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Entropy generation and decoherence
of quantum fields

In Chapter 4 we studied particle creation in an external field, building from the
basic concepts and techniques of quantum field theory in a dynamical background
field or spacetime to the point where we can recognize that particle creation is in
general a non-Markovian process. We derived a quantum Vlasov equation for the
rate of particle creation in a changing electric field, and discussed cosmological
particle creation from a changing background spacetime. In these processes we
pointed out an intrinsic relation between the number and phase of a system in a
particular quantum state. We presented a squeezed-state description of particle
creation and discussed the conditions under which particle number may increase
and others when it may decrease. These discussions bring out some basic issues
in the statistical mechanics of quantum fields. In this chapter we will discuss two
of these, entropy generation from particle creation and decoherence of quantum
fields in the transition from quantum to classical. We will show that dissipation
and fluctuations (or noise) in quantum field systems are the primary causes
responsible in each of these processes.

In this chapter we shall adopt natural units � = c = kB = 1.

9.1 Entropy generation from particle creation

In discussing the problem of entropy generation from cosmological particle cre-
ation [Park69, Zel70, Hu82] we are confronted by the following apparent para-
dox: on the one hand textbook formulae suggest that entropy (S) is propor-
tional to the number (N) of particles produced (e.g. S ∝ N for photons). On the
other hand, from quantum field theory, particle pairs created in the vacuum will
remain in a pure state and one should not expect any entropy generation. Inquiry
into this paradox led to serious subsequent investigations into the statistical
properties of particles and fields [Hu84, HuKan87, HuPav86, Kan88a, Kan88b].
These early inquiries in the 1980s of the theoretical meaning of entropy of quan-
tum fields were conducive to gaining a better understanding of the statistical
mechanical properties of quantum fields and useful for practical calculations
such as for a relativistic plasma of particles and fields in heavy ion experi-
ments, or in finding the entropy content of primordial gravitons in the early
universe.
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252 Entropy generation and decoherence of quantum fields

9.1.1 Choice of representations and initial conditions

Many different schemes were proposed in the 1990s for entropy generation
from particle production. Brandenberger, Mukhanov and Prokopec [BrMuPr92,
BrMuPr93] suggested a coarse graining of the field by integrating out the
rotation angles in the probability functional, while Gasperini and Giovannini
[GasGio93, GasGioVen93] considered a squeezed vacuum in terms of new vari-
ables which give the maximum and minimum fluctuations, and suggested a coarse
graining by neglecting information about the subfluctuant variable (defined in
Section 4.2). Keski-Vakkuri [Kes94] studied entropy generation from particle
creation with many particle mixed initial states. Matacz [Mat94] considered a
squeezed vacuum of a harmonic oscillator system with time-dependent frequency,
and, motivated by the special role of coherent states, modeled the effect of the
environment by decohering the squeezed vacuum in the coherent state repre-
sentation. Kruczenski, Oxman and Zaldarriaga [KrOxZa94] used a procedure of
setting the off-diagonal elements in the density matrix to zero before calculating
the entropy. Despite the variety of coarse-graining measures used, in the large
squeezing limit (late times) these approaches all give an entropy of S = 2r per
mode, where r is the squeezing parameter. This result which gives the number
of particles created at late times agrees with that obtained earlier by Hu and
Pavon [HuPav86].

Noteworthy in this group of work is that the representation of the state of the
quantum field and the coarse graining in the field are stipulated, not derived.
What is implicitly assumed or glossed over in these approaches is the important
process of decoherence – the suppression of the off-diagonal components of a
reduced density matrix in a certain basis. It is a necessary condition for real-
izing the quantum-to-classical transition, see [Zur81, Zur82, Zur91, JooZeh85,
CalLeg85, UnrZur89, HuPaZh92, Zur93]. The deeper issues are to show explic-
itly how the entropy of particle creation depends on the choice of specific ini-
tial state and/or particular ways of coarse graining, and to understand how
natural or how plausible these choices of the initial state representation or the
coarse-graining measure are in different realistic physical conditions [Hu94a].1 To
answer these questions, one needs to work with a more basic theoretical frame-
work incorporating statistical mechanics and quantum fields. We shall treat the
decoherence and entropy/uncertainty issues with the quantum open system con-
cept [Davies76, LinWes90, Wei93] and the influence functional formalism intro-
duced in Chapters 3 and 5. Our discussion of the different ways of defining the
entropy of quantum fields is adapted from [CaHuRa00], while our open systems

1 This includes conditions when, for example, the quantum field is at a finite temperature or
is out of equilibrium, interacting with other fields, or that its vacuum state is dictated by
some natural choice, for example, in the earlier quantum cosmology regime such as the
Hartle–Hawking boundary condition leading to the Bunch–Davies vacuum in de Sitter
spacetime.
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9.1 Entropy generation from particle creation 253

treatment of entropy generation follows that of Koks et al. [Kok96, KoMaHu97].
Notable later work on related subjects includes that of Kiefer et al. [KiPoSt00]
and Campo and Parentani [CamPar04].

9.1.2 Coarse graining the environment in an open system

In the quantum Brownian motion paradigm the role of the Brownian particle
can be played by a detector, a designated mode of a quantum field, such as the
homogeneous inflaton field, or the scale factor of the background spacetime (as
in minisuperspace quantum cosmology), while the bath could be a set of coupled
oscillators, a quantum field, or just the high-frequency sector of the field, as
in stochastic inflation. The statistical properties of the system are depicted by
the reduced density matrix (rdm) formed by integrating out the details of the
bath. One can use the rdm or the associated Wigner function to calculate the
statistical average of physical observables of the system, such as the uncertainty
or the entropy functions. The von Neumann entropy of an open system is given
by

SCG = −Tr[ρR(t) ln ρR(t)], (9.1)

The entropy function constructed from the reduced density matrix (or the
reduced Wigner function) of a particular state measures the information
loss of the system in that state to the environment (or, in the phraseology
of [ZuHaPa03], the “stability” characterized by the loss of predictive power rela-
tive to the classical description). One can study the entropy increase for a specific
state, or compare the entropy at each time for a variety of states characterized by
the squeeze parameter. Interaction with the environment changes the system’s
dynamics from unitary to dissipative, the energy loss being measured by the
viscosity function, which governs the relaxation of the system into equilibrium
with the environment. The entropy function for such open systems can also be
used [AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95, ZuHaPa03] as a mea-
sure of how close different quantum states can lead to a classical dynamics. For
example, the coherent state being the state of minimal uncertainty has the small-
est entropy function [ZuHaPa03] and a squeezed state in general has a greater
uncertainty function [HuZha93b, HuZha95]. One can thus use the uncertainty to
measure how classical or “nonclassical” a quantum state is.

With regard to the issue of entropy of quantum fields raised at the beginning,
we can ask, what is the difference of this more rigorous definition based on open-
system dynamics and those obtained with more ad hoc prescriptions?

9.1.3 Differences in various definitions of entropy

Consider, for example a representative list of papers on the entropy of quan-
tum fields, such as [Hu84, HuPav86, HuKan87, Kan88a, Kan88b, BrMuPr92,
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254 Entropy generation and decoherence of quantum fields

BrMuPr93, GasGio93, GasGioVen93]. We see that in some cases the entropy
refers to that of the field, and is obtained by coarse graining some informa-
tion of the field itself, such as making a random phase approximation, adopt-
ing the number basis, or integrating over the rotation angles. The entropy
of [HuZha93b, HuZha95, AndHal93, Hal93, AnaHal95, ZuHaPa03], on the other
hand, refers to that of the open system and is obtained by coarse graining the
environment. Why is it that for certain generic models in some common limit
(late time, high squeezing), both groups of work obtain the same result? Under
what conditions would they differ? Understanding this relation could provide a
more solid theoretical foundation for the intuitively argued definitions of field
entropy.

At the formal level, supposing we have some system which has been decom-
posed into two subsystems, it is well known (e.g. [Pag93]) that between the
entropies S1, S2 of the two subsystems, and that of the total system, S12, a
triangle inequality holds:

|S1 − S2| ≤ S12 ≤ S1 + S2 (9.2)

In particular, if the total system is closed and so in a pure state, then it has zero
entropy, so that the two subsystems necessarily have equal entropies.2 Hence,
asking for the entropy change of a system is equivalent to asking for the entropy
change of the environment it couples to, if the overall closed system is in a pure
state. Now consider the case of the system as a detector (or a single mode of a
field) and the environment as the field. The information lost in coarse graining the
field which was used to define the field entropy in the above examples is precisely
the information lost as registered in the particle detector, which shows up in the
calculation of entropy from the reduced density matrix. The bilinear coupling
between the system and the bath as used in the simple quantum Brownian motion
models also ensures that the information registered in both sectors is directly
commutable. This explains the commonalities. However, not all coarse graining
and coupling will lead to the same results, as we shall explicitly demonstrate in
some examples below.

Another important feature of the entropy function obtained in this more rig-
orous open-systems definition which is not obvious in other ad hoc approaches is
that it depends nonlocally on the entire history of the squeezing parameter. This
can be seen from the fact that the rate of particle creation varies in time and its
effect is history dependent [HarHu79, CalHu87]. We have seen this behavior in
Chapter 4. Existing methods of calculating the entropy generation give results
which only depend on the squeezing parameter at the time when a particular

2 This could be the reason why the derivation of black hole entropy (e.g. [Bek94]) can be
obtained equivalently by computing the entropy of the radiation (e.g. [FroNov93]) emitted
by the black hole, or by counting the internal states (if one knows how) of the black hole
(e.g. [ZurTho85, Bek83, BekMuk95, StrVaf96]). Physically one can view what happens to
the particle as a probe into the state of the field.
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9.2 Entropy of quantum fields 255

coarse graining (or dropping the off-diagonal components of the density matrix)
is implemented.

In Chapter 3 we introduced open quantum systems in terms of influence
functionals, following the treatment of [HuPaZh92, HuMat94]. In Chapter 4
we introduced squeezed quantum system, using a general oscillator Hamilto-
nian as an example, following the treatment of [HuKaMa94, HuMat94]. Here
we apply these methods to calculate the entropy and uncertainty functions
and then specialize to an oscillator system, recovering en route the results of
[HuZha93b, HuZha95, AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95] for
the uncertainty function at finite temperature, and of [ZuHaPa03] on the entropy
of coherent states. These results are also useful for the consideration of entropy
of particles created in the early universe (see, e.g. [KoMaHu97] for a minimally
coupled scalar field mimicking a graviton field in a de Sitter universe).

