A NOTE ON THE UNION-CLOSED SETS CONJECTURE

GIOVANNI LO FARO

(Received 10 July 1991; revised 20 January 1992)

Communicated by L. Caccetta

Abstract

It has been conjectured that for any union-closed set \mathscr{A} there exists some element which is contained in at least half the sets in \mathscr{A} . It is shown that this conjecture is true if the number of sets in \mathscr{A} is less than 25. Several conditions on a counterexample are also obtained,

1991 Mathematics subject classification (Amer. Math. Soc.): 05A05, 05A99. Keywords and phrases: sets, union-closed.

1. Introduction

A union-closed set \mathscr{A} is defined as a non-empty finite collection of distinct, non-empty finite sets, closed under union (that is, if $S \in \mathscr{A}$ and $T \in \mathscr{A}$ then $S \cup T \in \mathscr{A}$).

The following conjecture is rephrased from [1].

CONJECTURE. Let $\mathscr{A} = \{A_1, A_2, ..., A_n\}$ be a union-closed set. Then there exists an element which belongs to at least $\lceil \frac{n}{2} \rceil$ of the sets in \mathscr{A} , where

$$\left\lceil \frac{n}{2} \right\rceil = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

In this paper we generalize results due to Sarvate and Renaud and to Norton and Sarvate. In particular we establish some inequalities involving the A_j 's and n which must hold for any counterexample and prove that the conjecture is valid when $n \le 24$.

© 1994 Australian Mathematical Society 0263-6115/94 \$A2.00 + 0.00

This research was supported by G.N.S.A.G.A. (C.N.R.) and by M.U.R.S.T., Fondi 40%.

2. Preliminaries and notations

We denote the union-closed set $\mathscr{A} = \{A_1, A_2, \dots, A_n\}$ by $\mathscr{A}(n)$. Assume, for convenience, that $|A_i| = w_i, w_1 \le w_2 \le \dots \le w_n = q$, and $A_n = I_q = \{1, 2, \dots, q\}$.

The support size of an $\mathscr{A}(n)$ is defined to be the number $q = w_n$. Let $\mathbb{A}(n, q)$ denote the set of possible $\mathscr{A}(n)$ with support size q. Theorems 2 and 3 in [4] show that the conjecture holds when $\mathscr{A}(n) \in \mathbb{A}(n, q), q \leq 6$.

Let $\mathscr{A}(n) \in \mathbb{A}(n, q)$ and let $x \in I_q$. Define $\mathscr{A}_x(n)$ to be the set of A_i in $\mathscr{A}(n)$ which contain x and let $|\mathscr{A}_x(n)| = d(x)$. Assume $\mathscr{C}_x(n)$ to be the set of A_j in $\mathscr{A}(n)$ not containing x and let $C_x = \bigcup \{A_j : A_j \in \mathscr{C}_x(n)\}$. Set $\mathscr{A}_x^* = \{A_i - \{x\} : A_i \in \mathscr{A}(n)\}$; it is clear that \mathscr{A}_x^* is a union-closed set with support size q - 1.

3. Restrictions on the set sizes

Theorem 2 in [5] shows that the conjecture holds whenever $w_1 + w_2 \ge q$. This can be improved by the following result:

THEOREM 1. The conjecture holds whenever

(i)
$$w_3 + w_{\frac{n+3}{2}} \ge q$$
, if *n* is odd;

(ii)
$$w_4 + w_{\frac{n+4}{2}} \ge q$$
, if *n* is even.

PROOF. (i) Suppose $d(x) \le (n-1)/2$ for all $x \in I_q$. This implies that

$$w_1 + w_2 + \dots + w_{n-1} + q \le \frac{n-1}{2}q$$

and so

$$w_{1} + w_{2} + (w_{3} + w_{\frac{n+3}{2}}) + (w_{4} + w_{\frac{n+3}{2}}) + \dots + (w_{\frac{n+1}{2}} + w_{n-1}) \leq \\ \leq w_{1} + w_{2} + \frac{n-3}{2}(w_{3} + w_{\frac{n+3}{2}}) \leq \frac{n-3}{2}q_{1}$$

hence $w_3 + w_{\frac{n+3}{2}} < q$, a contradiction.

