ON THE NUMBER OF BINOMIAL COEFFICIENTS WHICH ARE DIVISIBLE BY THEIR ROW NUMBER: II

ΒY

NEVILLE ROBBINS

ABSTRACT. If *n* is a natural number, let A(n) denote the number of integers, *k*, such that 0 < k < n and *n* divides $\binom{n}{k}$. Let $\phi(n)$ denote Euler's totient function. Necessary and sufficient conditions are given so that $A(n) = \phi(n)$ when *n* is square-free.

Introduction. Let *n* be a non-negative integer. In Pascal's triangle, we find $\binom{n}{k}$ in the k^{th} position of row *n*, with $0 \le k \le n$. We therefore say that *n* is the row number of $\binom{n}{k}$. Following [3], Definition 1, if *n* is positive, let A(n) denote the number of integers, *k*, such that $0 \le k \le n$ and $n \mid \binom{n}{k}$. Let *p* denote a prime. $\phi(n)$ denotes Euler's totient function.

In [3], we showed that (i) $A(n) \ge \phi(n)$ for all *n*; (ii) $A(n) = \phi(n)$ if $n = p^{e}$, $e \ge 1$, or *n* is twice a Mersenne prime. In this note, we find necessary and sufficient conditions that $A(n) = \phi(n)$ when *n* is square-free. We then consider in some detail the cases where *n* is a product of 2 or 3 distinct primes. In the former case, a number of solutions of $A(n) = \phi(n)$ are presented in Table 1 below; in the latter case, one solution is obtained, thus disproving a conjecture of P. Erdös [2].

Let $\omega(n)$ be the number of distinct prime factors of n, while d(n) is the number of divisors of n.

DEFINITION 2. $O_n(m) = k$ if $n^k | m$ but $n^{k+1} \not\mid m$, where $k \ge 0$.

DEFINITION 3. $t_p(n) = \sum_{i=0}^r a_i$ if $n = \sum_{i=0}^r a_i p^i$, where $0 \le a_i < p$ for each *i*.

REMARK. Definitions 2 and 3 above correct errors which appeared in Definitions 2 and 3 of [3].

PRELIMINARIES.

(1)
$$[a] + [b] \le [a + b] \le [a] + [b] + 1$$

(2)
$$O_p(ab) = O_p(a) + O_p(b)$$

œ

(3)
$$O_p(n!) = \sum_{k=1}^{\infty} [n/p^k]$$

(4)
$$O_p(\binom{n}{k}) = [\{t_p(k) + t_p(n-k) - t_p(n)\}/(p-1)]$$

Received by the editors January 17, 1984 and, in revised form, August 23, 1984. AMS Subject Classification: 10A99.

© Canadian Mathematical Society 1984.

481

T.	ABI	E	1
	101		

р	j	а	q	р	j	а	q
2	2	1	3	13	2	12	2027
2	3	1	7	17	1	4	67
2	5	1	31	17	1	6	101
2	7	1	127	17	1	16	271
2	13	1	8191	17	2	2	577
3	1	2	5	17	2	6	1733
3	2	2	17	17	2	8	2311
3	3	2	53	17	2	12	3467
3	7	2	4373	17	3	16	78607
3	8	2	13121	19	1	2	37
5	1	4	19	19	1	6	113
5	4	2	1249	19	1	8	151
5	6	2	31249	19	1	12	227
7	1	2	13	19	2	8	2887
7	1	6	41	19	3	12	82307
7	2	2	97	23	1	6	137
7	2	6	293	23	1	10	229
7	4	2	4801	23	1	16	367
7	5	2	33613	23	2	8	4231
11	1	4	43	23	2	18	9521
11	1	10	109	29	1	6	173
11	2	2	241	29	1	12	347
11	2	8	967	29	1	16	463
11	3	4	5323	29	1	18	521
11	3	10	13309	29	1	28	811
13	1	8	103	29	2	12	10091
13	2	2	337	29	2	18	15137
13	2	6	1013	29	2	24	20183

(5)
$$O_p\left(\binom{bp^k}{ap^j}\right) = O_p\left(\binom{bp^{k-j}}{a}\right)$$
 if $p \not\mid ab, j \leq k$, and $0 < a < bp^{k-j}$

(6)
$$A(n) \ge \phi(n)$$
 for all n

(7)
$$\omega(2^j - 1) \ge d(j) - 1$$
 if $j \ne 6$

REMARKS. (1) through (4) are elementary; (5) is [3], Theorem 3; (6) is [3], Corollary 1. (7) follows from Theorem V in [1].

