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A Free Logarithmic Sobolev Inequality on
the Circle

Fumio Hiai, Dénes Petz, and Yoshimichi Ueda

Abstract. Free analogues of the logarithmic Sobolev inequality compare the relative free Fisher infor-

mation with the relative free entropy. In the present paper such an inequality is obtained for measures

on the circle. The method is based on a random matrix approximation procedure, and a large devia-

tion result concerning the eigenvalue distribution of special unitary matrices is applied and discussed.

1 Introduction

Logarithmic Sobolev inequalities have played a role in the study of norm estimates

for the diffusion semigroup since the first systematic study done by L. Gross [6] in
1975 who recognized the relation to hypercontractive estimates. Afterwards many
authors have discussed the logarithmic Sobolev inequality (LSI) in various contexts,
in particular, in close connection with the notions of hypercontractivity and spectral

gap. An LSI can be understood to compare the relative Fisher information with the
relative entropy. Its simplest form is

(1.1)

∫

R

f (t)2 log f (t)2 dγ(t) ≤

∫

R

f ′(t)2 dγ(t)

for any smooth function f on R and dγ(t) = (2π)−1e−t2/2dt , the normalized Gaus-
sian measure.

The generalization due to D. Bakry and M. Emery [1] holds on a complete Rie-
mannian manifold under the condition

Ric(M) + Hess(Ψ) ≥ ρIm

with a strictly positive constant ρ > 0. Here, Ric(M) is the Ricci curvature and
Hess(Ψ) is the Hessian of the smooth function Ψ inducing the reference Gibbs mea-
sure (replacing the Gaussian in (1.1)).

On the other hand, entropy, Fisher information and Gaussian measure have found
their analogues in free probability and the central measure there is the semicircu-

lar law of compact support (see [10, 16, 17]). The first free LSI was discovered by
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Voiculescu [18] and in a specialized form it is given as

(1.2) −

∫∫

R2

log |x − y| g(x)g(y) dxdy ≤
2π2

3
‖g‖3

3 −
1

4

when g is a probability density on R belonging to L3(R). A remark on the relation
of inequalities (1.1) and (1.2) might be in order. The second one is not a formal
extension of the first one, but the left-hand sides are entropy quantities and the right-

hand sides are Fisher informations. Recall that the logarithmic integral is the main
component of the rate function in a certain large deviation theorem while the third
power of the L3-norm functions is a kind of Fisher information.

Extending Voiculescu’s result, Ph. Biane obtained in [3] another free probabilistic

analogue of the LSI. He allowed a parameter function Q (in the role of Ψ), and the
result is

(1.3) Σ̃Q(µ) ≤
1

2ρ
ΦQ(µ) for µ ∈ M(R),

where the relative free entropy Σ̃Q(µ) and the relative free Fisher information ΦQ(µ)
were introduced earlier by Biane and Speicher [4] for µ ∈ M(R), the probability

measures on R. To prove the inequality, Biane applied the classical LSI on the Eu-
clidean space to the related self-adjoint random matrix ensembles and used the weak
convergence of their mean eigenvalue distribution. For the details we refer to the
original paper [3] and also to [11].

Our main aim here is to show a variant of Biane’s free LSI for measures on the
unit circle T. In §2 of this paper we introduce the relative free entropy Σ̃Q(µ) and the
relative free Fisher information FQ(µ) for µ ∈ M(T). In §4 we prove

Σ̃Q(µ) ≤
1

1 + 2ρ
FQ(µ) for µ ∈ M(T)

if Q is a C1-function on T such that Q(eit ) − ρ
2
t2 is convex on R with a constant ρ >

−1/2. To prove this, we apply Bakry and Emery’s classical LSI on the special unitary
group SU(n), a Riemannian manifold, to the related n × n special unitary random
matrices and pass to the scaling limit as n goes to ∞. Here, we need the convergence

of the empirical eigenvalue distribution of the random matrix not only in the mean
but also in the almost sure sense that is a consequence of the corresponding large
deviation principle. The proof of this large deviation for “special” unitary random
matrices is sketched in §3 because it is a bit more complicated than that for unitary

random matrices shown in [9].
In this way, we clarify the advantage of random matrix approximation procedure

in studying free probabilistic analogues of certain classical theories involving relative
entropy and/or Fisher information. Voiculescu’s heuristics in [16] suggests that the

classical entropy of random matrices, if suitably arranged, asymptotically converges
to the free entropy of the limit distribution as the matrix size goes to infinity. Toward
its rigorous realizations, this paper as well as our previous one [12] may be regarded
as one more attempt subsequent to [2, 7] (see also §5.1 for more details).
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2 Preliminaries

Let us begin by fixing some standard notations. Denote by M(X) the set of Borel
probability measures on a certain Polish space X. For µ, ν ∈ M(X) let S(µ, ν) denote

the relative entropy of µ with respect to ν. For an n × n complex matrix A, Trn(A)
stands for the usual (non-normalized) trace of A and ‖A‖HS for the Hilbert–Schmidt
norm of A. The unitary group and the special unitary group of order n are denoted
by U(n) and SU(n), respectively.

Among extensive literature, Bakry and Emery gave a simple “local” criterion, the
so-called Bakry and Emery criterion (or the Γ2-criterion), for a given measure to
satisfy a logarithmic Sobolev inequality (LSI for short). Their LSI is one of the key
ingredients of the proof of our main theorem.