(ii) Theorem 1 in [4] shows the validity of the conjecture for odd n leads to its validity for n + 1, then the proof is similar to the previous case.

4. Smallest counterexample

Let n_0 be the minimum value of n taken over all the counterexamples to the unionclosed conjecture. By Theorem 1 of [4], assume $n_0 = 2t + 1$. Let $\mathscr{A}(n_0) \in \mathbb{A}(n_0, q_0)$ be a counterexample to the conjecture with minimal support size q_0 . We have the following:

THEOREM 2.

(i)
$$|\mathscr{A}_{x}^{*}| < |\mathscr{A}(n_{0})|$$
 for each $x \in I_{a_{0}}$.

(ii) $\mathscr{A}_x(n_0) \neq \mathscr{A}_y(n_0)$ for each $x, y \in I_{q_0}, x \neq y$.

PROOF. (i) Suppose $\mathscr{A}_{x_0}^* \in \mathscr{A}_{x_0}(n_0, q_0 - 1)$ for some $x_0 \in I_{q_0}$. By the minimality of q_0 there exists an element z in (t + 1) sets of $\mathscr{A}_{x_0}^*$, hence in (t + 1) sets of $\mathscr{A}(n_0)$, a contradiction.

(ii) It is enough to consider that $\mathscr{A}_x(n_0) = \mathscr{A}_y(n_0)$ implies $|\mathscr{A}_x^*| = |\mathscr{A}_y^*| = |\mathscr{A}_y(n_0)|$.

THEOREM 3. For any $x \in I_{q_0}$ there exists $A_i \in \mathscr{A}(n_0)$ such that $A_i \in \mathscr{A}_x(n_0)$ and $A_i - \{x\} \in \mathscr{C}_x(n_0)$.

PROOF. Suppose, on the contrary, there is $x_0 \in I_{q_0}$ such that $A_i - \{x_0\} \notin \mathscr{A}(n_0)$ for every A_i containing x_0 in $\mathscr{A}(n_0)$. This implies $|\mathscr{A}_{x_0}^*| = |\mathscr{A}(n_0)|$ contradicting (i) of Theorem 2.

COROLLARY 1. For any $x \in I_{q_0}$, $C_x \cup \{x\} \in \mathscr{A}(n_0)$.

PROOF. Let $A_i \in \mathscr{A}_x(n_0)$ such that $A_i - \{x\} \in \mathscr{C}_x(n_0)$. Then $A_i - \{x\} \subseteq C_x$ and $C_x \cup A_i = C_x \cup \{x\} \in \mathscr{A}(n_0)$.

THEOREM 4. If $x, y \in I_{q_0}$, then $d(x) \le d(y)$ implies $y \in C_x$.

PROOF. Suppose, on the contrary, $y \notin C_x$. For every $A_i \in \mathscr{A}_y(n_0)$ it follows that $x \in A_i$ (otherwise $y \in A_i \subseteq C_x$), hence d(x) = d(y) and then $\mathscr{A}_x(n_0) = \mathscr{A}_y(n_0)$, contradicting (ii) of Theorem 2.

COROLLARY 2. If $d(x) = Min\{d(y) : y \in I_{q_0}\}$ then $C_x = I_{q_0} - \{x\}$.

PROOF. Immediate from the theorem.

Let $x, y \in I_{q_0}$. By Theorem 4, $x \in C_y$ or $y \in C_x$ and so we have the following.

COROLLARY 3. $C_x \neq C_y$, for every $x, y \in I_{q_0}$.

PROOF. Assume $d(x) \leq d(y)$, then $y \in C_x$ and $y \notin C_y$.

THEOREM 5. $n_0 \ge 2q_0 + 1$.