9.2 Entropy of quantum fields

Our discussion in this chapter started with the posing of a deceptively simple
question: Is there entropy generation in particle creation? Attempting to answer
this question uncovers a host of basic issues in the statistical mechanics of quan-
tum fields. Here we briefly describe the entropy functions obtained from two
different types of considerations and operations: The first type is for particle
creation in free quantum fields. The main point is the choice of representations
and the specification of the initial state. The second type is for particle creation
in interacting quantum fields.

To begin with, we note that for a closed system with a unitarily evolving
quantum field its dynamics is governed by the quantum Liouville equation, and
the von Neumann entropy constructed from the density matrix of the closed
system,

SVN = −Tr[ρ(t) ln ρ(t)], (9.3)

is exactly conserved. One can introduce approximations or assumptions to ren-
der a closed system open or effectively open (see Chapter 1). We distinguish
two situations: If there is a justifiable separation of macroscopic and microscopic
time-scales, one can adopt the theoretical framework of quantum kinetic field
theory. If one assumes an initial factorization condition for the density matrix
(as in the “molecular chaos” assumption), one obtains a relativistic Boltzmann
equation. The Boltzmann entropy SB defined in terms of the phase space distri-
bution f(k,X) for quasiparticles can in this case be shown to satisfy a relativistic
H-theorem [GrLeWe80, CalHu88]. We want to generalize this to a correlation
entropy for interacting quantum fields.

However, in the case where there does not exist such a separation of time-
scales, how does one define the entropy of a quantum field? For nonperturbative
truncations of the dynamics of interacting quantum fields, this is a nontrivial
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question [HuKan87]. Intuitively, one expects that any coarse graining which leads
to an effectively open system with irreversible dynamics will also lead to the
growth of entropy. These operations can be systematically carried out by way
of the projection operator techniques. A projection operator P projects out the
irrelevant degrees of freedom from the total system described by the density
operator ρ, yielding the reduced density matrix ρR

ρR(t) = Pρ(t) (9.4)

There exists a well-developed formalism for deriving the equation of motion of
the relevant degrees of freedom, and in terms of it, the behavior of the coarse-
grained entropy (9.1), which will in general not be conserved [Nak58, Zwa60,
Zwa61, Mor65, WilPic74, Gra82, Kam85, GoKaZi04, GorKar04, Bal75]. The
projection operator formalism can be used to express the slaving of higher cor-
relation functions in the correlation hierarchy. From it one can define an entropy
in effectively open systems (see, e.g. [Ana97a, Ana97b]). (So far it has only been
implemented within the framework of perturbation theory.) Another powerful
method adept to field theory is the Feynman–Vernon influence functional for-
malism developed in Chapter 5. We shall use it to illustrate how to define the
entropy functions for quantum open systems [KoMaHu97].

9.2.1 Entropy special to choice of representation

and initial conditions

We begin with the simpler yet more subtle case of a free quantum field. Take for
example particle creation in a time-varying background field or in an expand-
ing universe studied in Chapter 4. Entropy is generated in the particle pro-
duction process from the parametric amplification of vacuum fluctuations. The
focal point is a wave equation with a time-dependent natural frequency for
the amplitude function of a normal mode. (The same condition arises for an
interacting field, such as the λΦ4 theory in the Hartree–Fock approximation
or the O(N) field theory at leading order in the large-N expansion.) Since
the underlying dynamics is clearly unitary and time-reversal invariant in this
case, a suitable coarse graining leading to entropy growth is not trivially evi-
dent. Hu and Pavon [HuPav86] made the observation that a coarse graining is
implicitly incorporated when one chooses to depict particle numbers in the n-
particle Fock (or “N”) representation or to depict the phase coherence in the
phase (or “P”) representation. This idea has been further developed and clari-
fied [Kan88a, Kan88b, KoMaHu97, KlMoEi98]. The source of entropy generation
for free fields is very different from that of interacting fields (e.g. the growth of
correlational entropy, described below) in that particle creation from parametric
amplification depends sensitively on the choice of representation for the state
space of the parametric oscillators, and the specificity of the initial conditions.
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9.2.2 Entropy from projecting out irrelevant variables

In contrast to entropy growth resulting from parametric particle creation from
the vacuum, entropy growth due to particle interactions in quantum field theory
has a very different physical origin. A coarse graining scheme was proposed by Hu
and Kandrup [HuKan87] for these processes. Expressing an interacting quantum
field in terms of a collection of coupled parametric oscillators, their proposal is
to define a reduced density matrix by projecting the full density operator onto
each oscillator’s single-oscillator Hilbert space in turn,

�(k) ≡ Trk′ �=kρ (9.5)

and defining the reduced density operator as the tensor product Π of the pro-
jected single-oscillator density operators �(k),

ρR ≡ Πk�(k) (9.6)

The coarse-grained (Hu–Kandrup) entropy by projection is then just given by
equation (9.1), from which we obtain

SHK = −
∑
k

Tr[�(k) ln �(k)] (9.7)

It is interesting to observe that for a spatially translation-invariant density matrix
for a quantum field theory which is Gaussian in the position basis, this entropy
is just the von Neumann entropy of the full density matrix, because the spa-
tially translation-invariant Gaussian density matrix separates into a product over
density submatrices for each k oscillator. This projection (Hu–Kandrup) coarse
graining, like the correlation-hierarchy (Calzetta–Hu) coarse-graining scheme
described below, does not choose or depend on a particular representation for the
single-oscillator Hilbert space. It is sensitive to the establishment of correlations
through the explicit couplings.

9.2.3 Entropy from slaving of higher correlations

We presented in Chapter 6 a general procedure for obtaining coupled equa-
tions for the correlation functions at any order l in the correlation hierarchy,
which involves a truncation of the master effective action at a finite order in
the loop expansion [NorCor75, CalHu95a, CalHu00, Ber04a]. By working with
an l loop-order truncation of the master effective action, one obtains a closed,
time-reversal invariant set of coupled equations for the first l + 1 correlation
functions, φ̂, G,C3, . . . , Cl+1. In general, the equation of motion for the highest
order correlation function will be linear, and thus can be formally solved using
Green’s function methods. The existence of a unique solution depends on sup-
planting this with some causal boundary conditions. When the resulting solution
for the highest correlation function is back-substituted into the evolution equa-
tions for the other lower-order correlation functions, the resulting dynamics is
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not time-reversal invariant, but generically dissipative, as measured by the cor-
relation entropy. Thus, as was described before, with the slaving of the higher-
order correlation functions we have rendered a closed system (the truncated
equations for correlation functions) into an effectively open system. This coarse-
graining scheme and the associated correlation entropy defined for an interacting
quantum field has the benefit that it can be implemented in a nonperturbative
manner. In addition to dissipation, one expects that an effectively open sys-
tem will manifest noise/fluctuations [NorCor75, CalHu95a, CalHu00, Ber04a]
arising from the slaving of the four-point function to the two-point function in
the symmetry-unbroken λΦ4 field theory. Thus a framework exists for exploring
the irreversibility and fluctuations within the context of a unitary quantum field
theory, using the truncation and slaving of the correlation hierarchy. The effec-
tively open system framework is useful for precisely those situations, where a
separation of macroscopic and microscopic time-scales (which would permit an
effective kinetic theory description) does not exist, such as is encountered in the
thermalization issue.

9.3 Entropy from the (apparent) damping of the mean field

We shall discuss these two situations in more detail with examples in the following
two sections. In the first case we consider entropy generation in a closed system
of a free quantum field, following the treatment of [HKMP96, KlMoEi98]. In the
next section we consider entropy generation in an open system interacting with
an environment.

Consider the dynamics of a closed system comprising of a mean field and the
fluctuation fields. The time evolution of a closed system is Hamiltonian. The gen-
eral time-dependent Gaussian density matrix of the system may be parameter-
ized by the canonical variables, as we have seen in Chapter 4. Yet, the evolution
in some circumstances can manifest apparent irreversible energy flow from the
coherent mean fields to the fluctuating quantum modes and give the appearance
of quantum decoherence of the mean field.

So what causes the appearance of damping in the dynamics of the mean field
of such systems? To highlight the essential physics we note that this process is
analogous to the Landau damping of collective modes in a collisionless electro-
magnetic plasma described by the Vlasov equation. One can understand this
damping and decoherence as the result of dephasing of the rapidly varying fluc-
tuations and particle production in the time-varying mean field, as shown in
Chapter 4. There, when we show the derivation of the quantum Vlasov equation
for the semiclassical scalar QED following [KlMoEi98], we encounter a typical
situation in nonequilibrium statistical mechanics, namely, if there is a clear sep-
aration of time-scales amongst various processes going on in a system, we can
seek an effective description of a particular subsystem by coarse graining or
“projecting-out” the other subsystems. In the example at hand if we are only
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interested in the behavior of the slowly varying particle number Nk, the fast
changing correlations Ck can be projected out.3 The effect of the environment on
the open system is calculated through its back-action on the subsystem of inter-
est. Here we focus on the statistical mechanics of particle creation, highlighting
the non-Markovian nature of these processes, and seek a physical definition of
entropy for such quantum field systems.

9.3.1 Time-scales

The essential physical ingredient in passing from the quantum evolution of the
particle-field system to the kinetic description by the quantum Vlasov equation is
the dephasing phenomenon, i.e. the near exact cancellation of the rapidly varying
phases of the quantum mode functions contributing to the mean electric current
of the created pairs. This cancellation depends in turn upon a clean separation
of the following time-scales (refer to Chapter 4 for notation): [KlMoEi98]

(1) τqu, the inverse of the natural frequency of a normal mode, rapidly oscillating.
It is the shortest time-scale reflecting the microscopic quantum theory.

(2) τcl, the inverse of Ṅk, measures the slowly varying mean number of particles
in the adiabatic number basis.

(3) τpl, of the collective plasma oscillations of the electric current and mean
electric field produced by those particles.

In the limit τqu � τcl quantum coherence (reflected in the phase or correlations)
between the created pairs can be neglected because of efficient dephasing and
a (semi)classical local kinetic approximation to the underlying quantum the-
ory becomes possible. In the limit τcl � τpl the electric field may be treated as
approximately constant over the interval of particle creation. Thus when both
inequalities apply we can replace the true nonlocal source term which describes
particle creation in field theory by one that depends only on the instantaneous
value of the quasi-stationary electric field, at least over very long intervals of
time.