Let M be an m-dimensional smooth complete Riemannian manifold with the vol-
ume measure dx, and let Ric(M) denote the Ricci curvature tensor of M. For a real-
valued C2-function Ψ on M, the Hessian of Ψ is denoted by Hess(Ψ). The precise
statement that Bakry and Emery established is as follows.

Theorem 2.1 (Bakry and Emery [1]) Let Ψ ∈ C2(M), and set dν(x) := 1
Z

e−Ψ(x)dx

with a normalization constant Z. Assume that the Bakry and Emery criterion

Ric(M) + Hess(Ψ) ≥ ρIm

holds with a constant ρ > 0. Then, for every µ ∈ M(M) absolutely continuous with

respect to ν, the inequality

(2.1) S(µ, ν) ≤
1

2ρ

∫

M

∥∥∥∇ log
dµ

dν

∥∥∥
2

dµ

holds whenever the density dµ/dν is smooth on M.

Recall that the left-hand side of (2.1) is the relative entropy, while the integral in

the right-hand side can be recognized as the (classical) relative Fisher information of
µ relative to ν.

For each µ ∈ M(T), the free entropy Σ(µ) of µ is defined in the same manner as
in the real line case:

Σ(µ) :=

∫∫

T2

log |ζ − η| dµ(ζ) dµ(η)

( [8], [19, §10.7]). For its justification to be a right quantity, see [19, Proposition 10.8]
in relation to the free Fisher information as well as [8, Proposition 1.4], [9] from the
microstate approach or large deviation principle. As in the real line case, the relative

free entropy Σ̃Q(µ) of µ ∈ M(T) relative to a real-valued continuous function Q is

defined based on the large deviation principle, which will be explained in the next
section.

Assume that µ ∈ M(T) has the density p = dµ/dζ with respect to the Haar
probability measure dζ = dθ/2π, ζ = eiθ with θ ∈ [−π, π) and further that p
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belongs to the L3-space L3(T) := L3(T, dζ). The Hilbert transform of p

(2.2) (H p)(eiθ) := lim
εց0

∫

ε≤|t|<π

p(ei(θ−t))

tan
(

t
2

) dt

2π

is important. The principal value limit in (2.2) exists for a.e. (as long as p ∈ L1(T)),
and it is known that p ∈ Lq(T) implies H p ∈ Lq(T) as well for each 1 < q < ∞.

See [13, Chapter V] for detailed accounts on the Hilbert transform on T. Following
Voiculescu [19, §8.9] we call the quantity

F(µ) :=

∫

T

((H p)(ζ))2dµ(ζ) =

∫

T

((H p)(ζ))2 p(ζ) dζ

the free Fisher information of µ. When µ has no such density as above, F(µ) is defined
to be +∞. By [19, Corollary 8.8 and Definition 8.9] the free Fisher information can

be written as

F(µ) =
1

3

(
−1 +

∫

T

p(ζ)3 dζ
)

.

When Q is a real-valued C1-function on R, the relative free Fisher information

ΦQ(µ) of µ ∈ M(R) was introduced by Biane and Speicher [4, §6] to be

(2.3) ΦQ(µ) := 4

∫

R

(
(H p)(x) −

1

2
Q ′(x)

) 2

dµ(x)

if µ has the density p = dµ/dx belonging to L3(R), otherwise +∞.

On the other hand, when Q is a real-valued C1-function on T, for each µ ∈ M(T)
we define the relative free Fisher information FQ(µ) to be

(2.4) FQ(µ) :=

∫

T

(
(H p)(ζ) − Q ′(ζ)

)2
dµ(ζ) −

(∫

T

Q ′(ζ) dµ(ζ)
) 2

if µ has the density p = dµ/dζ belonging to L3(T), otherwise +∞. Here, Q ′ means

the derivative of Q(eiθ) in θ, i.e., Q ′(eiθ) =
d

dθ Q(eiθ). The slight difference between
the two formulas (2.3) and (2.4) is worth notice.

3 Large Deviations for Special Unitary Random Matrices

Let Q be a real-valued continuous function on T. The weighted energy integral

−Σ(µ) +

∫

T

Q(ζ) dµ(ζ) for µ ∈ M(T)

admits a unique minimizer µQ ∈ M(T) or the equilibrium measure associated with
Q (see [15, I.1.3]). Set B(Q) := Σ(µQ) −

∫
T

Q(ζ) dµQ(ζ). It is known [9] that the

function

−Σ(µ) +

∫

T

Q(ζ) dµ(ζ) + B(Q) for µ ∈ M(T)
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is the rate function of the large deviation for the empirical eigenvalue distribution of
an n × n unitary random matrix

dλU
n (Q)(U ) :=

1

ZU
n (Q)

exp
(
−n Trn(Q(U ))

)
dU ,

where dU is the Haar probability measure on U(n), Q(U ) is defined via functional

calculus and ZU
n (Q) is a normalization constant. Furthermore,

B(Q) = lim
n→∞

1

n2
log

∫
· · ·

∫

Tn

exp
(
−n

n∑

i=1

Q(ζi)
) ∏

1≤i< j≤n

|ζi − ζ j |
2

n∏

i=1

dζi

where dζi = dθi/2π for ζi = eiθi . However, the above unitary random matrix λU
n (Q)

is not suitable for our purpose as in [12], and thus we need to modify the above large

deviation in the setup of SU(n).
The joint eigenvalue distribution on Tn−1 of the Haar probability measure on

SU(n) is known to have the explicit form

(3.1)
1

n!