PROOF. In [2], Theorem 2.1, it is proved that, in any counterexample $\mathscr{A} = \{A_1, A_2, \ldots, A_n\}$ to the conjecture with *n* minimal, there are at least three distinct elements, each of which appears in exactly (n - 1)/2 of the A_j 's. Assume $d(q_0) = (n_0 - 1)/2$. By Theorem 3 $q_0 \in C_i$, for every $i = 1, 2, \ldots, (q_0 - 1)$, and $q_0 \in I_{q_0} = A_{n_0}$. It follows that $q_0 \leq (n_0 - 1)/2$. This completes the proof.

THEOREM 6. There are at least three distinct elements $x_1, x_2, x_3 \in I_{q_0}$ such that $C_{x_i} = I_{q_0} - \{x_i\}, i = 1, 2, 3.$

PROOF. Let $d(x_1) = \min\{d(x) : x \in I_{q_0}\}$. Corollary 2 implies that $C_{x_1} = I_{q_0} - \{x_1\}$. It is easy to see that there exists an $A_i \in \mathscr{A}_{x_1}(n_0)$ such that $A_i \neq I_{q_0}$. Let $A_i = I_{q_0} - \{y_1, y_2, \dots, y_r\}$, then $x_1 \in A_i \subseteq C_{y_1} \subseteq I_{q_0} - \{y_1\}$. If $C_{y_1} = I_{q_0} - \{y_1\}$ we put $x_2 = y_1$ otherwise $C_{y_1} = I_{q_0} - \{y_1, z_1, z_2, \dots, z_s\}$ and so $x_1 \in A_i \subseteq C_{y_1} \cup \{y_1\} \subseteq C_{z_1}$. Obviously, continuing this process, we find an $x_2 \in I_{q_0}$ ($x_2 \neq x_1$) such that $C_{x_2} = I_{q_0} - \{x_2\}$. Let A'_{x_i} be a set of minimal cardinality containing x_i (i = 1, 2). Certainly $A'_{x_1} \cup A'_{x_2} \neq I_{q_0}$, (otherwise, since $\mathscr{B} = \{A_1, A_2, \dots, A_{n_0}\} - \{A'_{x_1}, A'_{x_2}\}$ is union-closed, there would exist an element z in at least t sets of $\mathscr{B}(n_0 - 2)$ and hence in at least (t + 1) sets of $\mathscr{A}(n_0)$). Arguing as above we can easily complete the proof.

Let $d(1) = \min\{d(x) : x \in I_{q_0}\}$ and let $\mathscr{B} = \mathscr{A}(n_0) - \mathscr{A}_1(n_0)$. Obviously \mathscr{B} is a union-closed set. For each $z \in I_{q_0}$, put $|\{B \in \mathscr{B} : z \in B\}| = d^*(z)$. Let $x_1 = 1, x_2, x_3$ be as in Theorem 6. We have the following.

THEOREM 7. $d(1) \ge 5$.

PROOF. Obviously $d(1) \ge 3$. Suppose d(1) = 4. By Theorem 6, we have $\mathscr{A}_1(n_0) = \{I_{q_0}, I_{q_0} - \{x_2\}, I_{q_0} - \{x_3\}, B_1\}$ and so there exists a $z \in I_{q_0} - \{1\}$ with $d^*(z) \ge (n_0 - 3)/2$, hence $d(z) = (n_0 + 1)/2$, a contradiction.

THEOREM 8. $C_{x_4} \supseteq I_{q_0} - \{x_3, x_4\}$, for some $x_4 \in I_{q_0}, x_4 \notin \{x_1, x_2, x_3\}$.

PROOF. Case (1) Either $A_{x_1} \cup A_{x_2} \subset I_{q_0} - \{x_3\}$ or $A_{x_1} \cup A_{x_3} \subset I_{q_0} - \{x_2\}$ for some $A_{x_i} \in \mathscr{A}_{x_i}(n_0)$, i = 1, 2, 3. Without loss of generality, we may suppose that $A_{x_1} \cup A_{x_2} \subset I_{q_0} - \{x_3\}$. Proceeding as in Theorem 6, we get that $A_{x_1} \cup A_{x_2} \subseteq C_{x_4}$ and $C_{x_4} \supseteq I_{q_0} - \{x_3, x_4\}$.

