{r}+\sum_{i=0}^{r-1} c_{i} p^{i},
$$

so that $t_{p}(t-m)+t_{p}(m)-t_{p}(t)=p-1$, and therefore (4) implies $p \left\lvert\,\binom{ t}{m}\right.$.
Lemma 3. If p is prime, $p \nmid m t$, and s is arbitrary, then $p \left\lvert\,\binom{ p s t}{s m}\right.$.
Proof. First suppose $p \nmid s$. Applying (2), it suffices to show that $O_{p}((p s t)!)>$ $O_{p}((s m)!)+O_{p}((p s t-s m)!)$. By virtue of (1) and (3), we need merely find one $k \geq 1$ such that

$$
\left[p s t / p^{k}\right]>\left[s m / p^{k}\right]+\left[(p s t-s m) / p^{k}\right] .
$$

The required value of k is 1 . If $p \mid s$, the same conclusion holds by appeal to (5).
Definition 4. If $n=\prod_{i=1}^{r} p_{i}$, where $r \geq 2$ and the p_{i} are primes such that $p_{j}<p_{k}$ whenever $j<k$, let $n_{i}=n / p_{i}$ for each i.

Lemma 4. If n and n_{i} are as in Definition 4 above, then $p_{r}^{r-1}>1+n_{r}$ unless $n=$ 6.

Proof. If $r=2$, then hypothesis implies $p_{2}>p_{1}+1$. But $n_{2}=p_{1}$, so $p_{2}>$ $n_{2}+1$. If $r \geq 3$, then since $p_{i}<p_{r}$ for all $i<r$, we have $p_{r}^{r-2}>n / p_{r-1} p_{r}$. Let $p_{r}=$ $d+p_{r-1}$. Therefore $p_{r}^{r-1}>\left(d+p_{r-1}\right) n / p_{r-1} p_{r}=d n / p_{r-1} p_{r}+n / p_{r}>1+n_{r}$.

Theorem 1. Let n and n_{i} be as in Definition 4 above. Then $A(n)=\phi(n)$ if and only if (i) $n_{i}=a_{i} p_{i}^{j_{i}}-1,0<a_{i}<p_{i}, 0<j_{i}$ for all $i<r$, and (ii) $p_{r}>n_{r}$ or $n_{r}=$ $a_{r} p_{r}^{j_{r}}-1,0<a_{r}<p_{r}, 0<j_{r}<r-1$.

Proof. By Lemma 1, (I) $A(n)=\phi(n)$ if and only if for all i, (II) $n \nmid\binom{n}{p_{i} m_{i}}$ for all m_{i} such that $0<m_{i}<n_{i}$. If $k \neq i$, then Lemma 3 implies $p_{k} \left\lvert\,\binom{ n}{p_{i}}\right.$, so that (II) simplifies to: $p_{i} \nmid\binom{n}{p_{i} m_{i}}$ for all m_{i} such that $0<m_{i}<n_{i}$. Using (5), (II) becomes: $p_{i} \nmid\binom{n_{i}}{m_{i}}$ for all m_{i} such that $0<m_{i}<n_{i}$. If $i<r$, then by Lemma 2, (II) holds precisely when $n_{i}=a_{i} p_{i}^{j_{i}}-1$, with $0<a_{i}<p_{i}$ and $0<j_{i}$. If $i=r$, then (II) holds if and only if $p_{r}>n_{r}$ (which is trivially true if $r=2$) or by Lemma $2, n_{r}=a_{r} p_{r}^{j_{r}}-1$, with $0<$ $a_{r}<p_{r}$ and $0<j_{r}$. In the latter case, we may assume $r \geq 3$. Therefore Lemma 4 implies $p_{r}^{r-1}>1+n_{r}$. But $n_{r} \geq p_{r}^{j_{r}}-1$, so $p_{r}^{r-1}>p_{r}^{j_{r}}$, and therefore $j_{r}<r-1$.

Corollary 1. If p, q are primes with $p<q$, then $A(p q)=\phi(p q)$ if and only if $q=a p^{j}-1$, with $0<a<p, 0<j$.