∏

1≤i< j≤n

|ζi − ζ j |
2

n−1∏

i=1

dζi with ζn = (ζ1 · · · ζn−1)−1,

or

1

n!(2π)n−1

∏

1≤i< j≤n

∣∣ eiθi − eiθ j
∣∣ 2

n−1∏

i=1

dθi with θn = −(θ1 + · · · + θn−1) (mod 2π).

(See [12, §1.5] for a brief explanation of this standard fact.)
Let Q be a real-valued continuous function on T. For each n ∈ N define λn(Q) ∈

M(SU(n)), the n × n special unitary random matrix associated with Q, by

(3.2) dλSU
n (Q)(U ) :=

1

ZSU
n (Q)

exp
(
−n Trn(Q(U ))

)
dU ,

where dU is the Haar probability measure on SU(n) and ZSU
n (Q) is a normalization

constant. By the formula (3.1) the joint eigenvalue distribution on Tn−1 of λSU
n (Q) is

given as

dλ̃SU
n (Q)(ζ1, . . . , ζn−1) =

1

Z̃SU
n (Q)

exp
(
−n

n∑

i=1

Q(ζi)
) ∏

1≤i< j≤n

|ζi − ζ j |
2

n−1∏

i=1

dζi,

with ζn = (ζ1 · · · ζn−1)−1.
The next theorem is the large deviation principle for the empirical eigenvalue dis-

tribution of λSU
n (Q), whose proof based on the explicit form of the density of λ̃SU

n (Q)
just above will be sketched below.
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Theorem 3.1 The finite limit B(Q) := limn→∞ 1/n2 log Z̃SU
n (Q) exists. When

(ζ1, . . . , ζn−1) is distributed on Tn−1 according to λ̃SU
n (Q), the empirical distribution

1
n

(
δζ1

+ · · · + δζn−1
+ δζn

)
with ζn = (ζ1 · · · ζn−1)−1 satisfies the large deviation prin-

ciple in the scale 1/n2 with the rate function

(3.3) Σ̃Q(µ) := −Σ(µ) +

∫

T

Q(ζ) dµ(ζ) + B(Q) for µ ∈ M(T).

Furthermore, there exists a unique minimizer µQ ∈ M(T) of the rate function so that

Σ̃Q(µQ) = 0.

We call the rate function (3.3) the relative free entropy of µ with respect to Q, which

is denoted by Σ̃Q(µ) as in the real line case in [4].

Sketch of the proof In the following let us keep the relation ζn = (ζ1 · · · ζn−1)−1.
The proof below is essentially same as that in [9], though some modifications are
needed. Set

F(ζ, η) := − log |ζ − η| +
1

2
(Q(ζ) + Q(η)).

As in [9] it suffices to prove the following inequalities:

(i)

lim sup
n→∞

1

n2
log Z̃SU

n (Q) ≤ − inf
µ∈M(T)

∫∫

T2

F(ζ, η) dµ(ζ)dµ(η).

(ii) For every µ ∈ M(T),

inf
G

[
lim sup

n→∞

1

n2
log λ̃SU

n (Q)
{ 1

n
(δζ1

+ · · · + δζn−1
+ δζn

) ∈ G
}]

≤ −

∫∫

T2

F(ζ, η) dµ(ζ)dµ(η) − lim inf
n→∞

1

n2
log Z̃SU

n (Q),

where G runs over all neighborhoods of µ.
(iii) For every µ ∈ M(T),

lim inf
n→∞

1

n2
log Z̃SU

n (Q) ≥ −

∫∫

T2

F(ζ, η) dµ(ζ)dµ(η).

(iv) For every µ ∈ M(T),

inf
G

[
lim inf

n→∞
1

n2
log λ̃SU

n (Q)
{ 1

n
(δζ1

+ · · · + δζn−1
+ δζn

) ∈ G
}]

≥ −

∫∫

T2

F(ζ, η) dµ(ζ) dµ(η) − lim sup
n→∞

1

n2
log Z̃SU

n (Q),

where G is as in (ii).
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The proofs of the first two are the same as in [9]. To prove (iii) and (iv), we may
assume (see [9]) that µ has a continuous density f > 0 so that µ = f (eiθ) dθ/2π and

δ ≤ f (ζ) ≤ δ−1 on T for some δ > 0. For each n ∈ N choose

0 = b(n)
0 < a(n)

1 < b(n)
1 < a(n)

2 < b(n)
2 < · · · < a(n)

n < b(n)
n = 2π

such that

1

2π

∫ a(n)

j

0

f (eiθ) dθ =
j − 1

2

n
,

1

2π

∫ b(n)

j

0

f (eiθ) dθ =
j

n
;

hence

(3.4)
πδ

n
≤ b(n)

j − a(n)
j ≤

π

nδ
,

πδ

n
≤ a(n)

j − b(n)
j−1 ≤

π

nδ

for all 1 ≤ j ≤ n. Define

∆n :=
{

(eiθ1 , . . . , eiθn−1 ) : a(n)
j ≤ θ j ≤ b(n)

j , 1 ≤ j ≤ n − 1
}

,

Θn :=
{

(θ1, . . . , θn−1) : a(n)
j ≤ θ j ≤ b(n)

j , 1 ≤ j ≤ n − 1
}

,

ξ(n)
i := max

{
Q(eiθ) : a(n)

i ≤ θ ≤ b(n)
i

}
for 1 ≤ i ≤ n − 1,

d(n)
i j := min

{
|eis − eit | : a(n)

i ≤ s ≤ b(n)
i , a(n)

j ≤ t ≤ b(n)
j

}
for 1 ≤ i, j ≤ n − 1.

