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On high-Taylor-number Taylor vortices
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Axisymmetric steady solutions of Taylor–Couette flow at high Taylor numbers are
studied numerically and theoretically. As the axial period of the solution shortens from
approximately one gap length, the Nusselt number goes through two peaks before returning
to laminar flow. In this process, the asymptotic nature of the solution changes in four
stages, as revealed by the asymptotic analysis. When the aspect ratio of the roll cell
is approximately unity, the solution has the Nusselt number proportional to the quarter
power of the Taylor number, and captures quantitatively the characteristics of the classical
turbulence regime. By shortening the axial period the Nusselt number can even reach the
experimental value around the onset of the ultimate turbulence regime. However, at higher
Taylor numbers, the theoretical predictions eventually underestimate the experimental
values. An important consequence of the asymptotic analyses is that the mean angular
momentum should become uniform in the core region unless the axial wavelength is too
short. The theoretical scaling laws deduced for the steady solutions can be carried over to
Rayleigh–Bénard convection.
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1. Introduction

Taylor–Couette flow (TCF) is perhaps among the most studied flows in fluid mechanics.
In the 100 years since Taylor’s monumental work (Taylor 1923), it has provided an
excellent testing ground for theoretical, experimental and numerical studies of rotating
shear flows. How shear and Coriolis forces alter flow characteristics is important in
various applications, and TCF was designed so that they can be adjusted easily by
changing the rotation speed of the inner and outer cylinders. Researchers have long
been fascinated by the numerous metastable flow patterns observed in the relatively
low-Taylor-number regime (e.g. Andereck, Liu & Swinney 1986). On the other hand, it was
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only a decade ago that the study of high-Taylor-number flows became active. Great efforts
were made to investigate the nature of turbulence in the parameter space by means of
high-Taylor-number experiments (e.g. Dennis et al. 2011; Paoletti & Lathrop 2011; van Gils
et al. 2011, 2012; Huisman et al. 2012) and direct numerical simulations (e.g. Ostilla et al.
2013; Brauckmann & Eckhardt 2013, 2017; Ostilla-Mónico et al. 2014a,b). As summarised
in the review paper by Grossmann, Lohse & Sun (2016), and in fact seen in the pioneering
experiments by Lathrop, Fineberg & Swinney (1992) and Lewis & Swinney (1999), fully
developed turbulence has a surprisingly clean asymptotic character, while there seems to
be no definitive Navier–Stokes-based theory to explain it.

This study aims to reveal the asymptotic properties of steady axisymmetric solutions at
high Taylor numbers and to compare them with the experimental and numerical results.
The analysis of such solutions, known as Taylor vortex solutions, goes back to the weakly
nonlinear analysis, for example, by Davey (1962). With modern computational power,
it is possible to calculate solutions up to the Taylor number used in the experiments.
Of course, the use of Newton’s method is essential as the solution is unstable in the
high-Taylor-number regime.

The idea that an unstable solution with a relatively simple structure with respect to time
can capture some characteristics of turbulence is not as absurd as one might think. It is
well known in dynamical systems theory that chaotic dynamics can be approximated by a
sufficiently large number of periodic orbits (see e.g. Cvitanović et al. 2012). For moderate
Reynolds number shear flows, it was reported repeatedly that a good approximation of the
turbulent dynamics can be obtained with a small number of periodic orbits (Kawahara,
Uhlmann & van Veen 2012; Willis, Cvitanović & Avila 2013; Krygier, Pughe-Sanford &
Grigoriev 2021). In phase space, these periodic orbits usually appear with stationary or
travelling wave solutions in their vicinity. The advantage of focusing on simple solutions
is that their asymptotic nature may be justified theoretically by mathematical analyses.
Over the past decade, it has been established that the matched asymptotic expansion is
a powerful tool in understanding the behaviour of steady or travelling wave solutions in
shear flows (Hall & Sherwin 2010; Deguchi, Hall & Walton 2013; Deguchi & Hall 2014a,b;
Deguchi 2015; Dempsey et al. 2016; Deguchi & Walton 2018). Therefore if we are allowed
to assume that there is a simple solution that roughly captures the scaling properties of
turbulence within the vast phase space, then there is hope for a logical explanation of the
scaling from first principles.

In the high-Taylor-number numerical and experimental studies, the parameter
dependence of angular momentum transport was a major focus. The driving force behind
those studies was the ‘analogy’ between turbulent Rayleigh–Bénard convection (RBC)
and TCF. This analogy was well known at least in the 1960s, and has risen and fallen
throughout the history of turbulence research (Bradshaw 1969; Dubrulle & Hersant 2002).
Recent studies have been influenced by Eckhardt, Grossmann & Lohse (2007), who argued
that the phenomenology of RBC turbulence proposed by Grossmann & Lohse (2000) can
be applied to TCF as well. Shortly after, the aforementioned high-Taylor-number TCF
experiments confirmed that the scaling of the Nusselt number Nu is similar to that observed
for RBC by He et al. (2012) (Nu for TCF is defined as the torque on the cylinder wall
normalised by its laminar value). It should be remarked that despite the analogy that
has been believed, this similarity in the ultimate scaling is actually not at all obvious.
As pointed out, for example, by Chandrasekhar (1961), Robinson (1967), Veronis (1970)
and Lezius & Johnston (1976), for the two flows to be equivalent, they must be at least
axisymmetric. Moreover, the exact equivalence of the two flows requires an infinitesimally
narrow cylinder gap, co-rotating cylinders, and Prandtl number unity.
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It is an interesting question, then, to forget the latter three conditions and ask whether
the analogy in the sense of the Nu scaling holds for an axisymmetric Taylor vortex and
a two-dimensional roll cell. The equations governing both flows are not the same, but
they certainly have a similar structure. Many researchers have studied theoretically the
large-Rayleigh-number nature of roll cells in RBC over the years; see Pillow (1952),
Robinson (1967), Wesseling (1969), Chini & Cox (2009) and Hepworth (2014) for constant
Prandtl number flows, and Roberts (1979), Jimenez & Zufiria (1987) and Vynnycky &
Masuda (2013) for asymptotically large Prandtl number flows. Waleffe, Boonkasame &
Smith (2015) and Sondak, Smith & Waleffe (2015) shortened the wavelength of the RBC
roll cell and found that there is a special wavelength at which the Nusselt number reaches
a maximum value. Interestingly, this optimised Nusselt number is close to that obtained
experimentally, although the Rayleigh number that they used is much lower than the one
used by He et al. (2012). More recently, Wen, Goluskin & Doering (2022) continued
the same solution branch to higher Rayleigh numbers and claimed that the maximum
Nusselt number corresponds to the so-called classical scaling, where the Nusselt number
is proportional to the Rayleigh number to the power of one-third (Malkus 1954; Priestley
1954; Grossmann & Lohse 2000; Kawano et al. 2021). The study by Kooloth, Sondak &
Smith (2021) confirmed that roll cells with different wavelengths play important roles in
two-dimensionally restricted RBC turbulence. This paper is motivated by all of the above
RBC studies.

In the classical turbulence regime of TCF, where Taylor vortices are observed robustly
in experiments, the symmetry restriction of the flow may not be necessary for a good
agreement between the steady solution and turbulence, and at least a better agreement
than in RBC can be expected. The situation is different in the ultimate turbulence regime,
where eddies of different sizes and wavelengths are present, making the structure far more
complex than classical turbulence. However, as long as the cylinders are not strongly
counter-rotating, the experimental observations indicate that vortices of approximately the
scale of the gap are still present, suggesting that Taylor vortices may play some role in the
dynamics.

It should also be noted that previous theoretical studies have shown that analytical
approximations can be obtained for vortices with extremely short wavelengths driven
by thermal or Coriolis forces (Hall & Lakin 1988; Bassom & Hall 1989; Bassom &
Blennerhassett 1992; Denier 1992; Blennerhassett & Bassom 1994). In this type of
asymptotic theory, the mean flow varies by a finite amount from the base flow and is
therefore called a strongly nonlinear theory. However, the scaling of momentum and
heat transport of the nonlinear state is not so different from that of the basic flow, and
in this sense, the character of fully developed turbulence is not well captured. Attempts
have been made to construct asymptotic solutions with larger amplitudes, but a complete
understanding is still lacking. This paper proposes a solution to this long-standing
problem.

In the next section, we begin by formulating our problem. Comparisons of the Taylor
vortex solutions with previous experiments and simulations are then carried out in § 3. In
§ 4, a matched asymptotic expansion analysis is performed for the case of Taylor vortices
with an aspect ratio approximately unity. We will see in § 5 that the asymptotic structure
of the solution changes dramatically when the axial period becomes asymptotically short.
In § 6, how the short-period vortices develop from the laminar solution is investigated
in detail using a matched asymptotic expansion. Finally, in § 7, the main findings are
summarised and discussed.
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2. Formulation of the problem

Taylor–Couette flow can be described by the Navier–Stokes equations in the cylindrical
coordinates (r, θ, z). If the flow is axisymmetric, then the governing equations are written
as

Du − r−1v2 = −∂rp + �u − r−2u, (2.1a)

Dv + r−1uv = �v − r−2v, (2.1b)

Dw = −∂zp + �w, (2.1c)

r−1 ∂r(ru)+ ∂zw = 0. (2.1d)

The operators D and � are defined as D = ∂t + u ∂r + w ∂z and � = ∂2
r + r−1 ∂r + ∂2

z .

The length and velocity scales are chosen so that the cylinder gap is unity, and the no-slip
conditions on the cylinder walls are described as

(u, v,w) = (0,Ro, 0) at r = ro, (2.2)

(u, v,w) = (0,Ri, 0) at r = ri, (2.3)

using the Reynolds numbers associated with the rotation of the inner and outer cylinders,
Ri and Ro. Note that our non-dimensionalisation implies that using the radius ratio η =
ri/ro < 1, the inner and outer radii are specified as

ri = η

1 − η
, ro = 1

1 − η
, (2.4a,b)

respectively. The circular Couette flow solution is written as

(u, v,w) = (0, vb, 0), vb(r) = Ro − ηRi

1 + η
r + η−1Ri − Ro

1 + η

r2
i
r
. (2.5a,b)

For other non-trivial solutions of (2.1), periodicity is imposed in the interval z ∈
[0, 2π/k] using the axial wavenumber k. The momentum equations (2.1a)–(2.1c) can be
simplified as

r−1 D(rv) = �v − v

r2 , r D
(ω

r

)
= �ω − ω

r2 + ∂zv
2

r
, (2.6a)

using the azimuthal vorticity

ω = ∂zu − ∂rw = −{∂r(r−1 ∂rΨ )+ r−1 ∂2
z Ψ } (2.6b)

and the Stokes streamfunction Ψ . The roll cell velocity can be reconstructed as
u = −r−1 ∂zΨ and w = r−1 ∂rΨ . Steady solutions of the above system can be computed
without regarding their stability by using the numerical code used in our previous studies
(Deguchi & Altmeyer 2013; Deguchi, Meseguer & Mellibovsky 2014). The code is based
on the Newton–Raphson method applied to the Chebyshev–Fourier discretised system. To
calculate the Taylor vortex with aspect ratio approximately unity, we typically used up
to 250th Chebyshev polynomials and 250th Fourier harmonics. This spatial resolution is
more than sufficient for Ta = O(1010). We will see that when k is large, we can reach
higher Taylor numbers. In this case, the highest degree of Chebyshev polynomials was
increased to 450 to fully resolve the very thin near-wall boundary layer structures.
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On high-Taylor-number Taylor vortices

Instead of the two Reynolds numbers, the majority of high-Taylor-number TCF studies
summarised in Grossmann et al. (2016) used the Taylor number Ta and the rotation rate a.
These are easily found by the standard parameters as

Ta1/2 = (1 + η)3

8η2 (Ri − ηRo), a = −η Ro

Ri
. (2.7a,b)

The former parameter is similar to the shear Reynolds number used in Dubrulle et al.
(2005), and is zero for the rigid body rotation case. (Their second parameter, the rotation
number, is a function of a and η.)