3 Note that projecting out or coarse graining does not mean elimination or truncation.
The information of the “irrelevant” variables in the other subsystems (constituting the
environment) is retained fully in the integro-differential equation for the subsystem of
special interest to us (the “relevant” variable), where the nonlocal kernels retain all the
information about the subsystem and the environment. One can attempt to solve it, but
because of the memory functions, it requires complicated and elaborate integration
procedures. Depending on what specific physical information is targeted, one can devise
coarse-graining measures to describe the effect of the environment on the system thus
leading to a simplification of this integro-differential equation. One extreme yet familiar
example is a heat bath where the environment is so grossly coarse grained that only
temperature enters into the overall effect on the system (thus making it possible to use the
canonical ensemble in equilibrium statistical mechanics, and linear response theory in
near-equilibrium conditions).
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Making use of these local approximations, one can find [KlMoEi98] an exact
analytic expression for the spontaneous pair creation rate d

dtNk(t) for a constant
electric field in real time, in agreement with the Schwinger result [Sch51] in both
its exponential and nonexponential factors. Then by making use of an asymp-
totic expansion of the exact analytic result for constant fields, uniformly valid
everywhere on the real time axis, one obtains a useful local approximation to the
spontaneous pair creation rate for the slowly varying electric fields. A numerical
comparison [KlMoEi98] between the quantum and local kinetic approaches to
the dynamical back-reaction problem shows remarkably good agreement, even
in quite strong electric fields, eE � m2c3/�, over a large range of times.

9.3.2 Density matrix

After the elimination of the rapid variables Ck defined in (4.113) in favor of the
slow variables Nk one can construct the density matrix in the adiabatic number
basis easily [KlMoEi98]. In a pure state (setting ζ = 1 in equation (4.48)) the
only nonvanishing matrix elements of ρ are in uncharged pair states with equal
numbers of positive and negative charges, �k = n

(+)
k = n

(−)
k , with �k the number

of pairs in the mode k, viz.

〈2�′k|ρ|2�k〉pure = ei(�k
′−�k)ϑk(t) sech2rk(t) (tanh rk(t))�k

′+�k (9.8)

where the magnitude of the Bogoliubov transformation, rk(t), is defined in equa-
tion (4.27) and its phase, ϑk(t), is determined by

αkβ
∗
ke

−2iΘk = −sinh rk cosh rk eiϑk (9.9)

Hence the off-diagonal matrix elements �′ �= � of ρ are rapidly varying on the
time-scale τqu of the quantum mode functions, while the diagonal matrix ele-
ments �′ = � depend only on the adiabatic invariant average particle number
via

〈2�k|ρ|2�k〉pure≡ρ2�k =sech2rktanh2�krk =
|βk|2�k

(1 + |βk|2)�k+1
=

N �k
k

(1 + Nk)�k+1

∣∣∣∣
(9.10)

and are therefore much more slowly varying functions of time. The average num-
ber of positively charged particles (or negatively charged antiparticles) in this
basis is given by

∞∑
�k=0

�kρ2�k = Nk (9.11)

Thus the diagonal and off-diagonal elements of the density matrix in the adia-
batic particle number basis stand in precisely the same relationship to each other
and contain the same information as the particle number Nk and pair correlation
Ck respectively.
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9.3.3 Entropy generation

In the density matrix (9.10) the diagonal elements ρ2�k may be interpreted (for
a pure state) as the independent probabilities of creating �k pairs of charged
particles with canonical momentum k from the vacuum. This corresponds to
disregarding the intricate quantum phase correlations between the created pairs
in the unitary Hamiltonian evolution. When physics is expressed in the adiabatic
particle number basis (the Fock or N representation) the phase information is
ignored. The quantum density matrix in this representation produces an entropy
function which reflects that associated with particle creation but says nothing
about the evolution of the quantum phase or correlation. This illustrates the
crucial role played by the choice of representations in the definition of entropy
associated with particle creation [HuPav86].

Results obtained from neglecting quantum phase are known to be quite accu-
rate for long intervals of time in the back-reaction of the current on the electric
field producing the pairs, because when the current is summed over all the k
modes, the phase information in the pair correlations cancels very efficiently.
Thus for practical purposes one can approximate the full Gaussian density matrix
over large time intervals by its diagonal elements only, in this basis.

Let us examine the reduced von Neumann entropy constructed from the diag-
onal density matrix (9.10)

SN (t) = −
∑
k

∞∑
�k=0

ρ2�k ln ρ2�k (9.12)

Upon substituting (9.10) into this, the sums over �k are geometric series which
are easily performed. The von Neumann entropy of this reduced density matrix

SN (t) =
∑
k

{(1 + Nk) ln(1 + Nk) −Nk lnNk} (9.13)

is precisely equal to the Boltzmann entropy of the single particle distribution
function Nk(t). Hence

d

dt
SN =

∑
k

ln
(

1 + Nk

Nk

)
d

dt
Nk (9.14)

increases if the mean particle number increases. This is always the case on average
for bosons if one starts with vacuum initial conditions, since |βk|2 is necessarily
nonnegative and can only increase if it is zero initially [Kan88a, Kan88b]. Locally,
or once particles are present in the initial state, particle number or the entropy
(9.14) does not necessarily increase monotonically in time.

Hence the notion of entropy associated with particle creation, and the lore that
it increases in time, is only valid for spontaneous production of bosons from an
initial vacuum state. This function associated with fermions, and that associated
with stimulated production of both boson and fermions, can decrease in time.
This we have remarked in Chapter 4.
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9.3.4 Decoherence functional

Decoherence is also addressable within the same framework. Consider the case,
where ω(t) is a function of one external degree of freedom, the mean field A(t).
If only the evolution of A is of interest, then the fluctuating modes described
by f(t) may be treated as the “environment.” To solve for the evolution of
the reduced density matrix of A, we compute the influence functional of two
trajectories A1(t) and A2(t) corresponding to two different evolution operators
U1(t) and U2(t) defined by

F12(t) ≡ exp(iΓ12(t)) ≡ Tr
(
U1(t)ρ(0)U†

2 (t)
)

(9.15)

Explicit evaluation may be carried out using (4.1.53). Restricting again to pure
states with vanishing q̄ mean fields we find

Γ12

∣∣∣∣
ζ=1

q̄=p̄=0

=
−i

2
ln

{
i�

|f1f2|

(
f1f

∗
2

f1ḟ∗
2 − ḟ1f∗

2

)}
(9.16)

in terms of the two sets of mode functions f1(t) and f2(t) which satisfy (4.54)
and (4.17). This Γ12 is precisely the closed time path (CTP) effective action
functional which generates the connected real time n-point vertices in the
quantum theory [CHKMPA94]. For a pure initial state, the absolute value
of F12 measures the overlap of the two different evolutions at some time t,
beginning with the same initial |ψ(0)〉. In mean field theory, instead of eval-
uating Γ12 for two arbitrary trajectories, the evaluation is over trajectories
determined by the self-consistent evolution of the closed system, beginning
with two different initial mean fields. The intimate relation between the CTP
effective action functional and the decoherence functional was pointed out by
[CalHu93, CalHu95a, CalHu94, HuMat94, Ana97a, Ana97b].

9.4 Entropy of squeezed quantum open systems

In Chapter 3 we studied quantum open systems with the harmonic oscillator
Brownian motion model (QBM). In Chapter 4 we studied squeezed quantum
systems as exemplified by particle creation in a dynamical background (with
a Lagrangian (4.233)) and squeezed quantum open system exemplified by a
parametric oscillator QBM (with Lagrangian (3.133)). Now we inquire about
the entropy of squeezed quantum open systems. We seek a definition of the
entropy S and the uncertainty function of a squeezed system interacting with
a thermal bath, and study how they change in time by following the evolu-
tion of the reduced density matrix in the influence functional formalism. As
examples, we calculate the entropy of two exactly solvable squeezed systems: an
inverted harmonic oscillator and a scalar field mode evolving in an inflationary
universe. For the inverted oscillator with weak coupling to the bath, at both
high and low temperatures, S → r, where r is the squeeze parameter defined in
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equation (4.217). For a massless minimally coupled scalar field in the de Sitter
universe, S → (1 − c)r at high temperatures where c = γ0/H, γ0 is the coupling
to the bath and H the Hubble constant. These two cases confirm previous results
based on more ad hoc prescriptions for calculating entropy. But for such a scalar
field at low temperatures, the de Sitter entropy S → (1/2 − c)r is noticeably dif-
ferent. This result, obtained from a more rigorous treatment, shows that factors
usually ignored by the conventional approaches, i.e. the nature of the environ-
ment and the coupling strength between the system and the environment, are
important. Our treatment here is based on the results obtained in Chapter 5, Sec-
tion 5.4, derived from the work of Hu, Koks and Matacz [KoMaHu97, HuMat94].

9.4.1 Entropy from the evolutionary operator

for reduced density matrix

Consider again the quantum Brownian model discussed in Chapter 3. Our system
is modeled by a harmonic oscillator (with coordinate x) with time-dependent
mass (M), cross-term (E) and natural frequency (Ω) coupled bilinearly with an
environment modeled by many oscillators (with coordinates qn) of similar nature
(mn, εn, ωn). The total Lagrangian is given by equation (3.133).

Assume the systems are initially in the vacuum state, so that their density
matrix is Gaussian. Starting with an initial Gaussian reduced density matrix in
the form

ρr(xi x
′
i ti) ∝ e−λx2

i+λ×xix
′
i−λ∗x′2

i (9.17)

it is evolved by action of the evolutionary operator Jr for the reduced density
matrix of the parametric quantum Brownian oscillator defined in (3.49) into

ρr(x, x′, t) = Ne−Au2−2iBXu−4CX2
(9.18)

where x, x′ = X ± (u/2) and the A, B, C functions enter into the evolutionary
operators Jr given by (3.135). They are in turn dependent on the aij , bk coeffi-
cients given by (4.294), which are solutions to the differential equations for the
coefficients of the generalized master equation (3.150) [HuPaZh92, HuPaZh93a].
Here,

N = 2
√
C/π (9.19)

A = a22 +
1
D

{
[(2λr + λ×)/4 + a11] b23 + (2λi + b4) a12 b3 − (2λr − λ×)a2

12

}
(9.20)

B = −b1/2 +
1
D

[(λi + b4/2) b2 b3 − (2λr − λ×)a12 b2] (9.21)

C =
1

4D
(2λr − λ×) b22 (9.22)

D = 4|λ|2 − λ2
× + 4 (2λr − λ×)a11 + 4λi b4 + b24 (9.23)
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where λr, λi are the real and imaginary parts of λ. These expressions form the
basis of calculations for squeezed quantum open systems. The reduced density
matrix can be obtained by using the expressions above, which depend on χ =
α + β, the sum of the Bogoliubov coefficients for the effective oscillator. For more
details refer to Chapter 4, Section 4.7 [HuMat94, KoMaHu97].