For every neighborhood G of µ, if n is sufficiently large, then we have

∆n ⊂
{

(ζ1, . . . , ζn−1) ∈ Tn−1 :
1

n
(δζ1

+ · · · + δζn
) ∈ G

}

so that with θn = −(θ1 + · · · + θn−1)

λ̃SU
n (Q)

{ 1

n
(δζ1

+ · · · + δζn
) ∈ G

}
≥ λ̃SU

n (Q)(∆n)

=
1

Z̃SU
n (Q)(2π)n−1

∫
· · ·

∫

Θn

exp
(
−n

n∑

i=1

Q
(

eiθi
))

×
∏

1≤i< j≤n

∣∣ eiθi − eiθ j
∣∣ 2

dθ1 · · · dθn−1

≥
1

Z̃SU
n (Q)(2π)n−1

exp
(
−n

n−1∑

i=1

ξ(n)
i

)
e−nM

∏

1≤i< j≤n−1

(d(n)
i j )2

×

∫
· · ·

∫

Θn

n−1∏

i=1

∣∣ eiθi − e−i(θ1+···+θn−1)
∣∣ 2

dθ1 · · · dθn−1,

where M := max{Q(ζ) : ζ ∈ T}. Notice

{θ1 + · · · + θn−1 : (θ1, . . . , θn−1) ∈ Θn} =

[ n−1∑

i=1

a(n)
i ,

n−1∑

i=1

b(n)
i

]
,
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and for n large enough,

(3.5)

n−1∑

i=1

b(n)
i −

n−1∑

i=1

a(n)
i ≥

n − 1

n
πδ >

3π

nδ
.

From (3.4) and (3.5) we can choose an interval [α, β] ⊂
[∑n−1

i=1 a(n)
i ,

∑n−1

i=1 b(n)
i

]

such that β − α = πδ/n2 and

[−β,−α] ⊂
[

b(n)

k−1 +
πδ

n2
, a(n)

k −
πδ

n2

]
(mod 2π)

for some 1 ≤ k ≤ n. Then there exist subintervals [αi , βi] ⊂
[

a(n)
i , b(n)

i

]
, 1 ≤ i ≤

n − 1, such that

βi − αi =
πδ

n2(n − 1)
,

n−1∑

i=1

αi = α,

n−1∑

i=1

βi = β,

and hence

∫
· · ·

∫

Θn

n−1∏

i=1

∣∣ eiθi − e−i(θ1+···+θn−1)
∣∣ 2

dθ1 · · · dθn−1

≥

∫ β1

α1

· · ·

∫ βn−1

αn−1

n−1∏

i=1

∣∣ eiθi − e−i(θ1+···+θn−1)
∣∣ 2

dθ1 · · · dθn−1

≥
( 2δ

n2

) 2(n−1)( πδ

n2(n − 1)

) n−1

.

Therefore, for sufficiently large n, we get

λ̃SU
n (Q)

{ 1

n
(δζ1

+ · · · + δζn
) ∈ G

}

≥
(2δ3)n−1

Z̃SU
n (Q)n7(n−1)

exp
(
−n

n−1∑

i=1

ξ(n)
i

) ∏

1≤i< j≤n−1

(
d(n)

i j

) 2
.

Since

lim
n→∞

2

n2

∑

1≤i< j≤n−1

log d(n)
i j =

1

(2π)2

∫ 2π

0

∫ 2π

0

f (eis) f (eit ) log |eis − eit | dsdt

=

∫∫

T2

log |ζ − η| dµ(ζ)dµ(η)
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as well as

lim
n→∞

1

n

n−1∑

i=1

ξ(n)
i =

1

2π

∫ 2π

0

Q(eis) f (eis) ds =

∫

T

Q(ζ) dµ(ζ),

we have

0 ≥ lim sup
n→∞

1

n2
log λ̃SU

n (Q)
{ 1

n
(δζ1

+ · · · + δζn
) ∈ G

}

≥ −

∫∫

T2

F(ζ, η) dµ(ζ)dµ(η) − lim inf
n→∞

1

n2
log Z̃SU

n (Q)

and

lim inf
n→∞

1

n2
log λ̃SU

n (Q)
{ 1

n
(δζ1

+ · · · + δζn
) ∈ G

}

≥ −

∫∫

T2

F(ζ, η) dµ(ζ) dµ(η) − lim sup
n→∞

1

n2
log Z̃SU

n (Q).

These imply (iii) and (iv).

4 Free LSI for Measures on T

In this section, we will prove a free analogue of LSI for measures on T. The idea here
is essentially same as Biane’s work [3] (and also [12]). Namely, our free analogue
arises as the scaling limit in the scale 1/n2 of the classical one (2.1) on the special
unitary group SU(n).