The Nusselt number is defined by

Nu = ∂r(r−1v̄)

∂r(r−1vb)

∣∣∣∣
r=ri

= ∂r(r−1v̄)

∂r(r−1vb)

∣∣∣∣
r=ro

, (2.8)

where

v̄(r) = k
2π

∫ 2π/k

0
v(r, z) dz (2.9)

is the mean azimuthal velocity.
In the limit η → 1, the gap becomes much narrower than the cylinder radius, and the

local flow can be represented in Cartesian coordinates. As noted by Deguchi (2016), there
are several variations on the narrow gap limit, two of which are relevant to this paper. One
is of course the rotating plane Couette flow, where the system is in perfect agreement with
RBC if the Prandtl number is unity (see e.g. Chandrasekhar 1961; Robinson 1967; Veronis
1970; Lezius & Johnston 1976; Brauckmann & Eckhardt 2017). The other variation utilises
an argument similar to the derivation of the Görtler vortex (Hall 1983), and is used, for
example, by Denier (1992). For completeness, the difference between the two limits is
highlighted in Appendix A.

3. Comparison of the steady solutions and the experiments

Here, we use the radius ratio η = 5/7 and fix the outer cylinder (a = 0) to compute the
Taylor vortex solutions. Significant deviations from the narrow gap approximation can be
observed at this radius ratio. That parameter choice is frequently used in experiments and
numerical simulations (see § 3 of Grossmann et al. 2016), and is hence convenient for the
comparison. The red curve in figure 1 shows the Taylor vortex solution calculated with
the fixed axial wavenumber k. According to the simulations, the Taylor cells are relatively
robust even in the numerically generated classical turbulent flows, with cell aspect ratio
approximately unity. More specifically, direct numerical simulations (DNS) by Ostilla
et al. (2013) imposed the axial periodicity 2π and typically observed three vortex pairs
(i.e. k = 3 modes). This motivated the choice of k = 3 for our Taylor vortex computation.

The solution branch bifurcates from the circular Couette flow at Ta ≈ 104, and as the
Taylor number increases, it loses stability with respect to three-dimensional perturbations.
The onset of turbulence is at Ta ≈ 3 × 106. The blue circles in figure 1 are the DNS by
Ostilla et al. (2013) and Ostilla-Mónico et al. (2014a). Despite the relatively short axial
periodicity imposed, the simulations are known to agree reasonably with the experimental
results (the squares and triangles in figure 1). One may be concerned about the impact of
endwalls in this comparison as it is known to alter the detailed structure of the bifurcation
near the onset of Taylor vortices (Czarny, Serre & Bontoux 2003). To address this concern,
van Gils et al. (2012) conducted thorough experimental observations and concluded that
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Upper bound Nu = 0.0075 Ta1/2

Nu = 0.009 Ta0.38

Figure 1. The variation of Nusselt number Nu with respect to Taylor number Ta. The outer cylinder is
fixed (a = 0), and η = 5/7 ≈ 0.714. The red solid curve is the Taylor vortex solution branch with the fixed
wavenumber k = 3. The red crosses are the same solutions, but the wavenumber is optimised to maximise
Nu. The blue circles are the three-dimensional direct numerical simulations by Ostilla et al. (2013) and
Ostilla-Mónico et al. (2014a). The green triangles and squares are the experiments by Lewis & Swinney (1999)
and Dennis et al. (2011), respectively. The simulation and experimental results are time-averaged data. The
best theoretical upper bound known to date has the asymptotic form Nu = 0.0075 Ta1/2 according to Ding &
Marensi (2019).

if the height of the cylinders is sufficient and the flow is measured near the mid-height,
then the effects of the endwalls can be negligible. The key point of their conclusion is that
their flow is subjected to strong centrifugal instability, hence vortices with relatively short
wavelengths play a major role in the angular momentum transport. This flow characteristic
is quite different from centrifugally stable high-Reynolds-number flows, where the angular
momentum transport is strongly influenced by endwall design (Avila et al. 2008; Avila
2012).

Both the experiments and simulations indicate the existence of a transition point
Ta ≈ 108 at which the behaviour of Nu changes. The turbulence below/above the
transition point is referred to as the classical/ultimate regime. The Nusselt number of
the ultimate turbulence has the scaling Nu ∝ Taβ with the exponent β ≈ 0.38, which is
also seen in the RBC experiments (He et al. 2012). The empirical asymptotic prediction
Nu = 0.009 Ta0.38 sits well below the theoretical upper bound of Nu derived by Ding &
Marensi (2019). The exponent 1/2 is typical for upper bounds using the energy method.
Similar asymptotic behaviour of Nu but with a logarithmic correction has been proposed
using the phenomenology of the log law of turbulent boundary layers (see Grossmann
et al. 2016). It is, however, not known whether such scaling can be observed clearly in
experiments.

As long as the solution has aspect ratio approximately unity, it captures the nature of
classical turbulence surprisingly well. This is best illustrated by a comparison of mean
flows shown in figure 2(a). Here,

q = v̄/r − Ro/ro

Ri/ri − Ro/ro
∈ [0, 1] (3.1)
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Figure 2. The mean angular velocity q defined in (3.1) for η = 5/7, a = 0. (a) The classical turbulence
regime Ta = 9.52 × 106. The red solid curve is the Taylor vortex solution. The blue dot-dashed curve is the
time-averaged DNS result by Ostilla et al. (2013). (b) The ultimate turbulence regime. The blue dot-dashed
curve is the time-averaged DNS result by Ostilla-Mónico et al. (2014b) (Ta = 1010). The other curves are the
Taylor vortex solutions shown in figures 3(b–d) (Ta = 9.75 × 109).

is the shifted and normalised mean angular velocity (denoted by 〈ω̄〉z in Ostilla et al.
2013). At sufficiently high Taylor numbers, the boundary layer formation near the cylinder
walls is clearly visible. As seen in figure 1, the solution gives a reasonable estimate of Nu
in the classical turbulence regime. The cross-section of the Taylor vortex (see figure 3b)
reveals that the boundary layer actually surrounds the vortex core, where the azimuthal
velocity appears to be rather uniform. The dynamics of the boundary layers in the classical
turbulence is known to be somewhat quiescent (see e.g. Ostilla et al. 2013), and their
qualitative structure is reminiscent of figure 3(b). The literature summarised in Grossmann
et al. (2016) often implies that the Prandtl–Blasius theory could be applied to the boundary
layer, and we will see in § 4 that this is, in fact, true for the asymptotic limit of the steady
solution. Moreover, the theory to be presented in § 4 yields the scaling of Nu ∝ Ta0.25

and Rew ∝ Ta0.5, which agree well with the turbulent observations. Here, Rew is the wind
Reynolds number, i.e. the typical roll cell circulation speed normalised by the viscous
velocity scale ν/d (where ν is the kinematic viscosity of the fluid, and d is the cylinder
gap). The precise definition of the wind Reynolds number varies in the literature. Huisman
et al. (2012) measured the standard deviation of the radial velocity u, while Ostilla et al.
(2013) computed the average of u2 + w2 and then square-rooted it. Both definitions give
the same scaling, but with different prefactors.

In the ultimate turbulence, on the other hand, the situation appears to be more intricate.
The snapshots of turbulence are typically accompanied by eddies of a vast scale, whereby
the large-scale Taylor vortex is blurred in the time-averaged field. In particular, small
turbulent eddies appearing in the boundary layer have been pointed out as a critical
qualitative difference between the two turbulent regimes separated by the transition point
seen in figure 1 (Dong 2007; Ostilla-Mónico et al. 2014a). Therefore, solutions with
larger wavenumbers may play a more critical role in the turbulent dynamics. Our Nusselt
number results also support this speculation. As seen in figure 1, the Taylor vortex with
fixed k underestimates experimental Nu in the ultimate regime. However, if k is optimised
to maximise Nu (the crosses in figure 1), then it can reach the experimental values for
Ta � 1011.
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Figure 3. Axial wavenumber dependence of the Taylor vortex solutions. The parameters are η = 5/7,
Ri = 8 × 104, Ro = 0, which correspond to Ta = 9.75 × 109 in figure 1. (a) The bifurcation diagram. The
blue dotted curve is the Taylor vortex solution branch. This branch bifurcates from the linear critical point L of
the circular Couette flow. There is another linear critical point at very small k, but computing the bifurcating
solution branch at this Taylor number is difficult, hence it is omitted. (b–d) Azimuthal velocity v at the
selected points in (a). The colour bar range is [0, 80 000]. All the solutions possess reflectional symmetry in z.
(e, f ) Enlarged views of parts of (c,d), respectively. The colour bar range is changed to [10 000, 70 000] in the
enlarged figures.
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Figure 3(a) shows how Nu changes as the wavenumber k of the Taylor vortex is varied.
The Nu curve has two local maxima. The bimodal distribution of Nu and the scaling of the
two peaks are remarkably similar to those seen in the RBC roll cell computation by Waleffe
et al. (2015) and Sondak et al. (2015). Based on their calculations at several Rayleigh
numbers Ra, the first (second) peak has the wavenumber scaling k ∝ Ra0.217 (Ra0.256)
with the Nusselt number scaling exponent β slightly larger (smaller) than 0.31. We will
provide a theoretical rationale for the scaling in §§ 5 and 6.

For the ultimate turbulence regime, the approximation of the turbulent mean flow by
the k = 3 state is slightly worse (figure 2b). However, the mean flow of course varies with
k. As the value of k is increased from 3, the mean flow of the solution in the core region
approaches a turbulent profile in the vicinity of the second peak. Figures 3(c) and 3(d)
show the flow field at each peak, which is also examined in detail in the following two
sections.

4. Taylor vortices with an O(1) cell aspect ratio

In figure 2(a), we saw that some kind of homogenisation occurs in the core region of the
Taylor vortex, and a thin boundary layer emerges around it. Such a flow structure looks
very much like the high-Rayleigh-number RBC roll cell, which was studied intensively
from the 1950s to the 1970s, for example, by Pillow (1952), Robinson (1967) and Wesseling
(1969). More recently, it was reported that when the slip walls are imposed, the asymptotic
solution can be calculated semi-analytically and is in good agreement with the numerical
solutions (Chini & Cox 2009; Hepworth 2014). However, as noted by Robinson (1967), for
no-slip walls, the scaling and structure of the boundary layer have to be modified, which
makes analytical progress difficult. The situation in the Taylor vortex is close to the latter
problem, as we will see below.

First, let us examine the core region. For RBC, the roll cell vorticity in this region is
known to become constant due to the Prandtl–Batchelor theorem, which states that the
homogenisation of the vorticity occurs in the region where the streamlines are closed in
two-dimensional inviscid flows (Prandtl 1904; Batchelor 1956; Feynman & Lagerstrom
1956). Moreover, the temperature becomes constant as well because the temperature
equation has a structure similar to that of the vorticity equation (see e.g. Moore & Weiss
1973). To better see what precise physical quantities are homogenised in the core of
the Taylor vortex, it is desirable to choose large gaps. Figure 4 shows the results for
η = 0.5. The colour map shown in figure 4(b) indicates clearly that it is actually angular
momentum rv that becomes uniform in the region where the streamlines are closed.
Also, figure 4(c) shows that it is not the azimuthal vorticity ω that homogenises, but
ω/r.