Proof. Follows from Theorem 1 with $p=p_{1}=n_{2}, q=p_{2}, r=2$.

Table 1 below lists all pairs of primes p, q such that $p<q, p<30, q<10^{5}, q=$ $a p^{j}-1,0<a<p, 0<j$.

Theorem 2. If $A(p q r)=\phi(p q r)$ where p, q, r are primes with $p<q<r$, then (i) $q r=a p^{j}-1,0<a<p, 0<j$; (ii) $p r=b q^{k}-1,0<b<q, 0<k$; (iii) $p q<r$.

Proof. By Theorem 1, it suffices to show that ${ }^{(* *)} p q=c r-1$ is impossible. If ${ }^{(* *)}$ holds, then $r=(p q+1) / c>q$ implies $\left({ }^{(* *)}\right) c \leq p$. (ii) implies $p(p q+1)=$ $c b q^{k}-c$, so that $p+c=u q .\left({ }^{* *}\right)$ implies $p+c$ is odd, so u is odd. If $u \geq 3$, then $3 p<3 q \leq p+c$, so that $c \geq 2 p$, contradicting (${ }^{(* * *) \text {. Therefore } u=1 \text {, so } p+c=~}$ q, and we have $p(p+c)=c r-1$, which implies $c(r-p)=p^{2}+1$. If $c=1$, then $p=2$, so $q=3$ and $r=7$, which contradicts (i). If $p=2$, then $c(r-2)=5$ implies $c=1, r=7, q=3$, again contradicting (i). If $c>1$, then p is odd, so c and $r-p$ are even. But then $p^{2}+1 \equiv 0(\bmod 4)$, an impossibility.

Now consider $\left(^{*}\right) A(p q r)=\phi(p q r)$ where p, q, r are primes with $p<q<r$.
Case 1. Let $p=2$. Then Theorem 2 implies: (i) $q r=2^{j}-1$; (ii) $2 r=b q^{k}-1$, $0<b<q, 0<k$; (iii) $2 q<r$.

Now (i) implies $\omega\left(2^{j}-1\right)=2$. Since $2^{6}-1=3^{2 *} 7 \neq q r$, we know $j \neq 6$. Therefore (7) implies $d(j) \leq 3$, which implies $j=t^{m}$, where t is prime and $m=1$ or 2. If $m=1$, then there is no $j<100$ such that (i) and (ii) are compatible.

If $m=2$, we have $q r=2^{t^{2}}-1=\left(2^{t}-1\right)\left(\left(2^{t^{2}}-1\right) /\left(2^{t}-1\right)\right)$. Since $q<r$, we have $q=2^{t}-1, r=\left(2^{t^{2}}-1\right) /\left(2^{t}-1\right)=\left((q+1)^{t}-1\right) / q=\sum_{i=1}^{t}\binom{t}{i} q^{i-1}=t+$ $\sum_{i=2}^{t}\binom{t}{i} q^{i-1}$, which implies $q \mid(r-t)$, hence $q \mid(2 r-2 t)$. But (ii) implies $q \mid(2 r+1)$, so that $q \mid(2 t+1)$. Now $2^{t}-1>2 t+1$ for $t>3$, and $\left(2^{2}-1\right) \npreceq(2 * 2$ +1), so we must have $t=3, q=7, r=73$. (ii) holds with $b=3, k=2$, and (iii) holds since $14<73$. Therefore $1022=2 * 7 * 73$ is a solution of $(*)$.

Now suppose $p \geq 3$. By Theorem 2, we have:
(i) $q r=2 a p^{j}-1,1 \leq a \leq \frac{1}{2}(p-1), 0<j$
(ii) $p r=2 b q^{k}-1,1 \leq b \leq \frac{1}{2}(q-1), 0<k$
(iii) $p q<r$

Eliminating r between (i) and (ii), one obtains:
(iv) $a p^{j+1}+\frac{1}{2}(q-p)=b q^{k+1}$.