The entropy of a field mode has been calculated by Joos and Zeh [JooZeh85,
BKLS86] and others. It can be derived from the reduced density matrix at time
t by using the von Neumann entropy (9.3), and is given by

S =
−1
w

[w lnw + (1 − w) ln(1 − w)] � 1 − lnw if w → 0 (9.24)

where

w ≡ 2
√

C/A

1 +
√
C/A

(9.25)

A simpler quantity to use is the linear entropy:

Slin ≡ −Tr ρ2 = −
√
C/A (9.26)

and S = 0 → ∞ is equivalent to Slin = −1 → 0, both strictly increasing. Then if
Slin → 0 we have

S → − ln |Slin| + 1 − ln 2, i.e. Slin → −1
2
(e1−S) (9.27)

As an example, suppose we have a system in an initially pure Gaussian state
(λ× = 0), so that noise and dissipation are absent: γ0 = 0, defined in (3.142). In
this case, we have

a11 = a12 = a22 = 0 (9.28)

so that C/A = 1 and hence S = 0, as expected.

9.4.2 Measures of fluctuations and coherence

At this point it is useful to supplement our presentations of squeezed quantum
open systems in Chapters 3–5 by a discussion of the relation between fluctua-
tions, coherence and entropy. In some cases the description for the dynamics of
a squeezed (closed) quantum system can be simplified by expressing the den-
sity matrix in terms of the so called super- and subfluctuant variables uSF, vSF

obtained as real linear combinations of the canonical variables q, p:

uSF = −κ sinφ q + cosφ p (9.29)

vSF = cosφ q +
sinφ

κ
p (9.30)

This rotation eliminates the cross-terms in the Wigner function. We fix the linear
combinations such that one variable (u, the superfluctuant) grows exponentially
while the other decays exponentially.
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Writing the density matrix in the uSF basis, e.g. ρ(uSF, u
′
SF), one can then

compute the fluctuations in uSF and vSF as (see Section IIIC of [KoMaHu97] for
details)

Δu2
SF = 〈u2

SF〉 − 〈uSF〉2 =
ς�

2C
Δv2

SF =
ς

2C
(9.31)

where ϕ, ς,� are defined as

ϕ ≡ κ

2
cotφ, ς ≡ sin2 φ

κ2

[
4AC + (B − ϕ)2

]
(9.32)

� ≡ 4AC + (4ϕς + B − ϕ)2

4ς2
(9.33)

As a measure of coherence we note from (9.18) that a large A coefficient means
that the density matrix is strongly peaked along its diagonal, i.e. there is very
little coherence in the system. A measure of coherence was defined in [Mat94]
as a squared coherence length L2, equal to the coefficient of −u2 divided by 8,
so that a large L2 means a high degree of coherence in the system. With this
definition of L2, we have

L2
u =

ς�

2A
, L2

v =
ς

2A
(9.34)

We can thus relate the coherence lengths and fluctuations to the entropy of
the system by

L2
u

Δu2
SF

=
L2
v

Δv2
SF

= S2
lin =

C

A
(9.35)

(Note that linear entropy is negative by definition in order for it to increase with
S. Then as Slin increases, S2

lin will decrease.) Also the uncertainty relation for
uSF, vSF becomes

Δu2
SFΔv2

SF =
1

S2
lin

[
1
4

+
(4ϕς + B − ϕ)2

16AC

]
(9.36)

For the free field the last term in the square brackets is zero while Slin = −1
(since S = 0), so that ΔuSFΔvSF = 1/2.

9.4.3 Entropy and uncertainty functions of an inverted oscillator

We can now demonstrate how the previous results are used. An oscillator with
time-independent frequency Ω coupled to a thermal ohmic bath of like oscillators
has local dissipation (i.e. D ∝ δ′(t− t′)), and at T → ∞ the noise becomes white
(N ∝ δ(t− t′)). The entropy in this simple case is easily compared with known
results in equilibrium statistical mechanics: the entropy at high temperature is

S → 1 + ln
T

Ω
(9.37)

We can also use this entropy expression to investigate the claim by Zurek,
Habib and Paz [ZuHaPa03] (in the small γ0 limit by using a Wigner function
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approach) that for large times the state of least entropy for the oscillator (with
a time-independent natural frequency) is the coherent state, at least for white
noise and local dissipation. Since the coherent state is the “most classical-like”
quantum state, this was invoked as an indication of quantum to classical transi-
tion. Equivalently one can use the uncertainty function as a measure. This was
shown by Hu and Zhang [HuZha93b, HuZha95], and Anderson, Anastopoulos
and Halliwell [AndHal93, Hal93, AnaHal95].

The static inverted harmonic oscillator (IHO) is perhaps the simplest squeezed
system. It has been used as a model to study quenching in a quantum phase
transition (see the next section). It also models the zero mode of the inflaton
field in new inflation (see Chapter 15). Its Lagrangian is:

L(t) =
1
2
[ẋ2 + Ω2x2] (9.38)

We touched on this case in Chapter 4, Section 4.7 as an example of a squeezed
quantum system. Suppose this system is coupled to the usual environment of
harmonic oscillators in a thermal state, with coupling constant c(s) = 1. Then
the equivalent oscillator we consider has unit mass, no cross-term and frequency

Ω2
eff = −Ω2 − γ2

0 ≡ −κ2 (9.39)

so that from (4.239) the sum of its Bogoliubov coefficients is (taking ti = 0, recall
z ≡ κt, σ ≡ κs)

χ(t) = cosh z − isinh z (9.40)

Hence we have

α = cosh z, β = −isinh z (9.41)

so that at late times as z → ∞, r → z. To determine the entropy generated we
need to calculate the various quantities in the propagator coefficients. For white
noise these coefficients have analytic solutions, but for zero temperature we need
to calculate them numerically.

The bi’s are independent of the temperature, and are found to be (where here
and elsewhere a carat will denote division by κ)

b{1
4} = κ(± coth z − γ̂0), b{2

3} =
±κe±γ̂0z

sinh z
(9.42)

High temperature

White noise is given by N(s, s′) = 4γ0T δ(s− s′), or N(σ, σ′) = 4γ̂0κ
2Tδ(σ −

σ′). Using these, Kok, Matacz and Hu derived the expressions for the aij coeffi-
cients. Note that γ̂0 = γ0/κ < 1; however if we assume small dissipation (γ̂0 � 1)
we can write down large time limits of these quantities:

a11 → T γ̂0

1 − γ̂0
, a12 → 2Te−(1−γ̂0)z

1 + γ̂0
, a22 → T γ̂0

1 + γ̂0

b{1
4} → κ(±1 − γ̂0), b{2

3} → ±2κ e−(1∓γ̂0)z (9.43)
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We can then calculate large time limits of the density matrix coefficients
from (9.19):

A → a22, B → −b1/2, C → b22
16a11

(9.44)

These coefficients are independent of the initial conditions, which might be
expected since the dissipation is acting to damp out any late time dependence
on these initial conditions. We have

Slin = −
√

C

A
→ −κ2e−z

2γ0T
(9.45)

From (9.27) and the fact that r → z as z → ∞ we obtain

S → r + 1 + ln
Tγ0

κ2
(9.46)

Zero temperature

At T = 0, the action of the environment is due to quantum effects only. Analytic
expressions for the aij , bk coefficients in this case can be found in [KoMaHu97].

At T = 0, for weak dissipation, γ̂0 � 1 we have at late times,

A → a22, B → −b1/2, C → b22
16a11

(9.47)

Again the coefficients are independent of the initial conditions. Since b2 is
unchanged from the high-temperature case and a11, a22 tend toward constants,
we see that

Slin → −κe−z

2
√
a11a22

(9.48)

and so again from (9.27) and since at late times, r → z,

S → r + 1 + ln
√
a11a22

κ
(9.49)

In conclusion, approaching the problem of entropy and uncertainty from the
open system viewpoint enables one to see explicitly their dependence on the
coarse graining of the environment and the system–environment couplings. It also
exposes the relation between quantum and classical descriptions – it is through
decoherence that the quantum field becomes classical [CalHu94, AngZur96]. This
is the subject of the next section.

9.4.4 Entropy from graviton production in de Sitter spacetime

We now turn to an example in cosmology, that of an inflationary universe (see
Chapter 15). We want to calculate the entropy of a massless scalar field minimally
coupled to gravity in a de Sitter spacetime by examining the evolution of the
density matrix. As we shall see, it is a generally solvable squeezed system.
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Consider a massless minimally coupled scalar field in de Sitter space,

Lnew(η) =
∑ 1

2

[
χ′

kχ−k +
2
η
χkχ

′
−k − χkχ−k

(
k2 − 1

η2

)]
(9.50)

We also use a spectral density [Wei93] of the form

I(ω, η, η′) =
2γ0

πH

ω√
ηη′

(9.51)

so that c(η) = 1/
√−Hη. This corresponds to an ohmic bath with a time-

dependent coupling to the system. Since γ0/H is dimensionless we rewrite it
as c, not to be confused with c(η). Incorporating the bath gives the equivalent
oscillator with M = 1, E = 1/η and frequency

Ω2
eff = k2 − 1 + c2

η2
(9.52)

With z = kη, σ = ks we can write the dynamical equation for the quantity χ

introduced in Chapter 4, Section 4.7 as

χ′′(z) +
(

1 − 2 + c2

z2

)
χ = 0

χ(zi) = 1, χ′(zi) = −i− 1/zi (9.53)

where z < 0. The solution of this equation can be constructed using Bessel func-
tions whose index is a function of c; however since we are interested in small c
we take the solution to be approximately that of the same equation but with c

set to zero. This simplifies things greatly:

χ(z) =
(

1 +
i

2zi

)
f(z) +

i

2zi
f∗(z) (9.54)

where

f(z) ≡
(

1 − i

z

)
ei(zi−z) (9.55)

We can further simplify χ by using a very early initial time, setting zi → −∞.
We also disregard the phase in the resulting expression for χ, since this is not
expected to make any difference to physical quantities. In this case we obtain a
new function which we rename χ:

χ(z) →
(

1 − i

z

)
e−iz (9.56)

The Bogoliubov coefficients can now be found from (4.241):

α =
(

1 − i

2z

)
e−iz, β =

−i

2z
e−iz (9.57)

and so at late times

r → − ln |z| (9.58)

This result was also obtained in [Mat94] using a different method.
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In [KoMaHu97] the expressions for aij , bk were derived to leading order in z,
and from them the authors show that the coefficients A,B,C tend to the same
form as for the static oscillator.