Building on the above observations, now we introduce the new variables
Γ = Ta−1/2 rv and Ω = ω/r, whereby the governing equations (2.6) are rewritten
as

ΨrΓz − ΨzΓr = (r3(r−2Γ )r)r + rΓzz, (4.1a)

ΨrΩz − ΨzΩr = (r−1(r2Ω)r)r + rΩzz + Ta
2Γ Γz

r3 , (4.1b)

Ω = −r−1{(r−1Ψr)r + r−1Ψzz}. (4.1c)
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Figure 4. The flow field of the Taylor vortex for η = 0.5, k = 3. The Reynolds numbers used are Ri = 8 × 104,
Ro = 0.25Ri, corresponding to Ta = 1.40 × 1010, a = −1/8. (a) The Stokes streamfunction Ψ . The colour bar
range is [−7500, 7500]. (b) The angular momentum rv. The colour bar range is [40 000, 80 000]. (c) The
modified azimuthal vorticity ω/r. The colour bar range is [−120 000, 120 000]. This quantity is distributed
uniformly in the core to a value of approximately ±37 % of the colour bar.

Here, the subscript r or z denotes a partial differentiation. The no-slip conditions become

Ψ = Ψr = 0, Γ = Γi ≡ 8η3

(1 − η)(1 + η)3(1 + a)
at r = ri, (4.2a)

Ψ = Ψr = 0, Γ = Γo ≡ − 8ηa
(1 − η)(1 + η)3(1 + a)

at r = ro. (4.2b)

If Γ is considered as temperature, Ω as roll cell vorticity and Ta as Rayleigh number,
then one may notice that the structure of the equations is very similar to that of the
two-dimensional RBC. The last term in the right-hand side of (4.1b) corresponds to the
Coriolis force when the rotating plane Couette flow (RPCF) limit is taken, and it plays a
role of buoyancy. (This term is not exactly the Coriolis force unless the system is in the
RPCF limit, but for simplicity we will call it ‘Coriolis force’ hereafter; see Appendix A
also.) This analogy in the sense of the structure of the equations would explain why Γ and
Ω become constant in the Taylor vortex core, as seen in figure 4, at least on an intuitive
level.

In fact, following Batchelor (1956), a mathematical argument can be developed.
First, assuming that the typical roll cell circulation strength Rew (the wind Reynolds
number) is asymptotically large, we expand Ψ = Rew Ψ0 + · · · , Γ = Γ0 + · · · and
Ω = RewΩ0 + · · · . Then the leading-order part of (4.1a) becomes Ψ0rΓ0z − Ψ0zΓ0r = 0,
which suggests that the function Γ0 depends only on Ψ0. Now, in the r–z plane, take a
region A enclosed by a streamline C oriented counterclockwise (thus Ψ is constant along
C). Integrating (4.1a) over A, we obtain∫

A
{ΨrΓz − ΨzΓr} dr dz =

∫
A

{(r3(r−2Γ )r)r + (r3(r−2Γ )z)z} dr dz. (4.3)

The left-hand side vanishes because upon using the Stokes theorem it becomes∫
A

{(ΨrΓ )z − (ΨzΓ )r} dr dz = −
∮
C
Γ {Ψzez + Ψrer} · dl = 0. (4.4)
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On high-Taylor-number Taylor vortices

The second equality comes from the fact that the gradient of Ψ and the line element on C,
dl, are orthogonal on the streamline. Meanwhile the leading-order part of the right-hand
side can be transformed by again applying the Stokes theorem:

0 =
∮
C

r3{(r−2Γ0)rez − (r−2Γ0)zer} · dl

= dΓ0

dΨ0

∮
C

r2{r−1Ψ0rez − r−1Ψ0zer} · dl − 2Γ0

∮
C

ez · dl

= dΓ0

dΨ0

∮
C

r2{u0er + w0ez} · dl. (4.5)

Here, (u0,w0) = (−r−1Ψ0z, r−1Ψ0r) is the leading-order part of the roll velocity. The
integral in the last line should not vanish because we are assuming the existence of a
strong circulation due to the swirling motion of the Taylor roll. Thus the equation implies
dΓ0/dΨ0 = 0 at the value of Ψ0 on C that we choose. The above argument holds for
any region enclosed by a streamline, hence the value of Γ0 must be constant in the
core region. The argument above does not change when an arbitrary constant is added
to Γ . This implies that if power series asymptotic expansion of Γ is considered, then the
homogenisation also occurs in all the higher-order terms as long as they have a spatial scale
of O(1). Therefore, for steady solutions, the non-uniform component in Γ is exponentially
small.

Likewise, we can show that the value of Ω0 is constant as well in the core. Integrating
(4.1b) over A gives∫

A
{ΨrΩz − ΨzΩr} dr dz =

∫
A

{(r−1(r2Ω)r)r + (r−1(r2Ω)z)z} dr dz

+
∫
A

Ta
2Γ Γz

r3 dr dz, (4.6)

and of course the left-hand side should vanish. Since we already know that Γ0 is a constant
plus an exponentially small fluctuation, the last term in the right-hand side of (4.6) can be
neglected. From (4.1b), we see that Ω0 is a function of Ψ0, thus the leading-order part of
integral (4.6),

0 =
∮
C

r−1{(r2Ω0)rez − (r2Ω0)zer)} · dl

= dΩ0

dΨ0

∮
C

r2{r−1Ψ0rez − r−1Ψ0zer} · dl + 2Ω0

∮
C

ez · dl

= dΩ0

dΨ0

∮
C

r2{u0er + w0ez} · dl, (4.7)

yields dΩ0/dΨ0 = 0.
In the above argument, we have assumed that the swirling speed of the rolls is

sufficiently large, but to see exactly how large it is, we need to analyse the boundary layer.
Let us now take the region A as large as possible, and assume that a viscous boundary layer
appears around its boundary C. In this core region (see figure 5a), we have the estimation
Rew = O(Ψ |c) = O(Ω|c), where the subscript c indicates that the physical quantities are
measured in the core. At the roll cell perimeter C, without loss of generality, we can
set Ψ = 0. Hence if the thickness of the boundary layer is written as ε, then the size
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Inviscid near-wall zone
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O(ε)

O(ε) = O(Ta–1/4) O(ε) = O(Ta–1/3)

O(δ) = O(Ta–2/9)

O(1) O(δ)

O(δ)O(δ)

O(δ)

O(ε)

Near-wall boundary layer

Near-wall boundary layer

Near-wall zone
ro

ro

ri
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(b)(a)
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(b)

Figure 5. Sketch of the asymptotic states. In the blue shaded region, viscosity is not negligible. In the dotted
region, Coriolis force is at work. (a) Taylor vortex with aspect ratio of order unity (k = O(1)). (b,c) The first
peak state (k = O(Ta2/9)), where (b) is the close-up of the near-wall zone enclosed by the red lines in (c).

of the streamfunction there can be estimated as O(Ψ |b) = O(εΨ |c) = O(εRew) (where
the subscript b stands for boundary layer). In order to ensure the viscous-convective
balance of (4.1b) in this thin layer, we further require O(Ψ |b) = O(ε−1), and therefore
Rew = O(ε−2).

As seen in figure 4(c), parts of the boundary layer are attached to the walls, where the
flow has to fulfil the no-slip conditions. In order for the streamfunction to be modified in
the near-wall boundary layer, both sides of (4.1c) must balance, so O(Ω|b) = O(ε−1 Rew)

using ∂r = O(ε−1) and O(Ψ |b) = O(ε−1). Another essential part of the boundary layer is
the plume, where the layer is detached from the wall. When the boundary layer leaves the
wall, it typically forms a sharp corner. Similar to the RBC cases, as we round the corner,
the sizes of Ω and Γ are unchanged. This can be justified by considering a streamline
within the boundary layer. The streamline passes through the O(ε1/2) neighbourhood of
the corner, where the flow is inviscid, hence Ω and Γ are functions of the streamfunction;
see also the RBC literature introduced at the beginning of this section.

The plume layer is no longer parallel to the wall, and the Coriolis force acting
there drives the whole Taylor cell. This plume balance allows us to completely fix
the flow scaling in terms of Ta. Assuming ∂r = O(1) and ∂z = O(ε−1) in (4.1b), the
viscous-convective terms of O(ε−2Ω|b) = O(ε−5) counterbalance the Coriolis term of
O(ε−1 Ta) when ε = Ta−1/4. Here, we used the fact that within the near-wall boundary
layer, the size of Γ is O(1) from the boundary conditions, and the same size must be used
in the plume.

The asymptotic structure can be summarised as follows. Within the core region, we use
the expansions

Ψ = ε−2ω0 Ψ0(r, z)+ · · · , Γ = γ0 + · · · , Ω = ε−2ω0 + · · · , (4.8a–c)
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On high-Taylor-number Taylor vortices

where ω0 and γ0 are constants. The expansion is consistent with the Prandtl–Batchelor
structure to leading order, and Ψ0 must be determined by

1 = −r−1{(r−1Ψ0r)r + r−1Ψ0zz} (4.9)

in the aforementioned region A with the boundary condition Ψ0 = 0 on C.
Let l and n be the distance along C and its inward normal, respectively. Then using the

rescaled normal variable N = ε−1n, the flow within the boundary layer can be expanded
as

Ψ = ε−1 Ψ (b)(l,N)+ · · · , Γ = Γ (b)(l,N)+ · · · . (4.10a,b)

The leading-order equations in the boundary layer are

(Ψ
(b)
l ∂N − Ψ

(b)
N ∂l)Γ

(b) = rΓ (b)NN , (4.11)

(Ψ
(b)
l ∂N − Ψ

(b)
N ∂l)Ψ

(b)
NN = rΨ (b)

NNNN − 2 cosϕ
r

Γ (b)Γ
(b)

N , (4.12)

where ϕ is the angle between the z-axis and the n-axis.
When the boundary layer is in contact with the cylinder wall, the following boundary

conditions must be imposed at N = 0:

Ψ (b) = Ψ
(b)
N = 0, Γ (b) = Γi at the inner cylinder, (4.13)

Ψ (b) = Ψ
(b)
N = 0, Γ (b) = Γo at the outer cylinder. (4.14)

For the near-wall boundary layer, cosϕ = 0 so (4.12) is none other than Prandtl’s boundary
layer equation, while for large N, the flow must match the core solution. Let U(l) be the
value of Ψ0n on C, which can be found by the core flow problem (4.9). Then as N → ∞,
the boundary layer solution must satisfy

Ψ (b) → ω0 U(l)N, Γ (b) → γ0. (4.15a,b)

When the boundary layer is detached from the wall, similar far-field conditions should be
applied on both sides as N → ±∞.

The theoretical boundary layer thickness ε = Ta−1/4 implies the Nusselt number scaling
Nu ∝ Taβ with β = 1/4. We can check if this is consistent with the angular momentum
transport. By averaging (4.1a) with respect to z and further integrating radially from ri to
r, the transport balance can be obtained as

− ΨzΓ̃ = r3(r−2Γ̄ )r + 16ηr2
i

(1 + η)4
Nu. (4.16)

Here we use an overline to denote the average with respect to z, and write Γ = Γ̄ (r)+
Γ̃ (r, z). Let us consider this balance at a sufficient distance from both walls. In the core
region, Γ̃ would be exponentially small because of the Prandtl–Batchelor theorem, so the
transport is extremely inefficient. The plume region of thickness O(ε) is hence the main
contributor to the left-hand side, which can be estimated as O(ε(∂zΨ |b)Γ̃ |b) = O(ε−1)

using the scaling Γ̃ |b = O(1), Ψ |b = O(ε−1). This term indeed balances with the second
term on the right-hand side.