Lemma 5. In (ii), if $2 b=c^{2}$, then k is odd.
Proof. If $k=2 m$, then hypothesis and (ii) imply $p r=c^{2} q^{2 m}-1=\left(c q^{m}-1\right)$ $\left(c q^{m}+1\right)$, so that $p=c q^{m}-1, r=c q^{m}+1$. But then $r=p+2$, an impossibility, since $r \geq p+4$.

CASE 2. Let $p=3$. Therefore $a=1$ in (i) and we have:
(i) $q r=2\left(3^{j}\right)-1,0<j$
(ii) $3 r=2 b q^{k}-1,1 \leq b \leq \frac{1}{2}(q-1), 0<k$
(iii) $3 q<r$
(iv) $3^{j+1}+\frac{1}{2}(q-3)=b q^{k+1}$.

Lemma 6. If $p=3$ in $\left({ }^{*}\right)$, then $3^{j+1} \equiv \frac{1}{2}(q+3)(\bmod q)$.
Proof. Follows from hypothesis and (iv).
Theorem 3. If $p=3$ in $\left(^{*}\right)$, then $q \notin\{11,13,37,41,59,61,67,73,83$, etc. $\}$
Proof. Follows from Lemma 6.
Lemma 7. If $p=3$ in $(*)$, then $b \equiv \frac{1}{2}(q-1)(\bmod 2)$.
Proof. Follows from (iv).
Lemma 8. Let $p=3$ in $\left(^{*}\right)$. If $q \equiv 1(\bmod 3)$, then $b \equiv 2(\bmod 3)$; if $q \equiv-1$ $(\bmod 3)$, then $b \equiv(-1)^{k+1}(\bmod 3)$.

Proof. Follows from (ii).
Lemma 9. Let $p=3$ in (*). If $q \equiv 1(\bmod 12)$, then $b \equiv 2(\bmod 6)$; if $q \equiv 7$ $(\bmod 12)$, then $b \equiv 5(\bmod 6)$.

Proof. Follows from Lemmas 7 and 8.
CASE 2.1. Let $p=3, q=5$ in (*). (ii) implies $1 \leq b \leq 2$; Lemma 7 implies b is even, so $b=2$. Now Lemma 5 implies k is odd, but then Lemma 8 implies $b \equiv 1$ $(\bmod 3)$, an impossibility.

CASE 2.2. Let $p=3, q=7$ in (*). (ii) implies $1 \leq b \leq 3$. Lemma 9 implies $b \equiv$ $5(\bmod 6)$ so that $b \geq 5$, an impossibility.

Case 2.3. Let $p=3, q=17$ in (*). (ii) implies $1 \leq b \leq 8$; Lemmas 7 and 8 imply $b \in\{2,4,8\}$. (i) implies $2\left(3^{j}\right) \equiv 1(\bmod 17)$ so that $j \equiv 2(\bmod 16)$, and $2 \mid j$. (iv) implies $3^{j+1}+7=b\left(17^{k+1}\right)$ so that $3^{j-k} \equiv b(\bmod 7)$. Since $b \in\{2,4,8\}$, we have $2 \mid(j-k)$, so $2 \mid k$. Now Lemma 8 implies $b \equiv 2(\bmod 3)$, so that $b=2$ or 8 , contradicting Lemma 5.

CASE 2.4. Let $p=3, q=19$ in (*). (ii) implies $1 \leq b \leq 9$; Lemma 9 implies $b \equiv$ $5(\bmod 6)$, so $b=5$. (iv) implies $3^{j+1}+8=5\left(19^{k+1}\right)$, so that $3^{j-k} \equiv 5(\bmod 8)$, an impossibility.

Concluding Remarks. We have disposed of the cases $3=p<q \leq 19$ by generating congruence incompatibilities. This method seems to fail for the case $p=3, q=23$, but also works for the cases $5 \leq p<q \leq 19$. Therefore any solution of (*) such that p is odd must have $q \geq 23$.

References

1. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. 5 (1904), pp. 173-180.
2. P. Erdös, (private communication).
3. N. Robbins, On the number of binomial coefficients which are divisible by their row number, Canad. Math. Bull. 25(3) (1982), pp. 363-365.

Mathematics Department
San Francisco State University
San Francisco, CA 94132