High temperature

We begin by writing

N = 4cc2(s)Tδ(s− s′) (9.59)

=
−4ck2T

σ
δ(σ − σ′) (9.60)

From the expressions given in [KoMaHu97] for aij , bk at high temperature one
can obtain their behavior as z → 0. Since in this case the coefficients A,B,C

tend to the same form as for the static oscillator, thus

Slin → −|b2|
4
√
a11a22

= O|z|1−c. (9.61)

Using (9.27) and (9.58) we obtain

S → (1 − c)r + constant (9.62)

Finite temperature

In this case

A → a22 −
a2
12

4a11
, B → −b1/2, C → b22

16a11
(9.63)

and so

Slin → O|z|1/2−c (9.64)

Then with (9.27) and (9.58) we have

S → (1/2 − c)r + constant (9.65)

9.4.5 Discussion

In the last two sections we calculated the entropy of two physical and exactly
solvable squeezed systems: an inverted harmonic oscillator and a scalar field
mode evolving in a de Sitter inflationary universe. To compare these results with
that obtained from the more ad hoc approaches, we must bear in mind that for
a field mode that could be split into two independent sine and cosine (standing
wave) components, the result will be twice that obtained here, namely, S = 2r
(rather than r in here)

For the inverted oscillator, in both temperature regimes with weak coupling,
we obtained S → r + constant. In the de Sitter case, the high-temperature result
is S → (1 − c)r + constant. In these three examples the results obtained for the
entropy from the more ad hoc approaches comply with the first principles results
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presented here. However at lower temperatures the de Sitter entropy is S →
(1/2 − c)r + constant. This last result requires us to look more closely at A and
C which together give the entropy.

From (9.26) and (9.27), and neglecting the added constants which are always
implied, we find that in the high squeezing limit the entropy behaves as S →
1
2 lnA− 1

2 lnC. When the system–environment coupling is weak, all of the above
cases give −1/2 lnC → r, which is the expected result. The dominant contri-
bution to C always comes from b2 in the high squeezing limit. This parameter
is determined by the squeezing of the system and is essentially independent of
the nature of the environment and its coupling to the system. We can therefore
conclude that the lnC contribution to the entropy represents entropy intrinsic
to the squeezed system itself. This should be true quite generally for squeezed
systems. However these results fail to take into account the contributions to the
entropy from the lnA term. This contribution is determined by the aij factors
which strongly depend on the nature of the environment and its coupling to the
system. There is no a priori reason to expect this contribution to be small, as
illustrated by the finite temperature de Sitter example where 1/2 lnA → −r/2.
This highlights the danger in trusting the more ad hoc approaches. The crucial
point is that the entropy of a system depends not only on the system itself but
also on the nature of the environment and how it is coupled to the system.

9.5 Decoherence in a quantum phase transition

Quantum phase transitions [Sac99] refer to phase transitions mediated by quan-
tum fluctuations or parameters of a quantum nature, as opposed to classical
fields or parameters (such as temperature or magnetic fields) in classical phase
transitions. It is an area of active current research in condensed matter physics.
Interestingly enough, this subject has also been the focus of theoretical cosmol-
ogy – the inflationary universe proposal highlights the vital role played by phase
transitions in determining the state and dynamics of the early universe. The
essential quantum nature in these phase transitions comes about because the vac-
uum expectation value of the quantum inflaton field is what drove the universe to
a period of rapid expansion and its quantum fluctuations acted as seeds to struc-
ture formation in the later universe. Topological defects [VilShe00] appearing in
the field configurations, such as magnetic monopoles, cosmic strings and domain
walls, may often be of quantum field origins. Unfortunately the existing theories
for phase transition, structure and defect formation have largely been built on
classical field models. Such existing classical theories may not be naively adapt-
able for the description of these quantum phenomena without careful scrutiny.
Overall, we know that any reliable investigation of these processes should entail
both the quantum field and the nonequilibrium (dynamical) aspects. A number
of basic issues common to them need be addressed from both the conceptual and
the technical levels. Foremost is the question of how the quantum field comes to
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behave like a classical field, and how the quantum fluctuations become classical
stochastic sources. These are the issues of decoherence and noise of quantum
fields respectively. We will discuss in this section the issue of decoherence and
quantum-to-classical transitions in the context of a second-order phase transition
for an interacting quantum field, and revisit both issues in the context of struc-
ture formation from quantum fluctuations in the early universe in Chapter 15.

The key question we wish to seek an answer to is the emergence of a classical
order parameter field after a second-order phase transition described in quantum
field theory language [Cal89]. The system field can be the long-wavelength modes
of a quantum field and the environment field can be its own short-wavelength
modes, or a different set of quantum fields. We have given a thorough treatment
of these two cases in Chapter 5, with a derivation of the influence action, the
master equations, and an analysis of the dissipation and noise kernels. Here
we show how those results can be of use for tackling this problem. The goal
here is to compute the decoherence times for the system-field modes and place
them in relation to the other time-scales in the model. If it is shorter than all
the other relevant physical time-scales then it may provide some justification
for viewing the system quantum field as a classical order parameter field, thus
providing a justification for the common practices in existing theories of classical
phase transitions. If not, then one has to work out the theory of quantum phase
transitions from first principles to highlight the differences from their classical
counterparts.

Criteria for decoherence

Correlations peaking around the classical trajectory in the phase space, as indi-
cated by the Wigner function showing such behavior (for a long time being
perceived as the closest analog to a classical distribution function), were once
believed to be a sufficient criterion of classicality [Hal89], but was shown to be
inadequate by Habib and Laflamme [HabLaf90]. As we mentioned in Chapter 5,
the Wigner function contains just as much information as the density matrix, and
thus one needs to demonstrate by some mechanism the diminishing of the phase
information in the quantum system to begin to possess some classical attributes.
Since a quantum system almost always interacts with its environment, according
to the environment-induced decoherence viewpoint, one can use the diminishing
or vanishing of the off-diagonal elements of the reduced density matrix in a suit-
able basis (such as the “pointer basis” of Zurek) as an indication of, or criterion
for, decoherence and the transition to classicality. Likewise one needs to do this
for the Wigner function.

Models for quench transition

We focus on quenching which is a second-order quantum phase transition. For
a quantum field φ with infinite degrees of freedom undergoing a continuous
transition, the field ordering after the transition begins is due to the growth
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in amplitude of its unstable long-wavelength modes. A quench transition can in
general be characterized by the quench transition time-scale tq. Physically this is
the time by which the order parameter field has sampled the degenerate ground
states. One can take the field to be classical by the time it is ordered as such.
This has implications [RiLoMa02] for the formation of the defects that are a
necessary by-product of transitions.

A simple model for quench transition is an inverted harmonic oscillator (IHO)
which we studied in some detail in an earlier section in this chapter. This is
also the simplest model which depicts the evolution of the inflaton field and
the growth of inhomogeneities in the early universe. To see why, recall that
the normal modes of a massless free scalar field propagating in a Friedmann–
Lemaitre–Robertson–Walker universe satisfy the equation

φ′′
k +
(
k2 − a′′

a

)
φk = 0. (9.66)

For sufficiently long wavelengths (k2 � a′′/a), this equation describes an unsta-
ble oscillator.

Guth and Pi [GutPi85] used the IHO model to study the evolution of the
inflaton field. They assumed that at the onset of inflation the universe was in a
Gaussian quantum state centered on the maximum of the potential. It is easy to
show from the solution of the (functional) Schrödinger’s equation that the initial
wave packet spreads quickly in time but maintains its Gaussian shape (due to the
linearity of the model). The initial Gaussian state becomes highly squeezed and
indistinguishable from a classical stochastic process. Since the wavefunction is
Gaussian, the Wigner function is positive for all times and peaks on the classical
trajectories in phase space as the wavefunction spreads. In these situations the
Wigner function can be interpreted as a classical probability distribution for
coordinates and momenta, showing sharp classical correlations at long times. But
the harmonic oscillator is a special case where this condition holds. As remarked
above, this criterion based on correlations in phase space is not sufficient to
prove the transition from quantum to classical. One needs to also show how the
phase information in the quantum system disappears, such as by invoking an
environment-induced decoherence process.

Open systems

Guth and Pi did not expound the decoherence and quantum to classical tran-
sition issues in depth, but simply invoked the uncertainty principle as an indi-
cation of such a transition. Uncertainty principle at a finite temperature was
studied by Hu and Zhang [HuZha93b, HuZha95] (see also Anderson, Anastopou-
los and Halliwell [AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95]) using
a harmonic oscillator bath at finite temperature as the environment. They
showed explicitly how a quantum oscillator system evolves from a quantum- to
a thermal-dominated state which marks such a transition. Independently Zurek,
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Habib and Paz [ZuHaPa03] showed that a quantum system interacting with a
high-temperature ohmic bath will most likely evolve to a coherent state, which is
known as the quantum state with the most classical features. This was invoked
as a criterion for classicality. In an earlier section we have shown how these two
criteria, i.e. uncertainty at finite temperature and a quantum state evolving to a
coherent state, are actually two sides of the same coin in the environment-induced
decoherence perspective.

Interacting fields

The feature of a Gaussian wavefunction maintaining its Gaussian nature in evo-
lution are special to linear systems and the linear instabilities described above are
valid only for free fields. For example in an inverted anharmonic oscillator, it has
been shown [LoMaMo00] by numerically evolving the Schrödinger equation that
an initially Gaussian wavefunction becomes non-Gaussian, the Wigner function
develops negative parts, and its interpretation as a classical probability breaks
down.4 A similar argument for quantum mechanics, but for open systems, was
also presented in [LoMaMo00]. Coupling an inverted oscillator with an anhar-
monic potential to a high-temperature environment, the authors showed that
it becomes classical very quickly, even before the wavefunction probes the non-
linearities of the potential. Being an early time event, the quantum-to-classical
transition can be studied perturbatively. Lombardo, Mazzitelli and Rivers (LMR)
[LoMaRi01] have extended this to field theory by considering a system field com-
prising the long wavelengths of the order parameter interacting with a large num-
ber of environmental fields, including its own short wavelengths. Assuming weak
coupling and high critical temperature, they showed that decoherence is a short
time event, shorter than the quench transition time tsp. As a result, perturbative
calculations are justified. Subsequent dynamics can be described by a stochastic
Langevin equation, the details of which are only known for early times.5

4 In this connection we mention numerical computations of quantum mechanical models and
of different approximations to interacting field theory (see Chapter 12). In such calculations,
classical correlations do appear in some field theory models [CHKMPA94, BoVeHo99].
However, since such decoherence (in a time-averaged sense) takes place at long times after
the transition has been achieved initially, when the mean field approximation has broken
down, this may be an artifact of the Gaussian-like approximations [LoMaMo00].