Let us begin with some lemmas.

Lemma 4.1 Let Q be a harmonic function on a neighborhood of the unit disk {ζ ∈
C : |ζ| ≤ 1}. For each n ∈ N and each U ∈ SU(n) define Q(U ) via the functional

calculus and set Ψ(U ) := Trn(Q(U )). Then the following hold:

(i) The function Ψ(U ) on SU(n) is C∞.

(ii) ∇Ψ(U ) = i
(

Q ′(U ) − 1
n

Trn(Q ′(U ))In

)
.

(iii) If Q(eit ) − ρ
2
t2 is convex on R for some constant ρ > 0, then Hess(Ψ) ≥ ρIn2−1.

Proof Assertions (i) and (iii) were shown in [12, Lemma 1.3]; thus we will prove

only (ii). Set f (t) := Q(eit ) for t ∈ R, and let Yk := iXk with Xk = X∗
k , 1 ≤ k ≤ n2−1,

be a basis of the Lie algebra su(n) = {T ∈ Mn(C) : T + T∗ = 0, Trn(T) = 0} (∼=

Rn2−1). For any U0 = eiA0 ∈ SU(n) with iA0 ∈ su(n) and for x = (x1, . . . , xn2−1) ∈

Rn2−1, we write

Ψ

(
exp

(
iA0 +

n2−1∑

k=1

xkYk

))
= Trn

(
f
(

A0 +

n2−1∑

k=1

xkXk

))
.
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Thanks to [12, Lemma 1.2], we have

∇Ψ(U0) =

n2−1∑

k=1

Trn( f ′(A0)Yk)Yk

=

n2−1∑

k=1

Trn

((
f ′(A0) −

1

n
Trn( f ′(A0))In

)
Yk

)
Yk

=

n2−1∑

k=1

〈
i
(

f ′(A0) −
1

n
Trn( f ′(A0))In

)
,Yk

〉

Trn

Yk

= i
(

f ′(A0) −
1

n
Trn( f ′(A0))In

)

= i
(

Q ′(U0) −
1

n
Trn(Q ′(U0))In

)
,

implying (ii).

Lemma 4.2 Assume that µ ∈ M(T) has a continuous density p = dµ/dζ and that

Qµ(ζ) := 2
∫

T
log |ζ − η|dµ(η) is C1 on T. Then the following hold:

(i) Q ′
µ(ζ) = (H p)(ζ) for a.e. ζ ∈ T.

(ii)
∫

T
((H p)(ζ))p(ζ) dζ = 0.

Proof (i) Let f be an arbitrary C1-function on T. Then we have

∫ 2π

0

d

dθ
Qµ(eiθ) f (eiθ)

dθ

2π

= −

∫ 2π

0

Qµ(eiθ)
d

dθ
f (eiθ)

dθ

2π

= − lim
εց0

∫

|θ−t|≥ε

2 log
∣∣ eiθ − eit

∣∣ d

dθ
f (eiθ)p(eit )

dθ × dt

(2π)2

= − lim
εց0

∫ 2π

0

(∫

|θ−t|≥ε

log
(

2(1 − cos(θ − t))
) d

dθ
f (eiθ)

dθ

2π

)
p(eit )

dt

2π
,

where the second equality is due to the fact that log
∣∣ eiθ − eit

∣∣ d
dθ f (eiθ) is bounded

above. Integrating by parts we get

∫

|θ−t|≥ε

log
(

2(1 − cos(θ − t))
) d

dθ
f (eiθ)

dθ

2π

= −
log (2 (1 − cos ε))

2π

(
f (ei(t+ε)) − f (ei(t−ε))

)
−

∫

|θ−t|≥ε

f (eiθ)

tan
(

θ−t
2

) dθ

2π
,
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and hence

∫ 2π

0

d

dθ
Qµ(eiθ) f (eiθ)

dθ

2π

= lim
εց0

{
log(2(1 − cos ε))

2π

∫ 2π

0

(
f (ei(t+ε)) − f (ei(t−ε))

)
p(eit )

dt

2π

+

∫ 2π

0

(∫

|θ−t|≥ε

f (eiθ)

tan
(

θ−t
2

) dθ

2π

)
p(eit )

dt

2π

}

= lim
εց0

∫ 2π

0

(∫

|θ−t|≥ε

p(eit )

tan
(

θ−t
2

) dt

2π

)
f (eiθ)

dθ

2π

=

∫ 2π

0

(H p)(eiθ) f (eiθ)
dθ

2π
.

In the above, the second equality comes from
∣∣ f (ei(t+ε)) − f (ei(t−ε))

∣∣ = O(ε) uni-
formly for t ∈ [0, 2π), and since we have in particular p ∈ L2 (T), the last one
comes from the L2-convergence of the involved principal value integral to H p (see [5,

12.8.2 (2)]). Hence, the desired assertion follows since f is arbitrary.

(ii) is seen by taking the limit as ε ց 0 of

∫ 2π

0

(∫

|t−θ|≥ε

p(eit )

tan
(

θ−t
2

) dt

2π

)
p(eiθ)

dθ

2π

= −

∫ 2π

0

(∫

|θ−t|≥ε

p(eiθ)

tan
(

t−θ
2

) dθ

2π

)
p(eit )

dt

2π
,

thanks to the L2-convergence of the principal value integral as mentioned above.