Case (2) Note that $A_{x_1} \cup A_{x_2} \supseteq I_{q_0} - \{x_3\}$ and $A_{x_1} \cup A_{x_3} \supseteq I_{q_0} - \{x_2\}$ for all $A_{x_i} \in \mathscr{A}_{x_i}(n_0)$, i = 1, 2, 3. We prove that Case (2) is not possible. Let A'_{x_i} be a set of minimal cardinality containing x_i , i = 1, 2, 3. For j = 2, 3, let z_j be an element of I_{q_0} which belongs to at least $(n_0 - 1)/2$ of the sets in $\mathscr{A}(n_0) - \{A'_{x_1}, A'_{x_2}\}$. It is easy

to see that $z_2 = x_3$ and $z_3 = x_2$ and so $d(x_2) = d(x_3) = (n_0 - 1)/2$. By Theorem 7 there exists $x_4 \notin \{x_1, x_2, x_3\}$ such that $x_4 \notin A'_{x_1}$. Since $A'_{x_1} \cup A_{x_2} \supseteq I_{q_0} - \{x_3\}$ for each $A_{x_2} \in \mathscr{A}_{x_2}(n_0)$, it follows that $\mathscr{A}_{x_2}(n_0) \subseteq \mathscr{A}_{x_4}(n_0)$, hence $\mathscr{A}_{x_2}(n_0) = \mathscr{A}_{x_4}(n_0)$ contradicting Theorem 2.

Let $I_{q_0} = \{1, 2, ..., q_0\}$ with $d(1) \leq d(2) \leq \cdots \leq d(q_0)$. By Theorem 4 and Corollary 3, it follows that $|C_s| \in \{w_1, w_2, ..., w_{n_0}\}, |C_s| \geq q_0 - s$ and $w_{n_0-s} \geq q_0 - s$, for each $s \in I_{q_0}$. Theorems 6 and 8 say that $w_{n_0-4} \geq q_0 - 2$, $w_{n_0-3} = w_{n_0-2} = w_{n_0-1} = q_0 - 1$ and so, by a similar argument to that used in Theorem 1, we can prove the following.

COROLLARY 4. $w_{10} + w_{\frac{n_0+3}{2}} < q_0$.

PROOF. Note that

$$w_1 + w_2 + \dots + w_9 + \dots + w_{n_0-8} + (q_0-7) + (q_0-6) + (q_0-5) + (q_0-2) + 3(q_0-1) + q_0 \le \frac{n_0-1}{2}q_0.$$

Then

$$(w_1 + \dots + w_9) + \frac{n_0 - 17}{2}(w_{10} + w_{\frac{n_0 + 3}{2}}) - 23 \le \frac{n_0 - 17}{2}q_0$$

hence $w_{10} + w_{(n_0+3)/2} < q_0$.

THEOREM 9. $d(1) \ge 9$.

PROOF. By Theorem 7, we need to consider the following cases.

Case d(1) = 5. Let $\mathscr{A}_1(n_0) = \{I_{q_0}, I_{q_0} - \{x_2\}, I_{q_0} - \{x_3\}, B_1, B_2\}$, with $I_{q_0} - \{x_3, x_4\} \subseteq B_1 \subseteq I_{q_0} - \{x_4\}$, and let $z \in I_{q_0} - \{1\}$ such that $d^*(z) = (n_0 - 5)/2$. Necessarily, $B_1 = I_{q_0} - \{x_3, x_4\}, z = x_3, x_3 \notin B_2$ and $d(x_3) = (n_0 - 1)/2$. Since $x_4 \in (I_{q_0} - \{x_3, x_4\}) \cup A_{x_3}$, for each $A_{x_3} \in \mathscr{A}_{x_3}(n_0)$, it follows that $\mathscr{A}_{x_3}(n_0) \subseteq \mathscr{A}_{x_4}(n_0)$, hence $\mathscr{A}_{x_3}(n_0) = \mathscr{A}_{x_4}(n_0)$, contradicting Theorem 2.