5 A remark on the relation with thermal field theory is in place here. As pointed out by
[LoMaRi01] there are similarities and differences between this quantum open system
approach and the well-established classical behavior of thermal scalar field theory
[AarBer02, AarSmit98] at high temperature. It is known that at high temperatures, the
behavior of long-wavelength modes is determined by classical statistical field theory. The
effective classical theory is obtained after integrating out the hard modes with k ≥ gT . The
“classical behavior” in this soft thermal mode analysis is defined through the coincidence of
the quantum and the statistical correlation functions. Thermal equilibrium is assumed to
hold at all times and the cut-off that divides system and environment depends on the
temperature, which is externally fixed. In phase transitions, the quantum-to-classical
transition is defined by the effective diagonalization of the reduced density matrix, which is
not assumed to be thermal and the separation between long and short wavelengths is
determined by their stability, which depends on the parameters of the potential.
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Using a model with biquadratic coupling between the system and the envi-
ronment, LMR first [LoMaRi01] considered the case of an instantaneous quench,
then a slow quench [RiLoMa02]. The consideration of slow quenches is very
important since the Kibble–Zurek mechanism [Kib80, Kib88, Zur85, Zur96] pre-
dicts the relation between the subsequent domain structure and the quench time
(by indirectly counting defects [LagZur97, LagZur98, YatZur98]). The authors
of [LoMaRi03] worked out the theories for other couplings but show that the
biquadratic coupling is the most relevant for the quantum-to-classical transition.
Also, since all relevant time-scales depend only logarithmically on the parameters
of the theory, they also showed the necessity of keeping track of O(1) prefactors
carefully. In the next section we illustrate a quench quantum transition following
their treatment.

9.6 Spinodal decomposition of an interacting
quantum field

The model we discuss contains a real system field φ, which undergoes a transition,
coupled biquadratically to other scalar fields χa (a = 1, 2, . . . , N), which consti-
tute the external part of the environment (the internal environment is provided
by the short-wavelength modes of the field φ itself). The influence functional
and the master equation obtained from integrating out the environmental fields
have been derived in Chapter 5. We focus on the diffusion coefficients central
to the process of decoherence and evaluate upper bounds on the decoherence
time tD for slow quenches. The general conclusion is that the decoherence time
is typically shorter than the quench transition time.

The model

We consider for the system a self-interacting scalar φ-field which describes the
order parameter, whose Z2 symmetry is broken by a double-well potential, and
an environment comprising N free scalar fields χa with classical action

S[φ, χ] = Ssyst[φ] + Senv[χ] + Sint[χa, φ] (9.67)

where (with μ2, m2 > 0)

Ssyst[φ] =
∫

d4x

{
−1

2
∂μφ∂

μφ +
1
2
μ2φ2 − λ

4!
φ4

}

Senv[χa] =
N∑

a=1

∫
d4x

{
−1

2
∂μχa∂

μχa −
1
2
m2

aχ
2
a

}

The most important interactions will turn out to be of the biquadratic form

Sint[χa, φ] = Squ[φ, χ] = −
N∑

a=1

ga

8

∫
d4x φ2(x)χ2

a(x) (9.68)
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Physical conditions

To keep our calculations tractable, we need a significant part of the environment
to have a strong impact upon the system field, but not vice versa, from which
we can bound tD. The simplest way to implement this is to take a large number
N � 1 of scalar χa fields with comparable masses ma � μ weakly coupled to the
φ, with λ, ga � 1. Thus, at any step, there are N weakly coupled environmental
fields influencing the system field, but only one weakly self-coupled system field
to back-react upon the explicit environment.

For one-loop consistency at second order in our calculation of the diffusion
coefficient (that enforces classicality) it is sufficient, at order of magnitude level,
to take identical ga = g/

√
N . Further, at the same order of magnitude level, we

take g � λ.6

For small g the model has a continuous transition at a temperature Tc. The
environmental fields χa reduce Tc and, in order that T 2

c /μ
2 = 24/(λ +

∑
ga) �

1, we must take λ +
∑

ga � 1, whereby 1 � 1/
√
N � g. Further, with this

choice the dominant hard loop contribution of the φ-field to the χa thermal
masses (see Chapter 10) is

δm2
T = O(gT 2

c /
√
N) = O(μ2/N) � μ2 (9.69)

Similarly, the two-loop (setting sun) diagram which is the first to contribute to
the discontinuity of the χ-field propagator is of magnitude

g2T 2
c /N = O(gμ2/N3/2) � δm2

T (9.70)

in turn. That is, the effect of the thermal bath on the propagation of the envi-
ronmental χ-fields is ignorable. In particular, the infinite N limit does not exist.
Dependence on N is implicit through Tc as well as through the couplings, for
initial temperatures T0 = O(Tc). η =

√
6μ2/λ determines the position of the

minima of the potential and the final value of the order parameter. As has been
shown in [LoMaRi01] this choice of coupling and environments gives the hierar-
chy of scales necessary for establishing a reliable approximation scheme.

We shall assume that the initial states of the system and environment are both
thermal, at a high temperature T0 > Tc. We then imagine a change in the global
environment (e.g. expansion in the early universe) that can be characterized by
a change in temperature from T0 to Tf < Tc. That is, we do not attribute the
transition to the effects of the environment fields. As initial conditions of the

6 This is very different from the more usual large-N O(N + 1)-invariant theory with one
φ-field and N χa fields, dominated by the O(1/N) (χ2)2 interactions, that has been the
standard way to proceed for a closed system. With our choice there are no direct χ4

interactions, and the indirect ones, mediated by φ loops, are depressed by a factor g/
√
N .

In this way the effect of the external environment qualitatively matches the effect of the
internal environment provided by the short-wavelength modes of the φ-field, but in a more
calculable way.
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open system we take a factorized density matrix at temperature T0 of the form
ρ̂[T0] = ρ̂φ[T0] × ρ̂χ[T0].7

Provided the change in temperature is not too slow the exponential instabilities
of the φ-field grow so fast that the field has populated the degenerate vacua well
before the temperature has dropped significantly below Tc. Since the temperature
Tc has no particular significance for the environment fields, for these early times
we can keep the temperature of the environment fixed at Tχ ≈ Tc. For simplicity
the χa masses are fixed at the common value m � μ.

9.6.1 The quench transition time

To describe the physics of the quenching transition we show the estimation of
the quench transition time tsp defined from 〈φ2〉t=tsp ∼ η2. We assume that the
quench begins at t = 0 and ends at time t = 2τq, with τq � tr ∼ μ−1. At the
qualitative level at which we are working it is sufficient to take m2

φ(T0) = μ2

exactly. Most simply, we consider a quench linear in time, with temperature
T (t), for which the mass function is of the following form [BowMom98]8

m2(t) = m2
φ(T (t)) =

⎧⎪⎨
⎪⎩

μ2 for t ≤ 0
μ2 − tμ2

τq
for 0 < t ≤ 2τq

−μ2 for t ≥ 2τq

(9.72)

The field behaves as a free field in an inverted parabolic potential for an interval
of approximately tsp [KarRiv97], where

〈φ2〉tsp ∼ η2 (9.73)

The equation of motion for the mode uk(t), with wavenumber k is, in the quench
period, [

d2

ds2
+ k2 + μ2 − μ2s

τq

]
uk(s) = 0 (9.74)

7 Given our thermal initial conditions it is not the case that the full density matrix has φ and
χ fields uncorrelated initially, since it is the interactions between them that lead to the
restoration of symmetry at high temperatures. Rather, incorporating the hard thermal loop
“tadpole” diagrams of the χ (and φ) fields in the φ mass term leads to the effective action
for φ quasi-particles,

Seff
syst[φ] =

∫
d4x
{
− 1

2∂μφ∂
μφ− 1

2m
2
φ(T0)φ2 − λ

4!φ
4
}

(9.71)

where m2
φ(T ) ∝ (T/Tc − 1) for T ≈ Tc. As a result, we can take an initial factorized density

matrix at temperature T0 of the form ρ̂[T0] = ρ̂φ[T0] × ρ̂χ[T0], where ρ̂φ[T0] is determined

by the quadratic part of Seff
syst[φ] and ρ̂χ[T0] by Senv[χa]. That is, the many χa fields have a

large effect on φ, but the φ-field has negligible effect on the χa.
8 Note that the τq of [LoMaRi03] is the inverse quench rate T−1

c dT/dt|T=Tc , and so differs
from that of [BowMom98] by a factor of 2.

https://doi.org/10.1017/9781009290036.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.013


9.6 Spinodal decomposition of an interacting quantum field 277

subject to the boundary condition uk(t) = e−iωt for t ≤ 0, where ω2 = μ2 + k2.
Instead of the simple exponentials of the instantaneous quench, uk(t) has solution
[BowMom98]

uk(t) = akAi
(

Δk(t)
t̄

)
+ bkBi

(
Δk(t)

t̄

)
(9.75)

with Ai(s), Bi(s) the Airy functions; Δk(t) = t− ω2t̄3 and t̄ = (τq/μ2)1/3. Note
that Δ0(t) = t− τq, the time since the onset of the transition. In the causal
analysis of Kibble [Kib80] t̄ (μ−1 � t̄ � τq) is the time at which the adiabatic
field correlation length collapses at the speed of light, the earliest time in which
domains could have formed. The analysis of [LoMaRi03] suggests that this ear-
liest time is not t̄, but tsp.