The main results.

LEMMA 1. (i) $A(n) = \phi(n)$ if and only if (ii) $n \not| \binom{n}{k}$ for all k such that 0 < k < n and (k, n) > 1.

PROOF. Follows from (6) and from the fact that (ii) is equivalent to: $A(n) \le \phi(n)$.

LEMMA 2. Let p < t. Then (i) $p \not\mid {t \choose m}$ for all m such that 0 < m < t if and only if (ii) $t = ap^{j} - 1$, where 0 < a < p and 0 < j.

PROOF. (ii) implies (i): hypothesis implies $t = (a-1)p^j + \sum_{i=0}^{j-1} (p-1)p^i$. Let $m = \sum_{i=0}^{j} b_i p^i$, with $0 \le b_i \le p-1$ for all *i*. Now m < t implies $b_j \le a-1$. Therefore $t - m = (a-1-b_j)p^j + \sum_{i=0}^{j-1} (p-1-b_i)p^i$, so that $t_p(t-m) = t_p(t) - t_p(m)$. Therefore (4) implies $p \nmid {m \choose m}$.

(i) implies (ii): Let $t = \sum_{i=0}^{j} c_i p^i \neq a p^j - 1$. Let r be the least integer such that $0 \le r \le j - 1$ and $c_r . (By hypothesis, r exists.) Let <math>m = (c_r + 1)p_r$. Therefore

$$t-m=\sum_{i=r+2}^{j}c_{i}p^{i}+(c_{r+1}-1)p^{r+1}+(p-1)p^{r}+\sum_{i=0}^{r-1}c_{i}p^{i},$$

so that $t_p(t-m) + t_p(m) - t_p(t) = p - 1$, and therefore (4) implies $p \mid {t \choose m}$. LEMMA 3. If p is prime, $p \nmid mt$, and s is arbitrary, then $p \mid {pst \choose sm}$.

PROOF. First suppose $p \not\mid s$. Applying (2), it suffices to show that $O_p((pst)!) > O_p((sm)!) + O_p((pst - sm)!)$. By virtue of (1) and (3), we need merely find one $k \ge 1$ such that

$$[pst/p^k] > [sm/p^k] + [(pst - sm)/p^k].$$

The required value of k is 1. If $p \mid s$, the same conclusion holds by appeal to (5).

DEFINITION 4. If $n = \prod_{i=1}^{r} p_i$, where $r \ge 2$ and the p_i are primes such that $p_j < p_k$ whenever j < k, let $n_i = n/p_i$ for each i.

LEMMA 4. If n and n_i are as in Definition 4 above, then $p_r^{r-1} > 1 + n_r$ unless n = 6.

PROOF. If r = 2, then hypothesis implies $p_2 > p_1 + 1$. But $n_2 = p_1$, so $p_2 > n_2 + 1$. If $r \ge 3$, then since $p_i < p_r$ for all i < r, we have $p_r^{r-2} > n/p_{r-1}p_r$. Let $p_r = d + p_{r-1}$. Therefore $p_r^{r-1} > (d + p_{r-1})n/p_{r-1}p_r = dn/p_{r-1}p_r + n/p_r > 1 + n_r$.

THEOREM 1. Let n and n_i be as in Definition 4 above. Then $A(n) = \phi(n)$ if and only if (i) $n_i = a_i p_i^{j_i} - 1$, $0 < a_i < p_i$, $0 < j_i$ for all i < r, and (ii) $p_r > n_r$ or $n_r = a_r p_r^{j_r} - 1$, $0 < a_r < p_r$, $0 < j_r < r - 1$.