The next theorem is the main result of the paper. One should note that the full
power of the large deviation (especially, the almost sure convergence of the empirical
eigenvalue distribution) is needed in the proof, while the weak convergence in the

mean is enough in the proof of Biane’s free LSI for measures on R in [3].

Theorem 4.3 Let Q be a real-valued C1-function on T such that Q(eit )− ρ
2
t2 is convex

on R with a constant ρ > −1/2. Then the inequality

(4.1) Σ̃Q(µ) ≤
1

1 + 2ρ
FQ(µ)

holds for every µ ∈ M(T).

In the special case where Q ≡ 0 and ρ = 0, the above (4.1) becomes

−Σ(µ) ≤ F(µ)
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and the equilibrium measure µQ is the uniform distribution dζ .
In particular, the theorem implies that FQ(µ) ≥ 0, i.e.,

∫

T

(
(H p)(ζ) − Q ′(ζ)

) 2
dµ(ζ) ≥

(∫

T

Q ′(ζ) dµ(ζ)
) 2

for every µ ∈ M(T) under the above assumption of Q. Also, suppose that the equi-
librium measure µQ has a continuous density and its support is T; then we have
Q(ζ) = 2

∫
T

log |ζ − η| dµQ(η) for all ζ ∈ T due to [15, Theorem I.3.1] so that
Lemma 4.2 gives FQ(µQ) = 0.

Before passing to the proof, we should recall the following facts: the Ricci cur-
vature tensor of U(n) is known to be degenerate, while that of SU(n) to be positive
constant (see [14], a nice reference for the topic) and a straightforward computa-
tion shows that the Ricci curvature tensor of SU(n) with respect to the Riemannian

structure associated with Trn is

(4.2) Ric(SU(n)) =
n

2
In2−1.

This is the reason why we have presented Theorem 3.1 with use of SU(n) instead of
U(n).

Proof of Theorem 4.3 First, let us assume:

(a) Q is harmonic on a neighborhood of the unit disk;
(b) µ has a continuous density p = dµ/dζ , and Qµ(ζ) := 2

∫
T

log |ζ − η| dµ(η) is
harmonic on a neighborhood of the unit disk.

For each n ∈ N define n × n special unitary random matrices λSU
n (Q) and λSU

n (Qµ)
as in (3.2), i.e.,

dλSU
n (Q)(U ) :=

1

ZSU
n (Q)

exp(−n Trn(Q(U ))) dU ,

dλSU
n (Qµ)(U ) :=

1

ZSU
n (Qµ)

exp(−n Trn(Qµ(U ))) dU .

Let λ̃SU
n (Q) and λ̃SU

n (Qµ) be their joint eigenvalue distributions on Tn−1 (see §3).

Also, let λ̂SU
n (Q) and λ̂SU

n (Qµ) be their mean eigenvalue distributions defined by

λ̂SU
n (Q) :=

∫
. . .

∫

Tn−1

1

n
(δζ1

+ · · · + δζn
) dλ̃SU

n (Q)(ζ1, . . . , ζn−1)

with ζn = (ζ1 · · · ζn−1)−1 and similarly for λ̂SU
n (Qµ). According to Theorem 3.1, the

empirical eigenvalue distribution of λSU
n (Qµ) satisfies the large deviation principle in

the scale 1/n2 whose rate functions is Σ̃Qµ
(µ). Moreover, note [15, Theorem I.3.1]

that the equilibrium measure associated with Qµ (or the minimizer of Σ̃Qµ
) is the

given µ. This large deviation principle guarantees the following facts (i) and (ii),
which will be the key ingredients in our arguments below.
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(i) λ̂SU
n (Qµ) → µ weakly as n → ∞;

(ii) the empirical distribution 1
n

(δζ1
+ · · ·+ δζn

) weakly converges to µ almost surely

as n → ∞ when (ζ1, . . . , ζn−1) is distributed according to λ̃SU
n (Qµ) and ζn =

(ζ1 · · · ζn−1)−1.

Set Ψn(U ) := n Trn(Q(U )) for U ∈ SU(n). Thanks to (a) above, Lemma 4.1(iii)

together with (4.2) verifies the Bakry and Emery criterion

Ric(SU(n)) + Hess(Ψn) ≥
( n

2
+ nρ

)
In2−1.

Thus, by Theorem 2.1 due to Bakry and Emery we get

(4.3) S
(
λSU

n (Qµ), λSU
n (Q)

)
≤

1

2
(

n
2

+ nρ
)

∫

SU(n)

∥∥∥∇ log
dλSU

n (Qµ)

dλSU
n (Q)

∥∥∥
2

HS
dλSU

n (Qµ).