The asymptotic structure derived here is consistent with the behaviour of the numerical
Taylor vortex solution. Figure 6 summarises the numerical results for η = 0.5, a = −1/8.
The red solid curve shows the scaling Nu ∝ Ta1/4, which can also be seen in the
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Figure 6. The large-Ta asymptotic convergence of the Taylor vortex for η = 0.5, k = 3, a = −1/8. The red
solid curve is almost horizontal, implying that the Nu ∝ Ta1/4 scaling derived for k = O(1) holds. The green
dashed and blue dotted curves are computed by v and ω measured at the centre of the cell (r, z) = (ri +
0.5,π/2k), respectively.

data presented in figure 1 (η = 5/7, a = 0). The green dashed and blue dotted curves
are Ta−1/2rv and Ta−1/2ω/r measured at the centre of the roll cell. According to the
theory, they converge towards the constants γ0 and ω0, respectively. The scaling of ω/r
corresponds to the scaling of u,w in the core, and hence the scaling of Rew.

One may have noticed that the exponent β = 1/4 of the Nusselt number differs from
the exponent β = 1/3 deduced in the asymptotic analysis of Chini & Cox (2009) and
Hepworth (2014). This discrepancy is due not to the differences in the flow driving
mechanism but to the boundary conditions at the walls. If the zero stress condition is
imposed, then the linear extrapolation of the core streamfunction already satisfies the
boundary condition to leading order. This means that the balance O(Ω|b) = O(ε−1 Rew)

that we assumed for the no-slip case is not necessary. For the slip wall case, the magnitude
of the vorticity does not change in the core and the boundary layer, so the strong vortex
layer seen in figure 4(c) does not appear. If we use the balance O(Ω|b) = O(Ω|c) =
O(ε−2) instead for the scaling argument of the plume, then we have ε = Ta−1/3, as
expected.

For the slip wall RBC, further analytical progress has been made using the fact that the
boundary layer equations become linear and the roll cells are rectangular (Chini & Cox
2009; Hepworth 2014). In our case, however, we have to rely on numerical calculations
because the boundary layer equations are fully nonlinear. Moreover, the shape of the core
region is non-trivial due to the small vortices appearing near the corners (see figure 4c).
This means that the core and boundary layer equations (4.9), (4.11), (4.12) need to be
solved iteratively by updating the core shapes and constants γ0 and ω0. Such numerical
calculations are too challenging and out of the scope of this paper. Differences in the
structure of the boundary layer also affect the Pr dependence of the asymptotic solution
of RBC. For the slip wall case, asymptotic solutions for different Pr can be obtained by
rescaling the Pr = 1 solution. However, this is possible because the boundary layer is
linear, which is not true for the no-slip case.

Finally, we show that the above analysis provides some insights into the structure of the
mean flow. As already seen in figure 4(b), the angular momentum rv is almost constant
in the core region. Therefore, the mean angular momentum rv̄ is expected to become
a constant away from the wall. This is indeed the case for the numerical Taylor vortex
solution (figure 7a). In the studies of TCF turbulence, on the other hand, the mean angular
velocity q is usually plotted, and it is often noted that the profile is linear in the core.
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Figure 7. Uniform mean angular momentum profiles. (a) Mean flow of the Taylor vortex solution shown
in figure 4 (η = 0.5, a = −1/8). The red solid curve is the normalised angular momentum, while the blue
dotted curve is the mean angular velocity q defined in (3.1). (b) Time average of DNS results for Ta = 1010,
a = −0.20, 0.00, 0.21, 0.40, 0.60, 1.00. The data are from figure 4 of Ostilla-Mónico et al. (2014b).

At first glance, this appears to be the case, for example, when looking at figure 2(a),
but this is because the cylinder gap (η ≈ 0.714) is too narrow to clearly see the radial
dependence of the profile (see figure 7(a) for the q profile for a wide gap case η = 0.5).
If the numerical results by Ostilla-Mónico et al. (2014b) are summarised in terms of rv,
as shown in figure 7(b), then they clearly show the constant angular momentum property
in the core. Note that when a becomes too large, the Taylor vortex appears to favour the
vicinity of the inner cylinder, and the homogenisation is observed only there. In the long
history of TCF studies, some researchers have also pointed out that the turbulent mean
flows might have a uniform angular momentum zone (Wattendorf 1935; Taylor 1935;
Smith & Townsend 1982; Lewis & Swinney 1999; Dong 2007; Brauckmann & Eckhardt
2017). However, this fact is not widely known, probably because the mathematical reasons
behind it have not been elucidated.

5. High-wavenumber Taylor vortices

The aim of this section is to examine the asymptotic behaviour of the solutions at
the first and second peaks seen in figure 3(a). To this end, in figure 8, we performed
similar calculations at two higher Taylor numbers. The results are summarised using the
theoretical scaling to be derived in this section. Essentially, the scalings of k and Nu
represent the width of the roll cell in the z direction and the thickness of the boundary
layer adjacent to the cylinder wall, respectively. The computations of the solutions are not
easy, especially around the first peak, where very thin boundary layers need to be resolved.
Although the convergence of the numerical solutions to the asymptotic states is still not
perfect, the theoretical scalings are consistent with the overall features of the numerical
data.

The structure of the flow field in both peaks can be divided roughly into a boundary
layer near the wall and a core region in the middle of the gap, as we have seen in figures 2
and 3. On closer inspection, one further notices that the asymptotic structures of the two
flows are quite different. For example, in the first peak solution, Γ̄ has a flat profile in the
core region (figure 9a), but this is not the case in the second peak solution (figure 9b).
Figure 10 examines how the core flows develop from the near-wall region adjacent to the
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Figure 8. Change in the Nusselt number of the Taylor vortex solution when the wavenumber is varied, with
(a,b) using the same numerical results. The outer cylinder is stationary (a = 0), and the radius ratio is η = 5/7.
Red solid, green dashed and blue dotted curves correspond to Ta = 2.95 × 1011, Ta = 7.37 × 1010 and Ta =
9.75 × 109, respectively. The blue dotted curve is the same as that shown in figure 3. The three crosses in
figure 1 are taken from the maxima seen in (a).
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Figure 9. Mean flows for the solutions at the extrema of Nu seen in figure 8 (η = 5/7, a = 0). The red curves
are the numerical results at Ta = 2.95 × 1011. (a) The first peak. The black solid line is the asymptotic result
Γ̄ = γ0. The value of γ0 = 0.771 is estimated at the mid-gap. (b) The second peak. The black curve is the
asymptotic result (6.5). The value A = 335.5 is estimated at the mid-gap (see (6.39)).

inner cylinder. In the first peak solution, the near-wall structure is somewhat similar to
the k = O(1) case, with the wall boundary layer becoming a sharp plume as rounding the
corner (figure 10a). On the other hand, in the second peak solution, no apparent plume
can be recognised away from the wall, and the flow varies only slowly in the z direction
(figure 10b). The core flow inherits this property, as seen from figure 11, where the axial
structure of the fluctuation fields is plotted at the mid-gap r = rm = (ro + ri)/2. For the
second peak solution, only a single Fourier mode plays a major role in the core, while
for the first peak, a number of harmonics participate in forming the plume. A theoretical
explanation of those differences will be deduced below, together with the detailed scalings
of the flows.
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Figure 10. The colour map of ω/r for the (a) first peak and (b) second peak solutions seen in figure 8. Here,
Ta = 2.95 × 1011. The centre of the colour bar is zero.

–1.0

–0.5

0

0.5

1.0

1.5

0 π 2π
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

0 π 2π

0 π 2π 0 π 2π
–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

Ta
–
2
/3

 Ω
Ta

1
/9

 Γ̃

Ta
1
/1

0
 Γ̃

Ta
–
1
3
/2

0
 Ω

kz

–0.10

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.10

kz

(b)(a)

(c) (d )

Figure 11. The flow fields at the mid-gap r = rm for the (a,c) first peak and (b,d) second peak solutions in
figure 8. The red solid, green dashed and blue dotted curves correspond to Ta = 2.95 × 1011, Ta = 7.37 × 1010

and Ta = 9.75 × 109, respectively. Note that the value of k is determined by the optimisation of Nu and therefore
varies from solution to solution. The difference in the structure of the first and second peak solutions can be
seen more clearly in figure 10, where the axial coordinates are not scaled.
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5.1. The first peak asymptotic structure
Now let us find the scaling of the first peak solution. Hereafter, δ = 1/k denotes the length
scale of the cell in the z direction. The flow can be divided into core and near-wall zones,
as shown in figure 5(c). Within the regions O(δ) away from the cylinder walls, similar
asymptotic arguments as the k = O(1) case would apply. Figure 5(b) shows an enlarged
view of the near-wall zone where a thin boundary layer, of thickness ε � δ say, emerges
around the inviscid region.

The size of the streamfunction in the inviscid region must be the same as that of
the core, Ψ |c. Thus the size of the streamfunction within the boundary layer can be
found as O(Ψ |b) = O(εδ−1Ψ |c), noting that the boundary layer thickness relative to the
near-wall region is ε/δ. Further using the viscous-convective balance in the boundary
layer O(Ψ |b) = O(ε−1δ), we can find O(Ψ |c) = O(δ2ε−2). When Γ̄ |c is almost constant,
the viscous-convective balance in the core is satisfied if O(Ψ |c) = O(δ−1). Hence
from O(Ψ |c) = O(δ2ε−2) obtained in the near-wall analysis, the two small perturbation
parameters are related as ε = δ3/2.

Within the near-wall zone, the plume coming out of the wall boundary layer is so
thin that the Coriolis forces and viscous terms cannot balance, unlike the k = O(1)
case. This means that the Coriolis force effect should appear as the plume diffuses
towards the core region.. The viscous-Coriolis balance in the core can be described as
O(Ψ |c δ−4) = O(Ta δ−1Γ̃ |c). To estimate O(Γ̃ |c), we can use the balance O(Γ̃ |cΨ |c) =
O(Γ |bΨ |b), which will be justified shortly. Using the argument of the inviscid corner,
we have O(Γ |b) = O(1). Therefore we have the estimation O(Γ̃ |c) = O(εδ−1), which
is consistent with the momentum transport balance O((∂zΨ |c)Γ̃ |c) = O(Nu) = O(ε−1),
deduced from (4.16). This is the final key to unlock the scaling δ = O(Ta−2/9) and
ε = O(Ta−1/3), with the latter motivating us to use the Nu ∝ Ta1/3 scaling in figure 8(a).
The wind Reynolds number can be estimated by the wall-normal velocity component as
Rew = O(δ−1Ψ |c) = O(Ta4/9).