PROOF. By Lemma 1, (I) $A(n) = \phi(n)$ if and only if for all i, (II) $n \not\mid \binom{n}{p_i m_i}$ for all m_i such that $0 < m_i < n_i$. If $k \neq i$, then Lemma 3 implies $p_k \mid \binom{n}{p_i}$, so that (II) simplifies to: $p_i \not\mid \binom{n}{p_i m_i}$ for all m_i such that $0 < m_i < n_i$. Using (5), (II) becomes: $p_i \not\mid \binom{n_i}{m_i}$ for all m_i such that $0 < m_i < n_i$. If i < r, then by Lemma 2, (II) holds precisely when $n_i = a_i p_i^{j_i} - 1$, with $0 < a_i < p_i$ and $0 < j_i$. If i = r, then (II) holds if and only if $p_r > n_r$ (which is trivially true if r = 2) or by Lemma 2, $n_r = a_r p_r^{j_r} - 1$, with $0 < a_r < p_r$ and $0 < j_r$. In the latter case, we may assume $r \ge 3$. Therefore Lemma 4 implies $p_r^{r-1} > 1 + n_r$. But $n_r \ge p_r^{j_r} - 1$, so $p_r^{r-1} > p_r^{j_r}$, and therefore $j_r < r - 1$.

COROLLARY 1. If p, q are primes with p < q, then $A(pq) = \phi(pq)$ if and only if $q = ap^{j} - 1$, with 0 < a < p, 0 < j.

PROOF. Follows from Theorem 1 with $p = p_1 = n_2$, $q = p_2$, r = 2.

1985]

Table 1 below lists all pairs of primes p, q such that $p < q, p < 30, q < 10^5, q = ap^j - 1, 0 < a < p, 0 < j$.

THEOREM 2. If $A(pqr) = \phi(pqr)$ where p, q, r are primes with p < q < r, then (i) $qr = ap^{j} - 1, 0 < a < p, 0 < j$; (ii) $pr = bq^{k} - 1, 0 < b < q, 0 < k$; (iii) pq < r.

PROOF. By Theorem 1, it suffices to show that $(^{**}) pq = cr - 1$ is impossible. If $(^{**})$ holds, then r = (pq + 1)/c > q implies $(^{***}) c \le p$. (ii) implies $p(pq + 1) = cbq^k - c$, so that p + c = uq. (**) implies p + c is odd, so u is odd. If $u \ge 3$, then $3p < 3q \le p + c$, so that $c \ge 2p$, contradicting $(^{***})$. Therefore u = 1, so p + c = q, and we have p(p + c) = cr - 1, which implies $c(r - p) = p^2 + 1$. If c = 1, then p = 2, so q = 3 and r = 7, which contradicts (i). If p = 2, then c(r - 2) = 5 implies c = 1, r = 7, q = 3, again contradicting (i). If c > 1, then p is odd, so c and r - p are even. But then $p^2 + 1 \equiv 0 \pmod{4}$, an impossibility.

Now consider (*) $A(pqr) = \phi(pqr)$ where p, q, r are primes with p < q < r.

CASE 1. Let p = 2. Then Theorem 2 implies: (i) $qr = 2^{j} - 1$; (ii) $2r = bq^{k} - 1$, 0 < b < q, 0 < k; (iii) 2q < r.

Now (i) implies $\omega(2^j - 1) = 2$. Since $2^6 - 1 = 3^{2*7} \neq qr$, we know $j \neq 6$. Therefore (7) implies $d(j) \leq 3$, which implies $j = t^m$, where t is prime and m = 1 or 2. If m = 1, then there is no j < 100 such that (i) and (ii) are compatible.

If m = 2, we have $qr = 2^{t^2} - 1 = (2^t - 1)((2^{t^2} - 1)/(2^t - 1))$. Since q < r, we have $q = 2^t - 1$, $r = (2^{t^2} - 1)/(2^t - 1) = ((q + 1)^t - 1)/q = \sum_{i=1}^t {t \choose i} q^{i-1} = t + \sum_{i=2}^t {t \choose i} q^{i-1}$, which implies q|(r - t), hence q|(2r - 2t). But (ii) implies q|(2r + 1), so that q|(2t + 1). Now $2^t - 1 > 2t + 1$ for t > 3, and $(2^2 - 1) \not / (2^*2 + 1)$, so we must have t = 3, q = 7, r = 73. (ii) holds with b = 3, k = 2, and (iii) holds since 14 < 73. Therefore $1022 = 2^*7^*73$ is a solution of (*).

Now suppose $p \ge 3$. By Theorem 2, we have:

- (i) $qr = 2ap^{j} 1, 1 \le a \le \frac{1}{2}(p 1), 0 < j$
- (ii) $pr = 2bq^k 1, 1 \le b \le \frac{1}{2}(q 1), 0 < k$
- (iii) pq < r

Eliminating r between (i) and (ii), one obtains:

(iv) $ap^{j+1} + \frac{1}{2}(q-p) = bq^{k+1}$.