Notice

(4.4)

dλSU
n (Qµ)

dλSU
n (Q)

(U ) =
Z̃SU

n (Q)

Z̃SU
n (Qµ)

exp
(
−n Trn(Qµ(U )) + n Trn(Q(U ))

)
, U ∈ SU(n),

where Z̃SU
n (Q) and Z̃SU

n (Qµ) are the normalization constants of the joint eigenvalue
distributions (see §3). Hence, we have

1

n2
S
(
λSU

n (Qµ), λSU
n (Q)

)

=
1

n2

∫

SU(n)

log
dλSU

n (Qµ)

dλSU
n (Q)

(U ) dλSU
n (Qµ)(U )

=
1

n2
log Z̃SU

n (Q) −
1

n2
log Z̃SU

n (Qµ)

−

∫

SU(n)

1

n
Trn(Qµ(U )) dλSU

n (Qµ)(U ) +

∫

SU(n)

1

n
Trn(Q(U )) dλSU

n (Qµ)(U )

=
1

n2
log Z̃SU

n (Q) −
1

n2
log Z̃SU

n (Qµ)

−

∫

T

Qµ(ζ) dλ̂SU
n (Qµ)(ζ) +

∫

T

Q(ζ) dλ̂SU
n (Qµ)(ζ),

and therefore, thanks to (b) and (i) above,

(4.5)

lim
n→∞

1

n2
S
(
λSU

n (Qµ), λSU
n (Q)

)
= B(Q) − B(Qµ) −

∫

T

Qµ(ζ) dµ(ζ) +

∫

T

Q(ζ) dµ(ζ)

= Σ̃Q(µ),

where the last equality comes from the fact that µ is the minimizer with Σ̃Qµ
(µ) = 0,

i.e., ∫

T

Qµ(ζ) dµ(ζ) + B(Qµ) = Σ(µ).

https://doi.org/10.4153/CMB-2006-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-039-7


402 F. Hiai, D. Petz, and Y. Ueda

Therefore, the scaling limit in the scale 1/n2 of the left-hand side of (4.3) becomes

the relative free entropy Σ̃Q(µ). We will seek the scaling limit in the scale 1/n2 of the
right-hand side of (4.3). By (4.4) and Lemma 4.1(ii), we have

∇ log
dλSU

n (Qµ)

dλSU
n (Q)

(U ) = −n∇
(

Trn(Qµ(U )) − Trn(Q(U ))
)

= −i
{

n
(

Q ′
µ(U ) − Q ′(U )

)
−

(
Trn(Q ′

µ(U ) − Q ′(U ))
)

In

}

so that

∥∥∥∇ log
dλSU

n (Qµ)

dλSU
n (Q)

(U )
∥∥∥

2

HS

= n2 Trn

((
Q ′

µ(U ) − Q ′(U )
) 2)

− n
(

Trn

(
Q ′

µ(U ) − Q ′(U )
)) 2

.

Thus, we get

1

n2
·

1

2
(

n
2

+ nρ
)

∫

SU(n)

∥∥∥∇ log
dλSU

n (Qµ)

dλSU
n (Q)

(U )
∥∥∥

2

HS
dλSU

n (Qµ)(U )

=
1

1 + 2ρ

{ ∫

SU(n)

1

n
Trn

((
Q ′

µ(U ) − Q ′(U )
) 2

)
dλSU

n (Qµ)(U )

−

∫

SU(n)

1

n2

(
Trn

(
Q ′

µ(U ) − Q ′(U )
)) 2

dλSU
n (Qµ)(U )

}
.

The above-mentioned fact (i) implies that

∫

SU(n)

1

n
Trn

((
Q ′

µ(U ) − Q ′(U )
) 2

)
dλSU

n (Qµ)(U )

=

∫

T

(
Q ′

µ(ζ) − Q ′(ζ)
)2

dλ̂SU
n (Qµ)(ζ) →

∫

T

(
Q ′

µ(ζ) − Q ′(ζ)
)2

dµ(ζ)

as n → ∞, while the above fact (ii) implies that, with ζn := (ζ1 · · · ζn−1)−1,

∫

SU(n)

1

n2

(
Trn

(
Q ′

µ(U ) − Q ′(U )
)) 2

dλSU
n (Qµ)(U )

=

∫

Tn−1

( 1

n

n∑

i=1

(
Q ′

µ(ζi) − Q ′(ζi)
)) 2

dλ̃SU
n (Qµ)(ζ1, . . . , ζn−1)

→
(∫

T

(
Q ′

µ(ζ) − Q ′(ζ)
)

dµ(ζ)
)2

as n → ∞.
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Thanks to the assumption (b), Lemma 4.2 implies that

(∫

T

(
Q ′

µ(ζ) − Q ′(ζ)
)

dµ(ζ)
) 2

=

(∫

T

((H p)(ζ))p(ζ) dζ −

∫

T

Q ′(ζ) dµ(ζ)
) 2

=

(∫

T

Q ′(ζ) dµ(ζ)
) 2

so that we get
(4.6)

lim
n→∞

1

n2
·

1

2
(

n
2

+ nρ
)

∫

SU(n)

∥∥∥∇ log
dλSU

n (Qµ)

dλSU
n (Q)

(U )
∥∥∥

2

HS
dλSU

n (Qµ)(U ) =
1

1 + 2ρ
FQ(µ).

By (4.3), (4.5) and (4.6) we have shown the desired inequality (4.1) under the as-
sumptions (a) and (b).