The asymptotic analysis in the core is summarised as follows. First, we choose δ as
a small perturbation parameter and rescale the axial coordinate as Z = δ−1z. From the
scaling argument, the Taylor number has the expansion Ta = δ−9/2T0 + · · · . Using the
core expansions

Ψ = δ−1 Ψ (c)(r, Z)+ · · · , Γ = γ0 + δ1/2 Γ (c)(r, Z)+ · · · (5.1a,b)

with a constant γ0 in (4.1) yields the leading-order equations

(Ψ (c)
r ∂Z − Ψ

(c)
Z ∂r)Γ̃

(c) = riΓ̃
(c)

ZZ , (5.2)

(Ψ (c)
r ∂Z − Ψ

(c)
Z ∂r)Ψ

(c)
ZZ = riΨ

(c)
ZZZZ − T0

2γ0

ri
Γ̃
(c)

Z . (5.3)

Here, only the fluctuation part of the equations was extracted. The mean part can be
obtained directly from (4.16) as

− Ψ
(c)
Z Γ̃ (c) = N0, (5.4)

using the scaled Nusselt number N0 = (16ηr2
i /(1 + η)4)ε Nu + · · · .
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On high-Taylor-number Taylor vortices

In the plume near the inner wall, we use the expansions

Ψ = ε−1δ Ψ (b)(l,N)+ · · · , Γ = Γ (b)(l,N)+ · · · (5.5a,b)

together with the stretched variables l = (r − ri)/δ and N = z/ε. The leading-order part
of (4.1a) takes the form

Ψ
(b)
l Γ

(b)
N − Ψ

(b)
N Γ

(b)
l = riΓ

(b)
NN , (5.6)

which is essentially identical to (4.11). If we consider that Γ (b) is a function of ψ = Ψ (b)

and l, then the equation becomes

−Γ (b)l = ri(ψzΓ
(b)
ψ )ψ, (5.7)

where Γ (b)ψ should be small when far enough away from the plume. By integrating this
equation across the plume, we get

d
dl

(∫ ∞

−∞
Γ (b) dψ

)
= 0. (5.8)

The term in the bracket is conserved during the plume diffusion so that the balance
O(Γ̃ |c Ψ |c) = O(Γ |b Ψ |b) must be satisfied. The effect of the plume entering the core
has to be described by boundary conditions for (5.2)–(5.3) at r = ri, ro. The conditions
could be written using the Dirac delta function as done in Vynnycky & Masuda (2013).

We do not solve the asymptotic problem, but the theory well explains the behaviour of
the Taylor vortex solution. For example, the numerical results shown in figures 11(a) and
11(c) are summarised using the theoretical core scalings Ω|c = O(δ−2Ψ |c) = O(Ta2/3)

and Γ̃ |c = O(Ta−1/9). In figure 9(a), the thin black line is the asymptotic approximation
Γ̄ ≈ γ0 with the estimate γ0 = Ta−1/2 rm v̄(rm) ≈ 0.771.

From the numerical data, the Nusselt number at the first peak seems to be approximated
by Nu = 0.027 Ta1/3. The asymptotic line intersects with the k = 3 curve shown in figure 1
at Ta ≈ 6 × 107, which is not a bad approximation of the transition point between the
classical and ultimate turbulence regimes.

5.2. The second peak asymptotic structure
The asymptotic structure of the second peak solution is more complex because three layers
appear in the vicinity of the walls (see figure 12a). We refer to them as the bottom, middle
and top boundary layers, in order from the cylinder wall. Understanding their precise
scaling requires a delicate matched asymptotic expansion analysis, which we will leave for
the next section. Here we will look only at how the flow scaling is determined intuitively.
The argument below contains one assumption that is not strictly fulfilled, but the resultant
scaling is nonetheless correct if some minor logarithmic factor effects are omitted.

The key assumption is dΓ̄ /dr = O(1) in the core, which did not hold for the first
peak case. If the governing equations (4.1a) and (4.1b) are linearised around the mean
flow, then the balances O(δ−1Ψ |c) = O(δ−2Γ̃ ) and O(δ−4Ψ |c) = O(δ−1Ta Γ̃ |c) must be
satisfied. Those balances determine δ = O(Ta−1/4) and O(Γ̃ |c) = O(δΨ |c). Further using
O((∂zΨ |c)Γ̃ |c) = O(Nu) = O(ε−1) deduced from the mean equation (4.16), the core flow
scaling can be written as O(Ψ |c) = O(ε−1/2), O(Γ̃ |c) = O(δε−1/2).

Within the bottom boundary layer, the viscous-convective balance O(Ψ |b) = O(ε−1δ)
must, of course, be satisfied (the subscript b implies that Ψ is measured at the
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Core

Core

Top BL

Shear layer

Mean flow layer

Boundary layer

Bottom BL

Middle BL

O(δ) = O(Ta–1/4)

O(δ) = O(Ta–1/4)

O(Δ) = O(Ta–1/6)

O(Δ) = O(Ta–1/10(ln Ta)1/10)

O(ε) = O(Ta–3/10(ln Ta)–1/5)

O(1)

O(δ)

O(δ)

ro

rori

ri

(b)

(a)

Figure 12. Sketch similar to figure 5 but for the asymptotic states when k = Ta1/4. (a) The second peak state.
BL stands for boundary layer. (b) The transitional state. The shear layer occurs around the critical radius r = rc.

bottom boundary layer). If we further assume the viscous-Coriolis balance O(Ψ |b) =
O(Ta ε4δ−1), then we obtain ε = δ6/5 = Ta−3/10, which gives Nu ∝ Ta3/10 in figure 8(b).
It is this balance that is mostly met, but in fact, is a little broken. As mentioned earlier,
the effect of this slight imbalance appears as a logarithmic factor in the scaling of ε
in the matched asymptotic expansion. The introduction of the logarithmic factor has
little influence when examining the scaling of numerical data, so it was ignored in
figure 8(b). Furthermore, as shown in figures 11(b) and 11(d), the core scalings O(Ω|c) =
O(δ−2Ψ |c) = O(Ta13/20) and Γ̃ |c = O(Ta−1/10) without the logarithmic factor well
explain the numerical results. Note that the scaling result suggests Rew = O(δ−1Ψ |c) =
O(δ−1ε−1/2) = O(Ta2/5).

In the middle boundary layer, the flow coming towards the wall turns back in the region
of aspect ratio approximately unity, so its thickness should be O(δ).

The top boundary layer is necessary for the nonlinearity of the fluctuation component to
disappear towards the core. Its thicknessΔ = O(δε−1/2) = O(Ta−1/10) can be obtained by
the viscous-convective balance O(Δ−1δ−1Ψ |t) = O(δ−2) and O(Ψ |t) = O(Ψ |c), where
O(Ψ |t) is the size of the streamfunction in the top boundary layer. One of the ways to
ascertain the presence of the top boundary layer in the visualised flow field is to look at
the extreme values of Ω (see figure 10(b)) or Γ̃ . Figure 13(a) shows the scaled fluctuation
Γ̃ at the plume position z = π/k. It can be seen that the minima approach the wall as the
Taylor number increases. In figure 13(b), the distance between the wall and the minima
is scaled by the theoretical top boundary layer thickness Δ. As expected, all the curves
almost overlap around the minima.

6. Matched asymptotic expansion when k = O(Ta1/4)

The goal of this section is to derive a matched asymptotic expansion consistent with the
behaviour of the second peak solutions. This asymptotic state can be reached by decreasing
the wavenumber from the linear critical point, as seen in figure 8(b). However, for k/Ta1/4

ranging from approximately 0.6 to 0.8, the appropriate scaling of the Nusselt number is
O(Ta0), which is different from that observed for the second peak state; see figure 14(a).

967 A11-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.481


On high-Taylor-number Taylor vortices
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Figure 13. The profile of Γ̃ at the plume position z = π/k for the Taylor vortex solution at the second peak,
with η = 5/7, a = 0. The red solid, green dashed and blue dotted curves correspond to Ta = 2.95 × 1011,
Ta = 7.37 × 1010 and Ta = 9.75 × 109, respectively.
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Increasing Ta
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r
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ri

z

r

(b)
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(a)

Figure 14. (a) Close-up of figure 8(b) around the bifurcation point. The black solid curve is the asymptotic
result (6.17), which has the property that Nu = 1 at k/Ta1/4 = K1, and that Nu → ∞ as k/Ta1/4 → K∞.
(b) Mean flow profile at k/Ta1/4 = 0.65, 0.7. The black solid curves are the asymptotic result (6.15). The
bullets indicate r = rc given in (6.13). The red points are the numerical Taylor vortex result for Ta = 9.75 × 109.
(c) Colour maps of ω/r for the numerical Taylor vortex. The top and bottom maps correspond to k/Ta1/4 = 0.7
and 0.65, respectively. Lines are marked at r = rc.

We will study this transitional state in § 6.1, followed by the analysis of the second peak in
§ 6.2.

The most important previous work throughout this section is due to Denier (1992),
who applied the Hall & Lakin (1988) type high-wavenumber asymptotic theory to TCF
in the narrow gap limit. As briefly commented in that paper, the extension of the theory
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to wide-gap cases should be straightforward. In § 6.1, we derive an analytic expression for
the Nusselt number and compare it with the numerical solution for the first time.

As the solution moves away from the linear critical point in the transitional state, the
vortex grows from the vicinity of the inner cylinder (figure 14c). The asymptotic state
corresponding to the second peak appears when the vortex fills the entire gap. A similar
scenario was suggested in Denier (1992) using a matched asymptotic expansion, but
the scaling obtained is unfortunately not consistent with the behaviour of the numerical
solutions. The main reason for this is that the matching is not actually possible in the
two-layer boundary layer structure assumed in Denier (1992). In § 6.2, we will resolve that
difficulty by modifying the structure of the near-wall zone to three layers.

We choose δ = k−1 as a small perturbation parameter and introduce the scaled axial
variable Z = δ−1z. According to Hall (1982), the linear critical point of curved flow
problems typically has the Taylor number expansion Ta = δ−4T0 + · · · . This is also true
for TCF from the linear critical point to the second peak.

6.1. The transitional states around the linear critical point
For simplicity, we fix the outer cylinder (i.e. a = Γo = 0) as in Denier (1992). The analysis
of the general cases (a /= 0) is relegated to Appendix B as it is somewhat complex. The
asymptotic structure of the transitional state is depicted in figure 12(b). The vortices are
concentrated in the core region ri < r < rc, where rc ∈ [ri, ro] is the critical radius to
be determined analytically. We can show that the vortex amplitude decays exponentially
within a shear layer of thickness O(Δ) = O(Ta−1/6) appearing around the critical radius.
The structure of the shear layer is identical to that described in Denier (1992) and is not
discussed in detail here. The only important fact that will be used later is that the mean
flow and its derivative are continuous across this layer.

In the region where r is greater than rc, it is sufficient to analyse the mean flow. To
leading order, the left-hand side of (4.16) can be ignored, hence the mean flow is a linear
combination of a constant and r2. Writing

N0 = 16ηr2
i

(1 + η)4
Nu (6.1)

for simplicity, we get the asymptotic approximation

Γ̄ = B(r2
o − r2)+ · · · , B = N0

2r2
o
. (6.2a,b)

Note that we used the fact that Γ̄ should vanish at r = ro.
In the core region, the appropriate expansions are

Ψ = Ψ̂ (c)(r) sin Z + · · · , Γ̃ = δ Γ̂ (c)(r) cos Z + · · · , Γ̄ = Γ̄ (c)(r)+ · · · .
(6.3a–c)

Substituting these into (4.1), the leading-order parts yield

Γ̄ (c)r Ψ̂ (c) = rΓ̂ (c), 0 = Ψ̂ (c) + T0
2Γ̄ (c)

r2 Γ̂ (c). (6.4a,b)

For those equations to have a non-trivial solution, 0 = r3 + 2T0Γ̄
(c)Γ̄

(c)
r must be satisfied.

