Regular metabelian groups of prime-power order

R. J. Faudree

Abstract

Let H be a finite metabelian p-group which is nilpotent of class c. In this paper we will prove that for any prime $p>2$ there exists a finite metacyclic p-group G which is nilpotent of class c such that H is isomorphic to a section of a finite direct product of G.

Introduction

Subgroups and factor groups of regular groups are regular but the direct product of two regular groups is not necessarily regular (see [5]). Moreover the variety generated by all finite regular p-groups for $p>3$ is the variety of all groups (see [2]) and the variety generated by all finite metabelian regular p-groups for $p>2$ is the variety of all metabelian groups (see [4]). The main result of this paper extends some of the results mentioned above by showing for $p>2$ that not only do you get irregular p-groups by taking finite direct products of regular p-groups but every finite metabelian p-group can be obtained by taking factor groups of subgroups of finite direct products of finite metabelian regular p-groups.

Proof of theorem

In the remaining discussion we will assume $p>2$ and H is a fixed finite metabelian p-group of exponent p^{e} which is nilpotent of class c. For any positive integer r let

$$
G_{r}=\left\langle a, b: a^{p^{P c}}=1, \quad b^{p^{c}}=1, \text { and } a^{-1} b^{-1} a b=a^{p^{r}}\right\rangle
$$

G_{r} is a metacyclic group which is nilpotent of class c and of exponent $p^{\Upsilon c} \cdot G_{r}$ is also regular (see [1]).

We will prove
THEOREM. H is in the variety generated by G_{r} for r sufficiently Zarge.

A well-known property of finite groups in the variety generated by a finite group (see [3]) gives the following:

COROLLARY. A is isomorphic to a section of a finite direct product of G_{r} for sufficiently large r.

Let X_{∞} denote the free group of countable rank on generators $\left\{x_{1}, x_{2}, \ldots\right\}$ Let g be an element of $X_{\infty} \cdot g$ is a simple commutator in normal form of weight v, weight $g=v$, and sign u, sign $g=u$ and involving precisely $\left\{x_{1}, \ldots, x_{t}\right\}$ if

$$
g\left(x_{1}, x_{2}, \ldots, x_{t}\right)=\left(x_{i(1)}, x_{i(2)}, \ldots, x_{i(v)}\right)
$$

where $i(1)=1, i(2)=u, i(j) \leq i(k)$ if $2<j \leq k$ and $\{i(1), \ldots, i(v)\}=\{1, \ldots, t\} . d_{j}(g)$ will denote the number of occurrences of x_{j} in g.

An element f of X_{∞} is in normal form of weight $\leq c$ if

$$
f=\prod_{i=1}^{\eta} f_{i}^{\gamma}
$$

where the f_{i} are distinct simple commutators in normal form of weight $\leq c$ involving precisely $\left\{x_{1}, \ldots, x_{t}\right\}, \mathcal{Z}$ is an arbitrary positive integer, t is a positive integer $\leq c$, and the γ_{i} are non-zero integers. Let L_{r} denote the words of X_{∞} which are in normal form of weight $\leq c$ and are laws of G_{r}. A basis for the laws of G_{r} is
$L_{r} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right),\left(x_{1}, \ldots, x_{c+1}\right)\right\}$, (see [6]). Therefore to prove the theorem it is sufficient to prove:

PROPOSITION. For sufficiently large r, f in L_{r} implies p^{e} divides $\gamma_{i}(1 \leq i \leq 2)$.

Before we can complete the proof of the proposition it will be necessary to state and prove some elementary lermas.

For m a positive integer let $\theta(m)$ be the highest power of p dividing $m!$.

LEMMA 1.
i) If $m=\sum_{i=0}^{t} k_{i} p^{i}$ with $0 \leq k_{i} \leq p-1$ then

$$
\theta(m)=\left(m-\sum_{i=0}^{t} k_{i}\right) /(p-1) ;
$$

ii) for positive integers n and $m, p^{\theta(m)}$ divides $(m+n) 1 / n!$. Proof. The number of positive multiples of $p^{i},(1 \leq i \leq t)$, less than or equal to m is $\sum_{j=i}^{t} k_{j} p^{j-i}$. Thus

$$
\theta(m)=\sum_{i=1}^{t} \sum_{j=i}^{t} k_{j} p^{j-i}=\left(m-\sum_{i=0}^{t} k_{i}\right) /(p-1)
$$

ii) is a consequence of the fact that m ! divides $(m+n)!/ n!$.

Let z denote the integers, $R=z\left[y_{1}, \ldots, y_{t}\right]$ the polynomial ring over Z in indeterminates y_{1}, \ldots, y_{t}, and J_{n} the ideal of R generated by p^{n} for n a non-negative integer. Denote $z /\left(z \cap J_{n}\right)$ by z_{n} 。

LEMMA 2. Let $h=h\left(y_{1}, \ldots, y_{t}\right)$ be an element of R such that the degree in each voriable is $\leq c$ and $t c<n$. If h, considered as
a function of Z into Z, has only values in $J_{n} \cap Z$ then h is in J_{m} for $m=n-t \theta(c)$.

Proof. Let $t=1$. We can assume that $y_{1}=y$ and h is a
polynomial of degree c. Since $h(1)$ is in $J_{n} \cap Z$

$$
h(y)=(y-1) h_{1}(y)+h_{1}^{\prime}(y)
$$

where h_{1}^{\prime} is a polynomial in J_{n}. Assume for $j \leq c-1$ that
*

$$
h(y)=\left(\prod_{i=1}^{j}(y-i)\right) h_{j}(y)+h_{j}^{\prime}(y)
$$

where h_{j}^{\prime} is a polynomial in J_{m} which as a function has only values in J_{n}. Thus $(j!) h_{j}(j+1)$ is in $J_{n} \cap Z$ and

$$
h_{j}(y)=(y-j-1) \cdot h_{j+1}(y)+k(y)
$$

for $k(y)$ in $J_{n-\theta(j)}$.

$$
h_{j+1}^{\prime}(y)=\prod_{i=1}^{j}(y-i) \cdot k(y)+h_{j}^{\prime}(y)
$$

has the same properties as $h_{j}^{\prime}(y)$. Therefore * is true for $1 \leq j \leq c$.

