BULL. AUSTRAL. MATH. SOC. VOL. 3 (1970). 49-54.

Regular metabelian groups of prime-power order

R. J. Faudree

Let H be a finite metabelian p-group which is nilpotent of class c. In this paper we will prove that for any prime $p \ge 2$ there exists a finite metacyclic p-group G which is nilpotent of class c such that H is isomorphic to a section of a finite direct product of G.

Introduction

Subgroups and factor groups of regular groups are regular but the direct product of two regular groups is not necessarily regular (see [5]). Moreover the variety generated by all finite regular p-groups for p > 3 is the variety of all groups (see [2]) and the variety generated by all finite metabelian regular p-groups for p > 2 is the variety of all metabelian groups (see [4]). The main result of this paper extends some of the results mentioned above by showing for p > 2 that not only do you get irregular p-groups by taking finite direct products of regular p-groups but every finite metabelian p-group can be obtained by taking factor groups of subgroups of finite direct products of finite metabelian regular p-groups.

Proof of theorem

In the remaining discussion we will assume p > 2 and H is a fixed finite metabelian *p*-group of exponent p^e which is nilpotent of class *c*. For any positive integer *r* let

Received 28 March 1970.

49

$$G_{p} = \langle a, b : a^{p^{rc}} = 1, b^{p^{c}} = 1, \text{ and } a^{-1}b^{-1}ab = a^{p^{r}} \rangle.$$

 G_r is a metacyclic group which is nilpotent of class c and of exponent p^{rc} . G_r is also regular (see [1]).

We will prove

THEOREM. H is in the variety generated by G_r for r sufficiently large.

A well-known property of finite groups in the variety generated by a finite group (see [3]) gives the following:

COROLLARY. H is isomorphic to a section of a finite direct product of G_n for sufficiently large r.

Let X_{∞} denote the free group of countable rank on generators $\{x_1, x_2, \ldots\}$. Let g be an element of X_{∞} . g is a simple commutator in normal form of weight v, weight g = v, and sign u, sign g = uand involving precisely $\{x_1, \ldots, x_t\}$ if

$$g(x_1, x_2, \ldots, x_t) = (x_{i(1)}, x_{i(2)}, \ldots, x_{i(v)})$$

where i(1) = 1, i(2) = u, $i(j) \le i(k)$ if $2 < j \le k$ and $\{i(1), \ldots, i(v)\} = \{1, \ldots, t\}$. $d_j(g)$ will denote the number of occurrences of x_j in g.

An element f of X_{m} is in normal form of weight $\leq c$ if

$$f = \prod_{i=1}^{l} f_i^{i}$$

where the f_i are distinct simple commutators in normal form of weight $\leq c$ involving precisely $\{x_1, \ldots, x_t\}$, l is an arbitrary positive integer, t is a positive integer $\leq c$, and the γ_i are non-zero integers. Let L_p denote the words of X_∞ which are in normal form of weight $\leq c$ and are laws of G_p . A basis for the laws of G_p is $L_r \cup \left\{ ((x_1, x_2), (x_3, x_4)), (x_1, \dots, x_{c+1}) \right\}$, (see [6]). Therefore to prove the theorem it is sufficient to prove:

PROPOSITION. For sufficiently large r, f in L_r implies p^e divides γ_i $(1 \le i \le l)$.

Before we can complete the proof of the proposition it will be necessary to state and prove some elementary lemmas.

For m a positive integer let $\theta(m)$ be the highest power of p dividing m!.

LEMMA 1.

i) If
$$m = \sum_{i=0}^{t} k_i p^i$$
 with $0 \le k_i \le p-1$ then
 $\theta(m) = \left(m - \sum_{i=0}^{t} k_i\right)/(p-1)$;

ii) for positive integers n and m, $p^{\Theta(m)}$ divides (m+n)!/n!. Proof. The number of positive multiples of p^i , $(1 \le i \le t)$, less than or equal to m is $\int_{j=i}^{t} k_j p^{j-i}$. Thus

$$\theta(m) = \sum_{i=1}^{t} \sum_{j=i}^{t} k_j p^{j-i} = \left(m - \sum_{i=0}^{t} k_i\right)/(p-1) .$$

ii) is a consequence of the fact that m! divides (m+n)!/n!.

Let Z denote the integers, $R = Z[y_1, \ldots, y_t]$ the polynomial ring over Z in indeterminates y_1, \ldots, y_t , and J_n the ideal of R generated by p^n for n a non-negative integer. Denote $Z/(Z \cap J_n)$ by Z_n .

LEMMA 2. Let $h = h(y_1, \ldots, y_t)$ be an element of R such that the degree in each variable is $\leq c$ and tc < n. If h, considered as a function of Z into Z, has only values in $J_n \cap Z$ then h is in J_m for $m = n - t\theta(c)$.