Therefore the mean flow is obtained as

Γ̄ (c)(r) =
√

A − r4

4T0
. (6.5)
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On high-Taylor-number Taylor vortices

The constant A must be
A = r4

i + 4T0Γ
2

i (6.6)

to satisfy Γ̄ (c)(ri) = Γi.
A boundary layer of thickness O(δ) is needed near the inner cylinder to satisfy

the no-slip boundary conditions. In this layer, we introduce the stretched variable ξ =
(r − ri)/δ and assume the expansion

Ψ = Ψ (b)(ξ, Z)+ · · · , Γ = Γi + δ Γ (b)(ξ, Z)+ · · · . (6.7a,b)

The leading-order equations are obtained as

(Ψ
(b)
ξ ∂Z − Ψ

(b)
Z ∂ξ )Γ

(b) = ri(∂
2
ξ + ∂2

Z)Γ
(b), (6.8)

(Ψ
(b)
ξ ∂Z − Ψ

(b)
Z ∂ξ )(∂

2
ξ + ∂2

Z)Ψ
(b) = ri(∂

2
ξ + ∂2

Z)
2Ψ (b) − T0

2ΓiΓ
(b)

Z
ri

. (6.9)

The no-slip boundary conditions are

Ψ (b) = Ψ
(b)
ξ = 0, Γ (b) = 0 at ξ = 0, (6.10a,b)

while for the far field, ξ → ∞, we use the matching conditions

Ψ (b) → Ψ̂ (c)(ri) sin Z, Γ̃ (b) → Γ̂ (c)(ri) cos Z, Γ̄ (b) → Γ̄ (c)r (ri) ξ. (6.11a–c)

Finally, we determine the unknown constants B and rc from the continuity of Γ̄ and
r3(r−2Γ̄ )r at r = rc. Using the mean flows (6.5) and (6.2a), the continuity conditions can
be written as √

A − r4
c

4T0
= B(r2

o − r2
c ),

A√
T0(A − r4

c )
= 2Br2

o, (6.12a,b)

where A is known by (6.6). From those equations, it is easy to find

rc =
√

r4
i + 4T0Γ

2
i

r2
o

, (6.13)

1
B

=
√√√√4T0

(
r4

o

r4
i + 4T0Γ

2
i

− 1

)
. (6.14)

Thus if T0 is given, then the leading-order mean flow is completely determined as

Γ̄ ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(r2
o − r2)

√
r4

i + 4T0Γ
2

i

4T0
(
r4

o − r4
i − 4T0Γ

2
i
) if r > rc,

√
r4

i − r4 + 4T0Γ
2

i
4T0

if r ≤ rc.

(6.15)

This is the black curve in figure 14(b), which predicts the numerical results very well.
Note that the analytic expression for Ψ̂ (c) and Γ̂ (c) can also be found by (6.4a,b) and the
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leading-order part of the mean flow equation (4.16):

− Γ̄
(c)

r

2r
(Ψ̂ (c))2 = r3(r−2Γ̄ (c))r + N0. (6.16)

The Nusselt number is found using (6.1), (6.2b) and (6.14) as

Nu(T0) = (1 + η)4

16η3
√

T0

√
r4

i + 4T0Γ
2

i

r4
o − r4

i − 4T0Γ
2

i
. (6.17)

This function is plotted by the black curve in figure 14(a), using k/Ta1/4 = T−1/4
0 for the

horizontal axis. The other curves, corresponding to the Taylor vortex solutions at finite Ta,
clearly approach the asymptotic result as Ta → ∞.

As the scaled wavenumber decreases from the linear critical point K1 = T−1/4
1 , the

Nusselt number increases from the laminar value unity. The asymptotic result T1 =
r2

i (r
2
o − r2

i )/4Γ
2

i can be found from (6.13) by setting rc = ri and T0 = T1.
Similar to the narrow gap case studied by Denier (1992), Nu blows up at finite T0.

Writing K∞ = T−1/4
∞ , we can deduce T∞ = (r4

o − r4
i )/4Γ

2
i from (6.13) by using rc = ro

and T0 = T∞. That is, in figure 14(a), K∞ is the point at which the flow switches from the
transitional state to the second peak state.

6.2. The second peak states
We now turn our attention to the second peak asymptotic states. Again, δ is the small
asymptotic parameter, and Ta = δ−4T0 + · · · . For the bottom boundary layer thickness ε,
we impose the condition

δ6

ε5 = ln
δ

ε
, (6.18)

which is needed for successful matching. The boundary layer thickness is estimated
as O(ε) = O(Ta−3/10(ln Ta)−1/5). Therefore the Nusselt number and the wind
Reynolds number scalings now involve the logarithmic correction as Nu = O(ε−1) =
O(Ta3/10(ln Ta)1/5), Rew = O(δ−1Ψ |c) = O(δ−1ε−1/2) = O(Ta2/5(ln Ta)1/10).

Let us start with the core analysis by writing

Ψ = ε−1/2 Ψ̂ (c)(r) sin Z + · · · , (6.19)

Γ̃ = δε−1/2 Γ̂ (c)(r) cos Z + · · · , Γ̄ = Γ̄ (c)(r)+ · · · . (6.20a,b)

Those expansions, based on the argument in § 5, yield leading-order equations (6.4a,b)
identical to those for the transitional state. As a result, the mean flow is given by (6.5).
However, for the second peak state, the multi-layered near-wall structure must also be
present near the outer cylinder, thus there is no way to determine the constant A a priori.
The leading-order part of the mean flow equation (4.16) is obtained as

− Γ̄
(c)

r

2r
(Ψ̂ (c))2 = N0, (6.21)

where N0 = (16ηr2
i /(1 + η)4)ε Nu. The unknowns appearing in the core solutions

Γ̄ (c), Ψ̂ (c) and Γ̂ (c) are A and N0.
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On high-Taylor-number Taylor vortices

The two near-wall regions have identical asymptotic structure, so only the layers near
the inner cylinder are examined below. The top boundary layer expansions are

Ψ = ε−1/2 Ψ (t)(ζ, Z)+ · · · , Γ = γi + δε−1/2 Γ (t)(ζ, Z)+ · · · , (6.22a,b)

where the constant γi = Γ̄ (c)(ri) comes from the leading-order core mean flow. The
stretched variable ζ = (r − ri)/Δ is defined by using the top boundary layer thickness
Δ = δε−1/2 = O(Ta−1/10(ln Ta)1/10). The leading-order governing equations for the top
boundary layer are similar to those for the core region in the first peak states:

(Ψ
(t)
ζ ∂Z − Ψ

(t)
Z ∂ζ )Γ̃t = riΓ̃

(t)
ZZ , (6.23)

(Ψ
(t)
ζ ∂Z − Ψ

(t)
Z ∂ζ )Ψ

(t)
ZZ = riΨ

(t)
ZZZZ − T0

2γi

ri
Γ̃
(t)

Z , (6.24)

−Ψ (t)
Z Γ̃ (t) = N0. (6.25)

As ζ → ∞, the flow matches to the core solution as

Ψ (t) → Ψ̂ (c)(ri) sin Z, Γ̃ (t) → Γ̂ (c)(ri) cos Z, Γ̄ (t) → Γ̄ (c)r (ri) ζ, (6.26a–c)

while the asymptotic behaviour of the flow towards the wall should be

Ψ (t) → ζ 1/3 Ψ̂ (t)(Z), Γ (t) → ζ−1/3 Γ̂ (t)(Z) as ζ → 0, (6.27a,b)

which is similar to that used in Denier (1992). However, to match this with the bottom
boundary layer, we must insert the middle boundary layer.

Recall that the middle boundary layer is the special place where the radial and axial
derivatives of the flow have the same size. Thus the expansions there must be written in
terms of ξ = (r − ri)/δ as

Ψ = ε−1/3 Ψ (m)(ξ, Z)+ · · · , Γ = γi + δε−2/3 Γ (m)(ξ, Z)+ · · · . (6.28a,b)

Given the expansions, it is a straightforward task to find that the leading-order equations

(Ψ
(m)
ξ ∂Z − Ψ

(m)
Z ∂ξ )Γ̃

(m) = 0, (6.29)

(Ψ
(m)
ξ ∂Z − Ψ

(m)
Z ∂ξ )(∂

2
ξ + ∂2

Z)Ψ
(m) = −T0

2γi

ri
Γ̃
(m)

Z , (6.30)

−Ψ (m)
Z Γ̃ (m) = N0, (6.31)

are inviscid. Here, the Coriolis force term participating in (6.30) is critical for successful
matching to the top boundary layer:

Ψ (m) → ξ1/3 Ψ̂ (t)(Z), Γ (m) → ξ−1/3 Γ̂ (t)(Z) as ξ → ∞. (6.32a,b)

On the other hand, the appropriate behaviour of the solution towards the wall, ξ → 0, can
be found as

Ψ (m) → ξ(− ln ξ)1/3 Ψ̂ (b)(Z), Γ (m) → ξ−1(− ln ξ)−1/3 Γ̂ (b)(Z) (6.33a,b)

by seeking the consistent limiting behaviour of the solution. The key observation here is
that for both matching conditions, the rate of increase in Ψ and the rate of decrease in Γ
are the same when moving away from the wall. This is a requirement to satisfy the angular
momentum transport balance (6.31).
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The leading-order part of the bottom boundary layer expansions

Ψ = δ

ε
Ψ (b)(Y, Z)+ · · · , Γ = Γ (b)(Y, Z)+ · · · (6.34a,b)

matches the middle boundary layer if (6.18) holds and

Ψ (b) → Y Ψ̂ (b)(Z), Γ (b) → Y−1 Γ̂ (b)(Z) (6.35a,b)

as Y = (r − ri)/ε → ∞. The leading-order equations in the bottom boundary layer are

(Ψ
(b)
Y ∂Z − Ψ

(b)
Z ∂Y)Γ

(b) = riΓ
(b)

YY , (6.36)

(Ψ
(b)
Y ∂Z − Ψ

(b)
Z ∂Y)Ψ

(b)
YY = riΨ

(b)
YYYY . (6.37)

Thanks to the radial diffusivity, the no-slip boundary conditions

Ψ (b) = Ψ
(b)
Y = 0, Γ (b) = Γi at Y = 0 (6.38a,b)

can be imposed.
Although the combined boundary layers appear rather complex, their role is merely to

define the relationship between A and N0. Once T0 and A are fixed, the flow near the inner
cylinder can be calculated to find N0 = fi(A, T0). A similar calculation for the near outer
cylinder region yields another functional relationship N0 = fo(A, T0). Hence, in principle,
A(T0) and N0(T0) can be determined by solving the two near-wall regions numerically.
We do not perform such challenging calculations since we have already seen in § 5 that
the finite Ta numerical results are consistent with the asymptotic theory.

The value of A can be predicted from the finite Ta numerical solutions as

A = (2k−2rm v̄(rm))
2 + r4

m (6.39)

by using the mean flow at the mid-gap. The black curve in figure 9(b) is the result of using
this A in (6.5), and it can be seen that this asymptotic prediction matches the numerical
calculation in the entire core region. Similarly, the fluctuation component in the core can
be calculated explicitly. The black curve in figure 15 is the asymptotic approximation

Γ̃ ≈ Ta−1/4 r

(
32ηr2

i

(1 + η)4
Nu√

(A − r4)

)1/2

cos Z, (6.40)

which is in good agreement with the numerical result.
We will also comment briefly on the case where a is non-zero. For any a, it is not so

difficult to decrease k of the Taylor vortex solution branch from the linear critical point
until the Nusselt number takes a peak. The red crosses in figure 16(a) summarise Nu at
the peak for various a. The numerical result shows that the optimised Nu is maximised
when the outer cylinder slightly counter-rotates (a ≈ 0.08). This is in line qualitatively
with the experimental ultimate turbulence results shown by green squares. However, for
the experimental results, the maximum of Nu is attained at a ≈ 0.3 and, as noted in § 3,
the Nusselt number scaling is Nu ∝ Ta0.38. The Taylor vortex results naturally have a much
smaller Nu, because it is scaled like Ta0.3 as the second peak seen in the a = 0 case. In
figure 16(b), we also plotted K1 and K∞ obtained in the transitional state analysis (see
(B5a,b) and (B7a,b) in Appendix B). Roughly speaking, the peaks occur when k/Ta1/4 is
approximately half of K∞. The linear and nonlinear instabilities disappear at the Rayleigh
line a = −η2 ≈ −0.51, which can be found from Rayleigh’s stability condition.