Since $h(y)$ has degree c

$$
h(y)=\prod_{i=1}^{c}(y-i) \cdot b+h_{c}(y)
$$

where b is in 2 . Hence $(c!) b$ is in $J_{n} \cap Z, b$ is in $J_{m} \cap Z$ and h is in J_{m}. Induction on t will complete the proof.

For non-negative integers $i \leq j$ let $\binom{j}{i}=j!/((j-i)!i!)$. For any positive integer r let σ_{r} be the function on the non-negative integers defined by

$$
\sigma_{r}(j)=\sum_{i=1}^{j}\left(\begin{array}{l}
j \\
i
\end{array} p^{r(i-1)} .\right.
$$

For any positive integer n, σ_{r} induces a map σ_{r}^{\prime} of Z_{n} into Z_{n}.
LEMMA 3. σ_{r}^{\prime} is onto.
Proof. It suffices to show that σ_{r}^{\prime} is injective. Assume $\sigma_{r}(k)-\sigma_{r}(j)$ is in $Z \cap J_{n}$ for $0 \leq j<k<p^{n}$. Clearly $k-j$ is in $Z \cap J_{s}$ for $s=\min \{n, r\} \cdot k-j$ in $Z \cap J_{Z r}(z \geq 1)$ implies $p^{r(i-1)}\left(\binom{k}{i}-\binom{j}{i}\right)$ is in $Z \cap J_{r(l+1)}$ if $2 \leq i \leq j$ and $\binom{k}{i} p^{r(i-1)}$ is in $J_{r(2+1)}$ if $i>j$. Hence $k-j$ is in $Z \cap J_{s}$ for $s=\min \{(Z+1) r, n\}$. Induction on Z gives that $k-j$ is in $Z \cap J_{n}$. Proof of the proposition. Let $f=\prod_{i=1}^{\ell} f_{i}^{\gamma}$ be an element of L_{r}. We can assume f involves precisely $\left\{x_{1}, \ldots, x_{t}\right\}$ and $\gamma_{i}=\beta_{i} p^{\alpha_{i}}$ $(I \leq i \leq 2)$ with B_{i} relatively prime to p. Let u be a fixed integer between 2 and $t, n_{i j}=d_{j}\left(f_{i}\right)-\delta_{j u}(I \leq i \leq \ell, 1 \leq j \leq t)$ where $\delta_{j u}$ is the Kronecker delta, and $w_{i}=\sum_{j=1}^{t} n_{i j}$.

For any function j of Z into Z define the homomorphism τ_{j} of X_{∞} into G_{r} by $\tau_{j}\left(x_{k}\right)=b^{j(k)}$ if $k \neq u$ and $\tau_{j}\left(x_{k}\right)=a^{-1} b^{j(k)}$ if $k=u$. By assumption $\tau_{j}(f)=1$ for all j. Also $\tau_{j}\left(f_{i}\right)=1$ for all j if $\operatorname{sign} f_{i} \neq u$. If $\operatorname{sign} f_{i}=u$ then $\tau_{j}(f)=a^{\phi(i)}$ where $\phi(i)=p^{r w_{i}} \prod_{k=1}^{t}\left(\sigma_{r}(j(k))\right)^{n} i k$. If only the first s of the f_{i} have sign u then

$$
\sum_{i=1}^{s} \beta_{i} p^{r w_{i}+\alpha_{i}}\left(\prod_{k=1}^{t} \sigma_{r}(j(k))^{n} i k\right)
$$

is in $J_{r c} \cap Z$. By Lemma 3 the only values of the polynomial

$$
h\left(y_{1}, \ldots, y_{t}\right)=\sum_{i=1}^{s} \beta_{i} p^{m w_{i}+\alpha_{i}}\left(\prod_{k=1}^{t} y_{k}^{n} n_{i k}\right)
$$

considered as a function are in $J_{r_{c}} \cap Z$. Lemma 2 implies $m w_{i}+\alpha_{i} \geq \operatorname{rc-t\theta }(c) \quad(1 \leq i \leq s)$. Thus

$$
\alpha_{i} \geq r\left(c-w_{i}\right)-t \theta(c)
$$

$w_{i}<c$ and $t \leq c$ since each f_{i} involves precisely $\left\{x_{1}, \ldots, x_{t}\right\}$. The above argument is true for any u. Therefore $\alpha_{i} \geq e \quad(1 \leq i \leq 2)$ if r is sufficiently large.

References

[1] P. Hall, "On a theorem of Frobenius", Proc. London Math. Soc. (2) 40 (1936), 468-501.
[2] P. Hall, "A note on $\overline{S I}$-groups", J. London Math. Soc. 39 (1964), 338-344.
[3] Graham Higman, "Some remarks on varieties of groups", Quart. J. Math. oxford Ser. (2) 10 (1959), 165-178.
[4] I.D. Macdonald, "The variety of regular p-groups", Arch. Math. 18 (1967), 359-361.
[5] Paul M. Weichsel, "Regular p-groups and varieties", Math. 2. 95 (1967), 223-231.
[6] Paul M. Weichsel, "On metabelian p-groups", J. Austral. Math. Soc. 7 (1967), 55-63.

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