LEMMA 5. In (ii), if $2b = c^2$, then k is odd.

PROOF. If k = 2m, then hypothesis and (ii) imply $pr = c^2q^{2m} - 1 = (cq^m - 1)(cq^m + 1)$, so that $p = cq^m - 1$, $r = cq^m + 1$. But then r = p + 2, an impossibility, since $r \ge p + 4$.

CASE 2. Let p = 3. Therefore a = 1 in (i) and we have: (i) $qr = 2(3^{j}) - 1, 0 < j$ (ii) $3r = 2bq^{k} - 1, 1 \le b \le \frac{1}{2}(q - 1), 0 < k$ (iii) 3q < r (iv) $3^{j+1} + \frac{1}{2}(q-3) = bq^{k+1}$.

LEMMA 6. If p = 3 in (*), then $3^{j+1} \equiv \frac{1}{2}(q+3) \pmod{q}$.

PROOF. Follows from hypothesis and (iv).

THEOREM 3. If p = 3 in (*), then $q \notin \{11, 13, 37, 41, 59, 61, 67, 73, 83, \text{etc.}\}$

PROOF. Follows from Lemma 6.

LEMMA 7. If p = 3 in (*), then $b \equiv \frac{1}{2}(q - 1) \pmod{2}$.

PROOF. Follows from (iv).

LEMMA 8. Let p = 3 in (*). If $q \equiv 1 \pmod{3}$, then $b \equiv 2 \pmod{3}$; if $q \equiv -1 \pmod{3}$, then $b \equiv (-1)^{k+1} \pmod{3}$.

PROOF. Follows from (ii).

LEMMA 9. Let p = 3 in (*). If $q \equiv 1 \pmod{12}$, then $b \equiv 2 \pmod{6}$; if $q \equiv 7 \pmod{12}$, then $b \equiv 5 \pmod{6}$.

PROOF. Follows from Lemmas 7 and 8.

CASE 2.1. Let p = 3, q = 5 in (*). (ii) implies $1 \le b \le 2$; Lemma 7 implies b is even, so b = 2. Now Lemma 5 implies k is odd, but then Lemma 8 implies $b \equiv 1 \pmod{3}$, an impossibility.

CASE 2.2. Let p = 3, q = 7 in (*). (ii) implies $1 \le b \le 3$. Lemma 9 implies $b \equiv 5 \pmod{6}$ so that $b \ge 5$, an impossibility.

CASE 2.3. Let p = 3, q = 17 in (*). (ii) implies $1 \le b \le 8$; Lemmas 7 and 8 imply $b \in \{2, 4, 8\}$. (i) implies $2(3^{j}) \equiv 1 \pmod{17}$ so that $j \equiv 2 \pmod{16}$, and $2 \mid j$. (iv) implies $3^{j+1} + 7 = b(17^{k+1})$ so that $3^{j-k} \equiv b \pmod{7}$. Since $b \in \{2, 4, 8\}$, we have $2 \mid (j - k)$, so $2 \mid k$. Now Lemma 8 implies $b \equiv 2 \pmod{3}$, so that b = 2 or 8, contradicting Lemma 5.

CASE 2.4. Let p = 3, q = 19 in (*). (ii) implies $1 \le b \le 9$; Lemma 9 implies $b \equiv 5 \pmod{6}$, so b = 5. (iv) implies $3^{j+1} + 8 = 5(19^{k+1})$, so that $3^{j-k} \equiv 5 \pmod{8}$, an impossibility.

Concluding Remarks. We have disposed of the cases $3 = p < q \le 19$ by generating congruence incompatibilities. This method seems to fail for the case p = 3, q = 23, but also works for the cases $5 \le p < q \le 19$. Therefore any solution of (*) such that p is odd must have $q \ge 23$.

REFERENCES

1. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n - b^n$, Ann. of Math. 5 (1904), pp. 173-180.

1985]

N. ROBBINS

2. P. Erdös, (private communication).

3. N. Robbins, On the number of binomial coefficients which are divisible by their row number, Canad. Math. Bull. 25(3) (1982), pp. 363-365.

MATHEMATICS DEPARTMENT SAN FRANCISCO STATE UNIVERSITY SAN FRANCISCO, CA 94132

486