Case d(1) = 6. Similar to the previous case.

Case d(1) = 7. Let $\mathscr{A}_1(n_0) = \{I_{q_0}, I_{q_0} - \{x_2\}, I_{q_0} - \{x_3\}, B_1, B_2, B_3, B_4\}$ with $I_{q_0} - \{x_3, x_4\} \subseteq B_1 \subseteq I_{q_0} - \{x_4\}$ and let $z \in I_{q_0} - \{1\}$ such that $d^*(z) = (n_0 - 7)/2$. Necessarily $z \in \{x_2, x_3, x_4\}$.

Suppose $B_1 = I_{q_0} - \{x_4\}$, then $z \notin B_2 \cup B_3 \cup B_4$. We can assume $z = x_2$. If there exists B_i (i = 2, 3, 4) such that $y \notin B_i \cup \{x_2, x_3, x_4\}$, then $B_i \cup A_{x_2} \supseteq I_{q_0} - \{x_3\}$ or $B_i \cup A_{x_2} \supseteq I_{q_0} - \{x_4\}$ and so $y \in A_{x_2}$, hence $\mathscr{A}_y(n_0) = \mathscr{A}_{x_2}(n_0)$, a contradiction.

If $B_i \supseteq I_{q_0} - \{x_2, x_3, x_4\}$, for each i = 2, 3, 4, then

$$\mathscr{A}_{1}(n_{0}) = \{ I_{q_{0}}, I_{q_{0}} - \{x_{2}\}, I_{q_{0}} - \{x_{3}\}, I_{q_{0}} - \{x_{4}\}, \\ I_{q_{0}} - \{x_{2}, x_{3}\}, I_{q_{0}} - \{x_{2}, x_{4}\}, I_{q_{0}} - \{x_{2}, x_{3}, x_{4}\} \}.$$

Let A'_{x_2} be a set of minimal cardinality containing x_2 . Obviously $\mathscr{B} = \mathscr{A}(n_0) - \{\mathscr{A}_1(n_0) \cup \{A'_{x_2}\}\)$ is a union-closed set and so there exists an r in $(n_0 - 7)/2$ sets of \mathscr{B} , a contradiction.

Suppose $B_1 = I_{q_0} - \{x_3, x_4\}$ and, obviously, $I_{q_0} - \{x_4\} \notin \mathscr{A}_1(n_0)$.

Let $z = x_2$. Necessarily $x_2 \notin B_2 \cup B_3 \cup B_4$, $d(x_2) = (n_0 - 1)/2$ and there exists a B_i (i = 2, 3, 4) such that $y \notin B_i \cup \{x_2, x_3, x_4\}$, otherwise

$$\mathscr{A}_{1}(n_{0}) = \{I_{q_{0}}, I_{q_{0}} - \{x_{2}\}, I_{q_{0}} - \{x_{3}\}, I_{q_{0}} - \{x_{3}, x_{4}\}, I_{q_{0}} - \{x_{2}, x_{3}\}, I_{q_{0}} - \{x_{2}, x_{4}\}, I_{q_{0}} - \{x_{2}, x_{3}, x_{4}\}\}.$$

and so $(I_{q_0} - \{x_2, x_4\}) \cup (I_{q_0} - \{x_3, x_4\}) = I_{q_0} - \{x_4\} \notin \mathscr{A}_1(n_0)$. We again obtain $\mathscr{A}_y(n_0) = \mathscr{A}_{x_2}(n_0)$, which is a contradiction.

Let $z = x_4$. This is similar to the case $z = x_2$.