967 A11-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.481


On high-Taylor-number Taylor vortices

0

0.02

0.04

0.06

0.08

0.10

ri ror

Γ̃

Figure 15. The red dotted curve is the profile of Γ̃ at the plume position z = π/k for the Taylor vortex solution
at the second peak. We use the same data as in figure 13 (η = 5/7, a = 0, Ta = 2.95 × 1011). The black curve
is the asymptotic result (6.40).
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Figure 16. (a) The Nusselt number at Ta = 1010 for η = 5/7. The red crosses are the Taylor vortex solution
with the optimised wavenumbers shown in (b). The green squares are experimental results by Dennis et al.
(2011). (b) The red crosses are the local maximum of Nu closest to the bifurcation point. According to the
asymptotic theory, the Taylor vortex solution bifurcates from circular Couette flow at K1 (see (B5a,b)). The
Nusselt number Nu is O(1) when k/Ta1/4 ∈ (K∞,K1), where K∞ is given in (B7a,b). For k/Ta1/4 < K∞, the
Nu scaling is like the second peak state.

Brauckmann, Salewski & Eckhardt (2016) and Brauckmann & Eckhardt (2017) reported
that when the gap is narrow, there are two values of RΩ = (1 − η)(Ri + Ro)/(Ri − ηRo)
at which the local maximum of Nu occurs. Whether similar results can be obtained with
the Taylor vortex solution is left for future work.

7. Conclusions and discussion

In this study, the Taylor vortex solution branch is continued to very high Taylor numbers,
and a theoretical rationale is given for its asymptotic properties. The limiting behaviour
of the solution depends on how the axial period of the solution 2π/k is scaled by Ta. The
range of k from O(1) to the value where it is so large that the nonlinear solution ceases to
exist is covered in the analysis. The Taylor vortex solution with a wavenumber k of O(1)
reproduces surprisingly well the properties of the large-scale coherent structures in the
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classical turbulence regime. The numerical results also suggest that there may be some
connection between the onset of the ultimate turbulence regime and the high-wavenumber
solutions, although the precise role of the solutions in the dynamics needs to be clarified
in the future.

Our results provide evidence that the strategy of taking a simple solution from the
dynamics and applying the matched asymptotic expansion for it can be used even for
fully developed high-Reynolds-number turbulence to some extent. This finding offers great
hope for the first principles explanation for turbulent momentum and heat transport that is
still poorly understood.

7.1. Summary of the asymptotic properties of the solutions
When k = O(1), the asymptotic solution consists of an inviscid core and a viscous
boundary layer enveloping it. In the core region, the Prandtl–Batchelor theorem imposes
strong restrictions on the structure of the flow field. The asymptotic scaling of the wind
Reynolds number Rew = O(Ta1/2) is consistent with the turbulent observations (Huisman
et al. 2012; Ostilla et al. 2013). On the other hand, the viscous boundary layer can be
divided into a wall boundary layer and a plume. According to the asymptotic analysis, it is
the Coriolis force acting on the plume that drives the overall flow. The theoretical Nusselt
number for the k = O(1) solutions is Nu = O(Ta1/4), and the DNS data suggest that the
same Nu scaling can be applied for the classical turbulence.

The Nusselt number of the solution reaches its maximum when k = O(Ta2/9). This
asymptotic state, which we call the first peak state, has a structure similar to the k = O(1)
flow in a neighbourhood of the walls. The near-wall boundary layer becomes thinner than
the k = O(1) case, so naturally, the Nusselt number is increased. At the same time, viscous
effects in the plume dominate Coriolis forces. This means that the Coriolis force must act
in the core to drive the vortex, and this condition determines the scaling Nu = O(Ta1/3)
and Rew = O(Ta4/9). For large-wavenumber solutions, the radial velocity is much larger
than the axial velocity, so the scaling of Rew is the same for the definitions used by
Huisman et al. (2012) and Ostilla et al. (2013).

There is another local maximum for the Nusselt number, which occurs at k = O(Ta1/4).
In this second peak state, the nonlinear interaction of the axially fluctuating component
disappears in the core. As a result, only a single Fourier mode and mean flow play a
major role. To connect this core flow towards the cylinder walls, three near-wall layers are
necessary. The bottom boundary layer adjacent to the cylinder wall is needed in order to
satisfy the no-slip boundary conditions, and the top boundary layer must appear in order
to attenuate the Fourier harmonics towards the core region. These two boundary layers of
different natures can be matched through the middle boundary layer. The Nusselt number
and wind Reynolds number scalings are O(Ta3/10) and O(Ta2/5), respectively, ignoring a
minor logarithmic correction. The Coriolis force is a leading-order effect in all regions
except the bottom boundary layer.

The second peak state appears only when the scaled wavenumber k Ta−1/4 is smaller
than the critical value K∞, which can be determined analytically. As the wavenumber k is
increased further, the Taylor vortex undergoes a transitional state similar to that analysed
by Denier (1992) and then becomes a laminar flow. The Nusselt number of the transitional
state is O(Ta0) and can be found analytically, which agrees well with the numerical results.

In summary, as k is reduced from the linear critical point, the Taylor vortex solution
develops according to the following scenario. First, vortices grow from near the inner
cylinder in the transitional state. When the vortices reach the outer cylinder, the flow field
becomes the second peak state. A further decrease in k increases the thickness of the outer
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boundary layer, where Fourier harmonics are seen. The first peak state appears when the
outer boundary layers on both sides come into contact. The axial scale of this state is
sufficiently large for the separation of the inviscid region and the plume to be noticeable
in the near-wall regions. When k = O(1), the inviscid region extends across the gap, and
the scaling for the largest-scale vortices is established.

How the above steady solutions relate to the turbulence dynamics is a natural question;
Kooloth et al. (2021) investigated this problem for two-dimensional RBC, and their results
may also be applicable to our case. Their key observation is that local structures in the
turbulent dynamics can be approximated by the relatively-short-wavelength solutions if
the wavelength is chosen suitably. The detailed comparison of the dynamics and the
solutions revealed that local structures with a wide range of wavelengths are embedded
in turbulence. It is still unknown how often the solution of each wavelength appears
in the dynamics. But if all solutions are equally likely to appear, then the solutions
with the largest Nu scaling will have greatest impact on the average value of Nu in the
dynamics.

An interesting aspect of the above asymptotic theories is that they show what the
mean flow v̄ in the core will look like. When k is not too large, the mean angular
momentum rv̄ becomes a constant in the core region. In the k = O(1) case, this is a
consequence of the Prandtl–Batchelor theorem. The mean angular momentum profile
becomes non-uniform when k = O(Ta1/4), but instead, an analytical solution can be
derived up to an unknown constant. The time-averaged turbulence data support the former
uniform angular momentum law (Wattendorf 1935; Taylor 1935; Smith & Townsend 1982;
Lewis & Swinney 1999; Ostilla-Mónico et al. 2014b). The fact that v̄ is proportional to 1/r
implies that the mean flow is irrotational. By taking the narrow gap limit, it can be seen
that the argument here explains why zero absolute vorticity states are commonly found in
rotating parallel shear flows (see Johnston, Halleen & Lezius 1972; Tanaka et al. 2000;
Suryadi, Segalini & Alfredsson 2014; Kawata & Alfredsson 2016).

We further remark that the uniform angular momentum states are a natural
generalisation of the uniform momentum states often observed in non-rotating shear
flows. In particular, the staircase-like uniform momentum zones seen ubiquitously in the
near-wall turbulent boundary layer have long attracted much attention (Meinhart & Adrian
1995; de Silva, Hutchins & Marusic 2016). To explain this phenomenon, Montemuro
et al. (2020) and Blackburn, Deguchi & Hall (2021) attempted to construct a theory for
homogeneous shear flows. At the heart of these theories is the Prandtl–Batchelor theorem,
which was first proposed to apply for the uniform momentum state by Deguchi & Hall
(2014a) for a steady solution of plane Couette flow. However, it is not yet clear how such a
core structure interacts with the near-wall flow and deduces the scaling of the momentum
transport in the Reynolds number.

7.2. Link to the RBC studies
The asymptotic analyses of the first and second peaks presented in this paper can also
be applied to the roll cell solutions of RBC (regardless of whether the boundary is slip
or no-slip) and therefore provide a theoretical explanation for the scaling obtained by the
numerical computation in Waleffe et al. (2015) and Sondak et al. (2015). Note, however,
that for RBC, the transitional state exists only in the vicinity of the bifurcation point in
the parameter space (Blennerhassett & Bassom 1994). This is due to the fact that in RBC,
the instability occurs uniformly in the flow, whereas in TCF, the centrifugal instability is
usually most pronounced near the inner cylinder.
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The computation of the roll cell solution branch by Wen et al. (2022) reaches Ra = 1014,
which is close to the experimentally feasible limit. In their numerical result, the exponent
for k at the first peak is closer to 1/5 than 2/9. However, their Nu exponent is also slightly
off from 1/3, so a calculation with a larger Ra would be necessary to obtain the exponents
accurately. Of course, the possibility that an unknown asymptotic state exists cannot be
ruled out, but it appears from the author’s experience that it is difficult to construct new
sensible asymptotic theories.

It is worth mentioning that Iyer et al. (2020) obtained the Nusselt number exponents
0.29 and 0.331 for moderate and high Rayleigh number regimes, respectively, for RBC in a
vertically elongated tank. These exponents are close to those of the second and first peaks.
The scaling of the first peak matches with the so-called classical scaling, but our derivation
differs significantly from that of Priestley (1954), Malkus (1954) and Grossmann & Lohse
(2000). Recently, Kawano et al. (2021) derived the scaling laws by considering the naive
balance of each term in the governing equations within the boundary layer. Although they
do not assume the two-dimensionality of the flow, the scaling is consistent with our first
peak asymptotic state. In particular, the wind Reynolds number scaling Rew = O(Ta4/9)
that we found is in agreement with the results by Grossmann & Lohse (2000) and Kawano
et al. (2021). As pointed out in the latter, the exponent 4/9 ≈ 0.444 is close to 0.458
observed in the high-Rayleigh-number DNS by Iyer et al. (2020). Their wind Reynolds
number is defined by the root-mean-square of the three velocity components normalised
by viscous velocity scale ν/H, where H is the vertical length of the tank, and thus is
comparable with our results. Iyer et al. (2020) used a computational domain where the
horizontal scale is 1/10 of the vertical scale, and it therefore makes sense that the result is
related to our large-k solutions.