Proof. Let t = 1. We can assume that $y_1 = y$ and h is a polynomial of degree c. Since h(1) is in $J_n \cap Z$

$$h(y) = (y-1)h_1(y) + h_1(y)$$

where h_1' is a polynomial in J_n . Assume for $j \leq c-1$ that

*
$$h(y) = \left(\frac{j}{i=1} (y-i) \right) h_j(y) + h'_j(y)$$

where h'_j is a polynomial in J_m which as a function has only values in J_n . Thus $(j!)h_j(j{+}1)$ is in $J_n\cap Z$ and

$$h_{j}(y) = (y-j-1) \cdot h_{j+1}(y) + k(y)$$

for k(y) in $J_{n-\theta(j)}$.

$$h'_{j+1}(y) = \prod_{i=1}^{j} (y-i) \cdot k(y) + h'_{j}(y)$$

has the same properties as $h'_j(y)$. Therefore * is true for $1 \leq j \leq c$.

Since h(y) has degree c

$$h(y) = \prod_{i=1}^{c} (y-i) \cdot b + h_{c}(y)$$

where b is in Z. Hence (c!)b is in $J_n \cap Z$, b is in $J_m \cap Z$ and h is in J_m . Induction on t will complete the proof.

For non-negative integers $i \leq j$ let $\binom{j}{i} = j!/((j-i)!i!)$. For any positive integer r let σ_r be the function on the non-negative integers defined by

$$\sigma_{r}(j) = \sum_{i=1}^{j} {j \choose i} p^{r(i-1)}$$

For any positive integer n, σ_p induces a map σ'_p of Z_n into Z_n .

LEMMA 3. σ'_n is onto.

Proof. It suffices to show that σ'_{p} is injective. Assume $\sigma_{p}(k) - \sigma_{p}(j)$ is in $Z \cap J_{n}$ for $0 \leq j < k < p^{n}$. Clearly k - j is in $Z \cap J_{s}$ for $s = \min\{n, r\}$. k - j in $Z \cap J_{lr}$ $(l \geq 1)$ implies $p^{r(i-1)}\left(\binom{k}{i} - \binom{j}{i}\right)$ is in $Z \cap J_{r(l+1)}$ if $2 \leq i \leq j$ and $\binom{k}{i}p^{r(i-1)}$ is in $J_{r(l+1)}$ if i > j. Hence k - j is in $Z \cap J_{s}$ for $s = \min\{(l+1)r, n\}$. Induction on l gives that k - j is in $Z \cap J_{n}$.

Proof of the proposition. Let $f = \prod_{i=1}^{l} f_i^{i}$ be an element of L_r .

We can assume f involves precisely $\{x_1, \ldots, x_t\}$ and $\gamma_i = \beta_i p^{\alpha_i}$ $(1 \le i \le l)$ with β_i relatively prime to p. Let u be a fixed integer between 2 and t, $n_{ij} = d_j(f_i) - \delta_{ju}$ $(1 \le i \le l$, $1 \le j \le t)$ where δ_{ju} is the Kronecker delta, and $w_i = \sum_{j=1}^t n_{ij}$.

For any function j of Z into Z define the homomorphism τ_j of X_{∞} into G_p by $\tau_j(x_k) = b^{j(k)}$ if $k \neq u$ and $\tau_j(x_k) = a^{-1}b^{j(k)}$ if k = u. By assumption $\tau_j(f) = 1$ for all j. Also $\tau_j(f_i) = 1$ for all j if sign $f_i \neq u$. If sign $f_i = u$ then $\tau_j(f) = a^{\phi(i)}$ where $\phi(i) = p^{rw}i \prod_{k=1}^{t} (\sigma_p(j(k)))^{n}ik$. If only the first s of the f_i have sign u then

$$\sum_{i=1}^{s} \beta_{i} p^{r w_{i} + \alpha} i \left(\prod_{k=1}^{t} \sigma_{r}(j(k))^{n} i k \right)$$

is in $J_{nc} \cap Z$. By Lemma 3 the only values of the polynomial

$$h(y_1, \ldots, y_t) = \sum_{i=1}^{s} \beta_i p^{rw_i + \alpha_i} \left(\prod_{k=1}^{t} y_k^{n_ik} \right)$$

considered as a function are in $J_{rc} \cap Z$. Lemma 2 implies $rw_i + \alpha_i \ge rc - t\theta(c)$ $(1 \le i \le s)$. Thus

$$\alpha_i \ge r(c-w_i) - t\theta(c)$$
;

 $w_i < c$ and $t \le c$ since each f_i involves precisely $\{x_1, \ldots, x_t\}$. The above argument is true for any u. Therefore $\alpha_i \ge e$ $(1 \le i \le l)$ if r is sufficiently large.

References

- [1] P. Hall, "On a theorem of Frobenius", Proc. London Math. Soc. (2) 40 (1936), 468-501.
- [2] P. Hall, "A note on SI-groups", J. London Math. Soc. 39 (1964), 338-344.
- [3] Graham Higman, "Some remarks on varieties of groups", Quart. J. Math. Oxford Ser. (2) 10 (1959), 165-178.
- [4] I.D. Macdonald, "The variety of regular p-groups", Arch. Math. 18 (1967), 359-361.
- [5] Paul M. Weichsel, "Regular p-groups and varieties", Math. Z. 95 (1967), 223-231.
- [6] Paul M. Weichsel, "On metabelian p-groups", J. Austral. Math. Soc. 7 (1967), 55-63.

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.