It is straightforward to establish a relationship between t̄ and tsp > t̄. The
constants of integration in (9.75) are

ak = π[Bi′(−ω2t̄2) + iωt̄Bi(−ω2t̄2)] (9.76)

bk = −π[Ai′(−ω2t̄2) + iωt̄Ai(−ω2t̄2)]

It follows that, when Δk(t)/t̄ is large, then

|uk(t)|2 ≈ ωt̄

(
t̄

Δk(t)

)1/2

exp
[
4
3

(
Δk(t)

t̄

)3/2]

≈ μt̄

(
t̄

Δ0(t)

)1/2

exp
[
4
3

(
Δ0(t)

t̄

)3/2]
e−k2/k̄2

(9.77)

where k̄2 = t̄−3/2(Δ0(t))−1/2/2.
For large initial temperature T0 = O(Tc), the power spectrum for field fluctu-

ations peaked around k̄, and

〈φ2〉t ≈
T0

2π2μ2

∫
k2 dk |uk(t)|2 ≈ CT0

μt̄2

(
Δ0(t)

t̄

)−5/4

exp
[
4
3

(
Δ0(t)

t̄

)3/2]
(9.78)

The prefactor C is included to show that terms, nominally O(1), can in fact be
large or small (in this case C = (64

√
2π3/2)−1 = O(10−3)). Note that, although

the unstable modes have a limited range of k-values, increasing in time, this is
effectively no restriction when Δ0(t)/t̄ is significantly larger than unity.

Finally, we obtain

η2

C ′ �
Tc

μt̄2
exp
[
4
3

(
Δ0(tsp)

t̄

)3/2]
(9.79)

where C ′ = C[ln(μt̄2η2/CTc)−5/6]. Since the effect on tsp only arises at the level
of “ln ln” terms, C ′ ≈ C is a good estimation in all that follows. (Since this choice
underestimates tsp it only strengthens the claim that tsp > tD.)

https://doi.org/10.1017/9781009290036.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.013


278 Entropy generation and decoherence of quantum fields

9.6.2 Decoherence time

We now turn to the question of whether decoherence proceeds faster than spin-
odal decomposition. Rather than attempt a full estimate of the decoherence time
tD (see [LoMaRi03]), we shall run a simple test.

As we have already remarked, at early times the system field may be described
as an inverted harmonic oscillator. The evolution is then well approximated by
an ensemble of classical trajectories, but there remains the question of whether
two different classical histories are consistent in the Gell-Mann–Hartle sense
[RivLom05, LoRiVi07].

A classical history displays spatial structure as well as time evolution. We are
helped by the observation that the ordering of the field is due to the growth of the
long-wavelength unstable modes. Unstable long-wavelength modes start grow-
ing exponentially as soon as the quench is performed, whereas short-wavelength
modes will oscillate. As a result, the field correlation function rapidly develops a
peak (Bragg peak) at wavenumber k = k̄ � μ. Specifically [KarRiv97], initially
as k̄2 = O(μ/

√
tτq), where τ−1

q is the quench rate. Assuming that a classical
description can be justified post hoc, a domain structure forms quickly with a
characteristic domain size O(k̄), determined from the position of this peak. (As
an example, see the numerical results of [LagZur97, LagZur98, YatZur98], where
this classical behavior has been assumed through the use of stochastic equa-
tions – see later.) With this in mind, we adopt an approximation in which the
system-field contains only one Fourier mode with k = k0 = O(k̄), characteristic
of the domain size. For simplicity, we shall further assume k = k0 = 0 (we refer
the reader to [LoMaRi03] for a more complete analysis).

We may simplify the issue further by considering only trajectories which begin
from φ = 0 at t = τq. Two such trajectories are distinguished by the value of φ̇
at the initial time. We shall ask what is the minimum speed difference at the
initial time that ensures consistency by t = tsp. If this minimum difference is
much smaller than the natural spread ∼ (Tc/V )1/2, then the conclusion that
decoherence is faster than spinodal decomposition is upheld [RivLom05].

We will calculate the decoherence functional to lowest nontrivial order (two
vertices) for large N . Again, we assume weak coupling λ � g � 1, where we
have defined g by the order of magnitude relations ga � g/

√
N . As such we may

expand the logarithm of the decoherence functional up to second nontrivial order
in coupling strengths.

As “trial” classical solutions, we take

φ(x, s) = φ̇ u(s), φ′(x, s) = φ̇′u(s) (9.80)

where u(s) is the solution of the mode equation with boundary conditions u(τq) =
0, u̇(τq) = 1. Since we are neglecting the self-interaction term, our conclusions
are only trustworthy for t ≤ tsp.
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The solution of the equations of motion for the mode functions is given by

u(t) =
πt̄

32/3Γ(2/3)

[√
3Ai
(
t− τq

t̄

)
+ Bi

(
t− τq

t̄

)]
(9.81)

where Ai(s) and Bi(s) are the Airy functions, and we have used Δ0(t) = t− τq.
The procedure outlined above is quite general and applies to a range of cou-

plings [LoMaRi03]. We now specialize to biquadratic coupling. The modulus of
the decoherence functional is given by

|D[φ1, φ2]|2 ∼ exp
{
−g2

32

∫
d4x

∫
d4y φ

(2)
− (x)Nq(x, y)φ

(2)
− (y)

}
(9.82)

where Nq(x− y) = ReG2
F(x, y) is the noise (diffusion) kernel. GF is the relevant

Feynman propagator of the χ-field at temperature T0. We have defined φ
(2)
− =

(φ1)2 − (φ2)2. For our chosen classical histories, and at times t ∼ tsp it becomes

|D[φ1, φ2]|2 ∼ exp
{
−g2

32

[
(φ̇1)2 − (φ̇2)2

]2
DV

}
(9.83)

where V is the volume of space and

D = 2
∫ tsp

0

dt

∫ t

0

ds u2(t)F (t− s)u2(s) (9.84)

F (t) =
27
512

ReG2
F(0; t) (9.85)

where G2
F(k, t) is the Fourier transform of the square of the Feynman χ propa-

gator. It is only in u(s) that the slow quench is apparent.
In the high-temperature limit (T � μ), LMR obtain the explicit expression

for the kernels

ReG2
F(0; t) =

T 2
c

64π2

∫ ∞

0

dp
p2

(p2 + μ2)2
cos
(
2
√
p2 + μ2 t

)
(9.86)

where μ is the thermal χ-field mass at temperature T ∼ Tc. In this scheme, it is
approximately the cold χ mass. Because the χ-field propagator is unaffected by
the φ-field interactions one can obtain the detail of the expression in (9.86).

We see that, for times μt ≥ 1, the behavior of D is dominated by the exponen-
tial growth of u(s), and the integral in equation (9.84) by the interval s ≈ t. We
will assume large Δ0(t) (and Δ0(s)), which means Δ0(t),Δ0(s) � t̄. This condi-
tion is satisfied provided s is larger than and not too close to ω2

0τq/μ
2, and allows

us to use the asymptotic expansions of the Airy functions and their derivatives
for the evaluation of u(s). This will be justified post hoc. In particular,

u(t) =
( √

πt̄

32/3Γ[2/3]

)(
t̄

t

)1/4

exp

[
2
3

(
(t− τq)

t̄

) 3
2
]

(9.87)
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Keeping only the parametric dependence, we obtain

|D[φ1, φ2]|2 ∼ exp

{
−g2V t̄5

[
(φ̇1)2 − (φ̇2)2

]2 T 2
c t̄

2

μtsp
exp

[
8
3

(
tsp − τq

t̄

)3/2
]}

(9.88)

Now we can use the relations[
(φ̇1)2 − (φ̇2)2

]2
∼ Tc

V
(φ̇1 − φ̇2)2 (9.89)

exp
[
4
3

(
Δ0(tsp)

t̄

)3/2]
∼ μt̄2η2

Tc
, (9.90)

to get

|D[φ1, φ2]|2 ∼ exp
{
−g2Tc

t̄ 11

tsp
μη4(φ̇1 − φ̇2)2

}
(9.91)

Unless the self-coupling is exceedingly small or the space volume too big (in
which case it is not appropriate to disregard the spatial structure of the relevant
classical evolutions), strong enough decoherence follows from the observation
that τq/tsp � 1.

When these bounds are satisfied the minimum wavelength for which the modes
decohere by time tsp can be shown [RiLoMa02] to be shorter than that which
characterizes domain size at that time. Although one can talk loosely, but sensi-
bly, about a classical domain structure at time tsp one cannot yet talk about clas-
sical defects on their boundaries, as the naive picture might suggest. Defects (in
this case, walls) are described by shorter wavelength modes (k ≤ μ). Nonetheless,
the classical domain structure is sufficient to determine their density [RiLoMa02].

The emphasis has been on the many weak environments because of the control
that this gives us on establishing a robust upper bound on tD. However, LMR
noted that their total contribution at one loop was qualitatively that of the
short-wavelength modes of the φ field alone without assuming the action of the
environmental fields. So it seems that rapid decoherence is a general feature.

In Chapter 5 we have also shown how for a general class of system–environment
interactions (such as the φ2χm types studied), the effect of the environment is
largely equivalent to the presence of a stochastic source term in the dynam-
ics of the classical system field, with the correlation functions obeyed by the
noise ξm(x) corresponding to the specific type of couplings. In particular, for
the linear interaction with the environment (to the exclusion of self-interaction)
LMR recovered the additive noise that has been the basis for stochastic equa-
tions in relativistic field theory that confirm the scaling behavior of Kibble’s
and Zurek’s analysis. For times later than tsp, neither perturbation theory nor
more general non-Gaussian methods are valid. Also LMR found that the role
initially attributed by Kibble (and subsequently by others, e.g. [BraMag99]) to
the Ginzburg regime is just not present.
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9.7 Decoherence of the inflaton field

As another example of the application of the coarse-grained effective action and
the influence functional formalism, we consider the decoherence of the inflaton
field in the early universe. The key ingredient in this consideration is the noise
associated with quantum fluctuations. We have seen how it is defined from the
influence action for an interacting field in Chapter 5. Some background material
on inflationary cosmology can be gleaned from the first part of Chapter 15, which
the uninitiated readers may wish to consult before reading this section.

As noted earlier, an inverted harmonic oscillator model was used by Guth and
Pi [GutPi85] to describe the dynamics of the inflaton field. Though useful for
intuitive reasoning, it is over-simplistic in addressing the quantum-to-classical
transition issue. This model has also been used by many authors to describe
the appearance of classical inhomogeneities from quantum fluctuations in the
inflationary era [PolSta96, LePoSt97]. Due to the linearity of the model and the
Gaussian form of the wavefunction [Hab04] the quantum–classical correspon-
dence is straightforward. In more general circumstances, the Wigner function
can be negative and the simple identification with the one-particle classical dis-
tribution function no longer holds. One needs to consider decoherence of the
(reduced) Wigner function by an environment [Hab90, HabLaf90], just as we
have done for the reduced density matrix in similar considerations.