Next, let us deal with a general Q as stated in the theorem. Let µ ∈ M(T) with a
density p = dµ/dζ ∈ L3(T). For each 0 < r < 1, we consider the Poisson integrals
Qr and pr of Q and p, respectively; that is,

Qr(eiθ) :=
1

2π

∫ 2π

0

Pr(θ − t)Q(eit ) dt,

pr(eiθ) :=
1

2π

∫ 2π

0

Pr(θ − t)p(eit ) dt

with the Poisson kernel Pr(θ) := (1 − r2)/(1 − 2r cos θ + r2). Define µr ∈ M(T) by
dµr(ζ) := pr(ζ) dζ . In the same way as in [12, Theorem 2.7], it is easy to see that

(4.7) Σ̃Qr
(µr) ≤

1

1 + 2ρ
FQr

(µr)

by what we have already shown, and also that

lim
rր1

Σ̃Qr
(µr) = Σ̃Q(µ).

Notice that ‖pr − p‖L3 → 0 and hence ‖H pr − H p‖L3 → 0 as r ր 1. Since Q is
a C1-function, Q ′

r becomes the Poisson integral of Q ′ so that ‖Q ′
r − Q ′‖∞ → 0 as

r ր 1 as well. These imply that

lim
rր1

FQr
(µr) = lim

rր1

{∫

T

(
(H pr)(ζ) − Q ′

r (ζ)
)2

dµr(ζ) −
(∫

T

Q ′
r(ζ) dµr(ζ)

) 2}

=

∫

T

(
(H p)(ζ) − Q ′(ζ)

)2
dµ(ζ) −

(∫

T

Q ′(ζ) dµ(ζ)
) 2

= FQ(µ).

Hence, the desired inequality (4.1) follows by taking the limit of (4.7).
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5 Supplementary Remarks

5.1 Scaling Limit Formulas for Relative Free Entropy and Relative Free Fisher Infor-
mation

It seems worthwhile to state in a separate proposition some scaling limit formulas
given in the proof of the main theorem. In fact, the formula for relative free entropy

was essentially obtained in [7]. In the special unitary case, the proof of (4.5) gives
Proposition 5.1(1), while that of (4.6) gives Proposition 5.1(2), because the derivative
formula in Lemma 4.1(ii) is still valid for any U ∈ SU(n) when Q is a real-valued C1-
function on T. The unitary cases are similar.

Proposition 5.1

(1) Let Q be a real-valued continuous function on T, and µ ∈ M(T). If Qµ(ζ) :=
2
∫

T
log |ζ − η| dµ(η) is finite and continuous on T, then

Σ̃Q(µ) = lim
n→∞

1

n2
S
(
λSU

n (Qµ), λSU
n (Q)

)
= lim

n→∞
1

n2
S
(
λU

n (Qµ), λU
n (Q)

)
.

(2) In addition, if µ has a continuous density dµ/dζ and both Q and Qµ are C1-

functions on T, then

FQ(µ) = lim
n→∞

1

n3

∫

SU (n)

∥∥∥∇ log
dλSU

n (Qµ)

dλSU
n (Q)

(U )
∥∥∥

2

HS
dλSU

n (Qµ)(U )

= lim
n→∞

1

n3

∫

U(n)

∥∥∥∇ log
dλU

n

(
Qµ

)

dλU
n (Q)

(U )
∥∥∥

2

HS
dλU

n (Qµ)(U ).

Similar limit formulas are given also in the real line case. The details are left to the

reader (see [12, (2.7)] for instance).

5.2 The Optimality Question of Free LSI’s

We examine, by computing particular examples of measures, whether or not Biane’s
free LSI for measures on R as well as our free LSI for measures on T are optimal. First,
consider the real line case. Let Q(x) := ρx2/2 on R with ρ > 0. The equilibrium
measure associated with Q is known to be the (0, 1/ρ)-semicircular measure γ0,2/

√
ρ,

where we write γ0,r for the semicircular measure with mean 0 and variance r2/4:

dγ0,r(x) :=
2

πr2

√
r2 − x2χ[−r,r](x)dx.

For each α > 0 we have

Σ̃Q(γ0,2/
√

α) =
ρ

2α
+

1

2
log α −

1

2
log ρ −

1

2
,

ΦQ(γ0,2/
√

α) =
(α − ρ)2

α
.
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Therefore, we get

lim
α→0

Σ̃Q(γ0,2/
√

α)

ΦQ(γ0,2/
√

α)
= lim

α→0

ρ + α log α − α(log ρ + 1)

2(α − ρ)2
=

1

2ρ
,

which shows the following:

Proposition 5.2 The bound 1/2ρ in Biane’s free LSI for measures on R ([3] or (1.3))

is best possible.

Next, consider the unit circle case. For each 2 ≤ λ ≤ ∞, the equilibrium measure
associated with Q(ζ) := −2 Re ζ/λ on T is known to be

νλ :=
(

1 +
2

λ
cos θ

) dθ

2π

(
with ν∞ :=

dθ

2π

)
,

and its free entropy to be Σ(νλ) = −1/λ2 (see [10, 5.3.10]). When 4 < λ ≤ ∞,

since Q
(
eit

)
+ 1

λ t2 =
2
λ

(
t2

2
− cos t

)
is convex on R, the free LSI (4.1) holds with

1/(1 + 2ρ) = λ/(λ − 4). For example, for 2 ≤ α ≤ ∞ we compute

Σ̃(να) =

( 1

α
−

1

λ

) 2

, FQ(να) = 2
( 1

α
−

1

λ

) 2

,

but the optimality of the bound 1/(1 + 2ρ) in (4.1) is currently unknown to us. This
situation is the same as in the free transportation cost inequality for measures on T

(see [12, §3.2]).
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