Let $z = x_3$. Necessarily $d(x_3) \ge (n_0 - 3)/2$. Since $I_{q_0} - \{x_3, x_4\} \cup A_3 = I_{q_0}$, it follows that $\mathscr{A}_{x_3} \subset \mathscr{A}_{x_4}$. If $d(x_3) = (n_0 - 1)/2$ then $\mathscr{A}_{x_3}(n_0) = \mathscr{A}_{x_4}(n_0)$, a contradiction. If $d(x_3) = (n_0 - 3)/2$ then $d(x_4) = (n_0 - 1)/2$ and $I_{q_0} - \{x_3\}$ is the only set of $\mathscr{A}(n_0)$ containing x_4 but not x_3 and so $|\mathscr{A}_{x_3}^*(n_0)| = n_0 - 1$. Let $r \in I_{q_0}$ such that r is contained in $(n_0 - 1)/2$ sets of $\mathscr{A}_{x_3}^*(n_0)$. Obviously $r \in I_{q_0} - \{x_3\}$, hence $d(r) = (n_0 + 1)/2$, a contradiction.

Case d(1) = 8. Similar to the previous case.

Let $d_r = |\{x \in I_{q_0} : d(x) = r\}|$. Obviously $\sum d_r = q_0$. For each element x_i counted in d_9 we have C_{x_i} containing $I_q - \{x_i\}$ by Theorem 4, hence $|C_{x_i}| = q_0 - 1$. For each x_i contained in d_{10} we have C_{x_i} containing all elements x_j such that $d(x_j) \ge 10$ except x_i itself, hence $|C_{x_i}| \ge q_0 - d_9 - 1$. Counting in this way, Theorem 2 of [4] and Theorem 9 lead to this inequality:

$$q_{0} + d_{9}(q_{0} - 1) + d_{10}(q_{0} - 1 - d_{9}) + d_{11}(q_{0} - 1 - d_{9} - d_{10}) + \dots + + d_{\frac{n_{0} - 1}{2}}(q_{0} - 1 - d_{9} - d_{10} - \dots - d_{\frac{n_{0} - 3}{2}}) + 3(n_{0} - q_{0} - 1) \leq \leq 9d_{9} + 10d_{10} + \dots + \frac{n_{0} - 1}{2}d_{\frac{n_{0} - 1}{2}},$$

and then

(*)
$$q_0^2 - 3q_0 + 3(n_0 - 1) - \sum d_i d_j \le 9d_9 + 10d_{10} + \dots + \frac{n_0 - 1}{2}d_{\frac{n_0 - 1}{2}}$$

THEOREM 10. $n_0 \ge 25$.

PROOF. Theorem 4 in [5] shows that $n_0 \ge 19$. For $n_0 = 19$, (*) leads to $q_0^2 - 12q_0 + 54 \le 0$ which never holds. For $n_0 = 21$, (*) gives $q_0^2 - (13 + d_9)q_0 + (d_9^2 + d_9 + 60) \le 0$ which never holds. For $n_0 = 23$, (*) gives:

$$q_0^2 - (14 + d_9 + d_{10})q_0 + (d_9^2 + d_{10}^2 + d_9d_{10} + 2d_9 + d_{10} + 66) \le 0$$

which never holds.

This completes the proof of the theorem.

References

- [1] 'A much travelled conjecture', Austral. Math. Soc. Gaz., 14 (1987), 63.
- [2] R. M. Norton and D. G. Sarvate, 'Union-closed sets conjecture; some observations', unpublished manuscript, College of Charleston, 1989.
- [3] J-C. Renaud, 'Is the union-closed sets conjecture the best possible?', J. Austral. Math. Soc. (Ser. A) 51 (1991), 276–283.
- [4] D. G. Sarvate and J-C. Renaud, 'On the union-closed sets conjecture', Ars Combin. 27 (1989), 149-153.
- [5] _____, 'Improved bounds for the union-closed sets conjecture', Ars Combin. 29 (1990), 181–185.
- [6] P. Winkler, 'Union-closed sets conjecture', Austral. Math. Soc. Gaz. 14 (1987), 99.

Dipartimento di Matematica Università di Messina Contrada Papardo—Salita Sperone, 31 98166 Sant'Agata Messina Italy [7]