The exponent of the Nusselt number obtained in Iyer et al. (2020) is smaller than the
0.38 obtained by He et al. (2012). The tank aspect ratio might be one of the causes of this
difference. However, there are only a few reports of Nu exponents exceeding 1/3 in RBC,
and the true nature of ultimate RBC scaling is still a matter of active debate. Wen et al.
(2022) summarised the Nu data of turbulent RBC and found that they were all smaller than
those of the optimised steady roll cell solution corresponding to the first peak state. Zhu
et al. (2018) restricted the DNS of RBC to two dimensions, and increased the Rayleigh
number to 1014, hoping to see the ultimate turbulence scaling. However, their numerical
data are scaled by the exponent β = 1/3, as pointed out by Doering, Toppaladoddi &
Wettlaufer (2019). Even without restricting to two-dimensional steady states, the existence
of simple solutions with an exponent greater than 1/3 is still unknown. Motoki, Kawahara
& Shimizu (2021) computed a three-dimensional steady solution of RBC, but the Nu
scaling was similar to that seen in Waleffe et al. (2015) and Sondak et al. (2015).

7.3. What is missing in the theoretical results?
Unlike RBC, the emergence of the Nusselt number exponent β = 0.38 is well-established
in the ultimate turbulence regime of TCF. Therefore, the predictions by the first peak
state should eventually deviate from the turbulent measurement as the Taylor number
increases. In the ultimate turbulence, a mix of large-scale and small-scale structures was
observed, so in a sense, it is natural that this difference should appear. Experiments have
shown that large-scale structures with scaling Rew = Ta1/2 can be observed even in the
ultimate turbulence regime (see Huisman et al. 2012). This suggests that the k = O(1) state
studied in § 4 still plays some role in the dynamics, but as we have seen in our analysis,
it cannot transport angular momentum efficiently. The reason for the inefficiency is the
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Prandtl-Batchelor homogenisation of Γ as remarked just below (4.16). Thus it would be
a natural idea to introduce small-scale vortices in the core to enhance transport. Note,
however, that vortices of approximately Kolmogorov microscale Re−1/2

w are unlikely to
show any improvement. The typical velocity scale Re1/2

w (see e.g. Deguchi 2015) yields
O(Γ̃ |c) = O(Ta−1/2 Re1/2

w ), so from the transport balance Nu = O(RewΓ̃ |c) derived by
(4.16), the scaling remains Nu = O(Ta1/4). On the other hand, the azimuthal velocity
perturbations generated by the first and second peak states are larger and may improve
transport. If instead O(Γ̃ |c) = O(Ta−1/10) obtained in the second peak analysis is used,
then the resultant scaling Nu = O(Ta0.4) is close to the experimental observation, though
of course it is not known whether such a flow structure is possible in the asymptotic
expansion framework.

Another possible reason for the deviation of the Nu scaling would be the axisymmetric
restriction imposed for the Taylor vortex. When the three-dimensionality of TCF
is allowed, feedback through Reynolds stresses appears from the non-axisymmetric
component to the axisymmetric component. This feedback effect is a key process in
self-sustaining the coherent structures in non-rotating shear flows (Waleffe 1997), and
recently Dessup et al. (2018) and Sacco, Verzicco & Ostilla-Mónico (2019) attempted to
extend this idea to TCF. Our results suggest that the feedback is unimportant for classical
turbulence, though it may not be so for ultimate turbulence.

Minor modifications to the theories obtained in this paper using the existing
asymptotic results would not fully explain the scaling of the ultimate turbulence. For
example, azimuthal and time-dependent waves can be incorporated into our axisymmetric
asymptotic theories, using the method used in Hall & Sherwin (2010), but this does not
change the Nu scaling. The crux of this problem would be that all existing nonlinear
asymptotic theories for shear flows hardly change the scaling of the wall shear rate from
that for laminar flows.

Experiments and numerical simulations have shown that there is universality in the
friction factor of various high-Reynolds-number shear flows (see e.g. Orlandi, Bernardini
& Pirozzoli 2015). No rational asymptotic theory has been found to explain this friction
factor. If a new simple solution that reproduces the universal friction factor scaling can be
found, then it might serve as an important hint for understanding the ultimate turbulence
of TCF as well. For example, if one assumes the empirical Blasius friction law (friction
factor ∝ Re−1/4), then it implies the emergence of a near-wall boundary layer of thickness
O(Re−3/4). In terms of the Taylor number, the boundary layer thickness is O(Ta−3/8),
so the Nusselt number exponent is 3/8 = 0.375, which is not too far from 0.38. The
similarities between the friction factor of TCF and other shear flows are also noted by
Lathrop et al. (1992). If the hypothesis that the ultimate turbulence of TCF shares a
common mechanism with that of non-rotating shear flows is true, then this could settle
the debate on whether the TCF–RBC analogy is valid in the extreme parameters.

Finally, we remark that the asymptotic structure discussed in this paper is valid when
Ri is smaller than or equal to O(|Ro|), hence it does not cover the whole parameter
space. When the cylinders are counter-rotating, on the neutral curve the scaling Ri =
O(|Ro|5/3) is established, as noted by Donnelly & Fultz (1960) using a dimensional
argument, by Esser & Grossmann (1996) using a heuristic extension of Rayleigh’s
stability condition, and by Deguchi (2016) using an asymptotic analysis. It is well known
that non-axisymmetric disturbances are important near the neutral curve, and nonlinear
patterns such as spirals and ribbons emerge. Furthermore, some solution branches can be
continued in the subcritical parameter regime, and in this case non-axisymmetry of the
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flow is critically important to sustain the nonlinear flow; see Deguchi et al. (2014) and
Wang et al. (2022). Developing a nonlinear asymptotic theory capable of describing the
above non-axisymmetric phenomena is another interesting idea for future work.
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Appendix A. The narrow gap limits

First, we will derive the narrow gap limit of the Görtler type. Here, we focus on the
stationary outer cylinder case studied by Denier (1992); see Deguchi (2016) for general
cases. Before taking the limit, we rewrite the system (2.6) using V = v/Ri and y = r − ri.
The boundary conditions become

(u,V,w) = (0, 0, 0) at y = 1, (A1)

(u,V,w) = (0, 1, 0) at y = 0. (A2)

While taking the limit η → 1, or equivalently ri → ∞, we assume that the transformed
velocity components and their derivatives are all O(r0

i ). Keeping T = 2R2
i /ri as O(r0

i ) to
balance the Coriolis term, the limiting flow is governed by

DV = �V, Dω = �ω + TV ∂zV, (A3a,b)

and ∂yu + ∂zw = 0. Here, ω = ∂zu − ∂yw, D = ∂t + u ∂y + w ∂z and � = ∂2
y + ∂2

z .
For the RPCF limit, on the other hand, the radial coordinate is shifted as y = r − rm so

that the origin is at the mid-gap. Furthermore, we take the new azimuthal velocity V to
satisfy (v − vb) = G(V + y), which means that a constant G scales the disturbance. Here,
we expect that the base flow of the transformed system becomes almost a linear profile
when the gap is narrow. The boundary conditions become

(u,V,w) = (0,−1/2, 0) at y = 1/2, (A4)

(u,V,w) = (0, 1/2, 0) at y = −1/2. (A5)

The constant G is chosen as G = −(rvb)
′/r, and the key assumption to take the system

to RPCF is O(G) � O(vb). Keeping T = 2Gvb(rm)/rm as O(r0
m), it is straightforward to

show that in the narrow gap limit, the system (2.6) reduces to

DV = �V, Dω = �ω + T ∂zV, (A6a,b)

and ∂yu + ∂zw = 0. The derivation of RPCF here is mathematically simpler than the
common one (see Drazin & Reid 1981), though the physical motivation would be a bit
harder to see.

The assumption O(G) � O(vb) used in the RPCF limit is equivalent to O(Ro − Ri) �
O(Ri), meaning that the inner and outer cylinders rotate at approximately the same speed.
Thus when considering a coordinate system rotating at the average speed of the cylinders,
the Coriolis force acting on the fluid is uniform. The uniform force produces an effect
equivalent to buoyancy, allowing us to use a perfect correspondence with RBC. Of course,
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in the general case this force is not uniform, which is why in the Denier case the instability
grew from near the inner cylinder (see figure 14 also). Note that the forcing term in the
general case corresponds to the third term on the right-hand side of (4.1b), and strictly
speaking this is no longer a Coriolis force. In fact, the definition of the Coriolis force
changes depending on which rotational coordinate system is chosen, hence it cannot be
well-defined when the inner and outer cylinders rotate differentially. The forcing terms are
produced by the change in the direction of the base flow (i.e. the linear terms in r−1v2 and
r−1uv in (2.1)). They are not centrifugal forces either – centrifugal force can be included
in the pressure gradient term and does not affect the dynamics.

The difference between the two limits also affects the azimuthal development of the
flow, if any. For the Görtler-type limit, the scaling factor of the azimuthal velocity is large,
therefore the flow must have a larger length scale than the gap in the azimuthal direction.
In contrast, for the RPCF-type limit, we can make the scaling factor G be O(1) when
Ri = O(rm). In this case, the azimuthal length scale of the flow is comparable to the gap.

Appendix B. The transitional states with outer cylinder rotation

This appendix discusses what modifications are required if Γo /= 0 in § 6.1. The effect of
the outer cylinder rotation appears in the mean flow layer solution so that (6.2a,b) must be
replaced by

Γ̄ = B(r2
o − r2)+ Γo + · · · , N0 = 2(r2

oB + Γo). (B1a,b)

Noting that in the core we can still use (6.5) and (6.6), the continuity of Γ̄ and r3(r−2Γ̄ )r
at r = rc is satisfied if √

A − r4
c

4T0
= B(r2

o − r2
c )+ Γo, (B2)

A√
T0(A − r4

c )
= 2(Br2

o + Γo). (B3)

Eliminating B from these equations we get

A
r2

o
− r2

c = 2
√

T0

r2
o

√
A − r4

c Γo, (B4)

which links r2
c and T0.

Now let us suppose rc = ri when T0 = T1 in the above equation. Then the scaled
wavenumber at the linear critical point can be found easily as

K1 = T−1/4
1 , T1 = r2

i (r
2
o − r2

i )

4(Γ 2
i − ΓiΓo)

. (B5a,b)

Likewise, setting rc = ro and T0 = T∞ in (B4) gives

√
4T∞Γ 2

i + r4
i − r4

o

(√
4T∞Γ 2

i + r4
i − r4

o −
√

4T∞ Γo

)
= 0. (B6)
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From this equation, the critical scaled wavenumber where Nu blows up can be found as

K∞ = T−1/4
∞ , T∞ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r4
o − r4

i

4(Γ 2
i − Γ 2

o )
if Γi > Γo > 0,

r4
o − r4

i

4Γ 2
i

if Γo ≤ 0.

(B7a,b)

Note that (B6) may have two roots, but by assuming that K∞(a) = T−1/4
∞ is a continuous

function and that K∞ → 0 as the Rayleigh line (Γi = Γo) is approached, we can determine
the solution (B7a,b) uniquely.

To find N0, we use the fact that the quadratic equation

0 =
(

r4
o

A
− 1

)
N2

0 + 4ΓoN0 −
(

4Γ 2
o + r4

o

T0

)
(B8)

can be obtained by combining (B2), (B3) and (B4). The solution

N0 = 2

√
Γ 2

o + (A−1r4
o − 1)

(
Γ 2

o + r4
o

4T0

)
− Γo

A−1r4
o − 1

(B9)

and (6.1) yields

Nu(T0) = (1 + η)4

16η3
√

T0

r4
i + 4T0Γ

2
i

r4
o − r4

i − 4T0Γ
2

i

(√
r4

o + 4T0Γ 2
o

r4
i + 4T0Γ

2
i

− 1 − Γo

)
, (B10)

which is the generalised version of (6.17).
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