Turning our attention briefly to cosmology, the proposal to view the long-
wavelength sector quantum field as classical, such as demanded by stochastic
inflation (in fact, commonly assumed in most theories of structure formation),
can only be justified by showing that some decoherence mechanism applies to the
inflaton field. Interaction of a quantum system with an environment may bring
about decoherence, as we have seen in model problems (such as the QBM) dis-
cussed in Chapters 3 and 5. The effectiveness of an environment to bring about
quantum-to-classical transition depends on many factors, such as the type of cou-
pling (bilinear, nonlinear), the nature of the bath (spectral density, temperature)
and how the interaction determines the pointer basis. Quantitatively, decoher-
ence is usually described by the diagonalization of the reduced density matrix,
but this is only meaningful (since a symmetric matrix can always be diagonal-
ized) by specifying or, better yet, showing the likely existence of a pointer basis,
which is a physical rather than a mathematical issue. There is by now a huge lit-
erature on decoherence (see, e.g. the reviews [GKJKSZ96, Paz00, Zur03]), both
in terms of conceptual discussions and model calculations. Here we will limit our
discussion only to some attributes of decoherence, and in the context of quantum
processes in the early universe.

What in a realistic situation could play the role of the environment field?
One can consider either one interacting field partitioned into two sectors, the
low-frequency sector as the system and the high-frequency sector as the environ-
ment, as in the stochastic inflation scheme for the inflaton field; or two separate
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self-interacting scalar fields coupled biquadratically, each assuming a full spec-
trum of modes. Both cases have been treated in Chapter 5 using the CTP CGEA
in flat space. The environment field can also be referring to other fields present
besides the inflaton field. Only the quantum fluctuations of such fields need be
present to generate the noise which seeds the galaxies. Even if one assumes noth-
ing, there is always the gravitational field itself which the inflaton field is coupled
to, and the vacuum gravitational fluctuations can also seed the structures in our
universe [MuFeBr92, CalHu95, CalGon97, Mat97a, Mat97b]. (Note that in such
cases the coupling is of a derivative form rather than a polynomial form. Noise
arising from a derivative type of coupling has been studied before in the context
of minisuperspace quantum cosmology [SinHu91].)

We add a cautionary note that the simple criterion of classicality derived from
the study of linear systems (e.g. free fields) fails when interactions are taken
into account. Indeed, as shown in simple quantum mechanical models (e.g. the
anharmonic inverted oscillator [LoMaMo00]), an initially Gaussian wavefunc-
tion becomes non-Gaussian when evolved under the Schrödinger equation. The
Wigner function will develop negative parts, and its interpretation as a classical
probability breaks down.

Assuming weak self-coupling constant (a nearly flat inflaton potential) Lom-
bardo and Nacir [LomNac05] have shown that decoherence is an event shorter
than the time tend, which is a typical time-scale for the duration of inflation.

9.7.1 Noise from interacting quantum fields

From the influence functional for an interacting field in a de Sitter universe given
in Chapter 5 for the Minkowski spacetime, or the conformally related theory in
de Sitter spacetime, we learned how to identify the noise (in both cases our
treatment follows [Zha90, HuPaZh93b, LomMaz96, CaHuMa01]). Now we use it
to consider decoherence and structure formation in stochastic inflation.

For illustrative purposes, in discussing the issue of decoherence, we shall derive
the master equation from this influence functional only for a special case. This
equation and its associated Langevin or Fokker–Planck equation will enable us
later to calculate the fluctuation spectrum as a problem in classical stochastic
dynamics.

Consider a real, gauge singlet, massive, λΦ4 self-interacting scalar field in a
de Sitter spacetime. In the inflationary regime of interest, the scale factor a(t)
expands exponentially in cosmic time t

a(t) = a0 expHt (9.92)

We split the classical action of the inflaton field Φ(x) as

S[Φ] = S0[Φ] + SI [Φ] (9.93)
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where S0[Φ] is that part of the classical action describing a free, massless, con-
formally coupled scalar field, and

SI [Φ] =
∫

dnx
√
−g(x)

{
−1

2
[
m2Φ2 + (ξn − ξc)R(x)Φ2

]
− 1

4!
λΦ4
}

(9.94)

contains the remaining (interactive) terms with contributions from nonzero mass
m, self-interaction λ, and ξc, the coupling between the field and the spacetime
curvature scalar R. Here, ξc = 1/6 for conformal coupling and ξc = 0 for minimal
coupling in four dimensions, ξn = (n− 2)/4(n− 1) is a constant equal to 1/6 in
four dimensions, and

√
−g(x) = an−1(t) = an(η).

In the stochastic inflation scheme, one makes a system–bath field splitting

Φ(x, t) = φ(x, t) + ψ(x, t) (9.95)

such that the system field is defined by

φ(x, t) =
∫

|k|<Λ

d3k
(2π)3

Φ(k, t) eik·x (9.96)

and the bath field is defined by

ψ(x, t) =
∫

|k|>Λ

d3k
(2π)3

Φ(k, t) eik·x (9.97)

where Λ is the cut-off wavenumber determined by the horizon size. The system
field φ(x) contains the long-wavelength modes, which undergo a slow roll-over
phase transition in the inflation period, while the bath field ψ contains the short-
wavelength modes, which are the quantum fluctuations.

With this splitting, we find the following effective action from expanding the
influence action for χ = φa, χ′ = φ′a to one-loop order in � and second order in
SI . We consider only the biquadratic coupling here, which corresponds to the
limit where the system field is homogeneous.

The computation of the effective action follows the lines of Chapter 5 with
conformal time here replacing cosmic time there. The dissipation is of a nonlinear
nonlocal type, and there is a multiplicative (nonlinearly coupled) colored noise.
The fluctuation–dissipation theorem for this field model in de Sitter space has
the same form as that in Minkowski space.

9.7.2 Decoherence in two interacting fields model

The functional quantum master equation for this field-theoretical model with
general nonlinear nonlocal dissipation and nonlinearly coupled colored noise has
a complicated form in cosmic time t. However, in conformal time η it has the
same form as in Minkowski spacetime, derived in Chapter 5, following the work
of [Zha90, HuPaZh93a, HuPaZh93b, Paz94]. We will consider a simpler case here,
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where one can get an explicit form of the functional quantum master equation,
i.e. by making a local truncation in the effective action. Setting

V (x− x′) = v0(η)δ4(x− x′) (9.98)

μ(x− x′) =
∂

∂(η − η′)

{
γ0(η)δ4(x− x′)

}
(9.99)

ν(x− x′) = ν0(η)δ4(x− x′) (9.100)

and using the same procedure as outlined in Chapter 5, we can derive the func-
tional quantum master equation in the local truncation approximation [Zha90]:

i
∂

∂η
ρr[χ1, χ2, η] = Ĥρ[χ1, χ2, η] ρr[χ1, χ2, η] (9.101)

where

Hρ[χ1, χ2, η] =
∫

d3x

{
ĥr(χ1) − ĥr(χ2) + 3λ2γ0(η)

[
(χ1(x))4 − (χ2(x))4

]

+ 2λ2γ0(η)
[
(χ1(x))2 − (χ2(x))2

][
χ1(x)

δ

δχ1(x)
− χ2(x)

δ

δχ2(x)

]

− (i/2)λ2ν0(η)
[
(χ1(x))2 − (χ2(x))2

]}
(9.102)

and

ĥr(φ) = −1
2

δ2

δχ2(x)
+

1
2
[
∇χ(x)

]2 +
1
2
a2(η)

[
m2

r +
1 + ξr

6
R(η)

]
χ2(x)

+
1
4!
λrχ

4(x) + δm2(η)a2(η)χ2(x) − 1
2
λ2v0(η)χ4(x) (9.103)

This functional quantum master equation and its associated Langevin equa-
tion or Fokker–Planck–Wigner equation can be used to analyze the dynamics
of the system field (long-wavelength modes in the stochastic inflation scheme)
for studying the decoherence and structure formation processes in the early uni-
verse [HuPaZh93b]. Instead of solving these equations in detail, we can get some
qualitative information on how the system decoheres by analyzing the behavior
of the diffusion term in the master equation.

Diffusive effects are generated by the last term in the effective action, the
variation of which produces the following contribution on the right-hand side of
the master equation for ρ[χ1, χ2]:

ρ̇[χ1, χ2, η] ∝ −
[
(χ1)2 − (χ2)2

]
∗ ν(η) ∗

[
(χ1)2 − (χ2)2

]
× ρ[χ1, χ2, η] (9.104)

Here the symbol ∗ denotes the convolution product and χ represents a configu-
ration of the scalar field in a surface of constant conformal time. The diffusion
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“coefficient” ν is therefore a nonlocal kernel that can be written in terms of its
spatial Fourier transform as

ν(x,y, η) =
∫

d3k
(2π)3

νk(η) eik·(x−y) (9.105)

To justify treating the long-wavelength modes classically, a minimal check is
to see if the diffusive effects are stronger for long-wavelength modes than they
are for short ones. To do so, note that [HuPaZh93b] the coefficient in (9.104) can
be written in terms of the product of the Fourier transform (9.105) and that of
the field φ2:[
(φ1)2−(φ2)2

]
∗ ν(t) ∗

[
(φ1)2−(φ2)2

]
=
∫

dk [(φ1)2−(φ2)2]kDk[(φ1)2−(φ2)2]k

(9.106)

We want to examine the dependence on k = |k| of the function Dk entering
in (9.106). This function can be written in terms of the physical wave vector
p = k/a as

Dk(η) =
a3

4π
λ2

[
1 − H

p
f
( p

H

)
+ g
( p

H

)]
(9.107)

where

f(x) =
1
2π

∫ 2x

0

dx[− sinxCi(x) + cosxSi(x)] (9.108)

g(x) =
1
2π

∫ 2x

0

dx [cosxCi(x) + sinxSi(x)] (9.109)

and Si(x), Ci(x) are the usual integral trigonometric functions. A plot of Dk(η)
for a fixed value of the conformal time as a function of p/H, i.e. the ratio between
the horizon size and the physical wavelength can be found in [HuPaZh93b]. The
function has a strong peak in the infrared region of the spectrum suggesting
that diffusion effects (decoherence is one of them) are indeed more pronounced
for long-wavelength modes and weaker for wavelengths shorter than the horizon
size.

We learned from earlier discussions that noise of quantum origin arising from
nonlinear fields is under general circumstances both multiplicative and colored
(see, e.g. [HuPaZh93a]). Noise could generate fluctuations which could give rise
to non-Gaussian galaxy distributions (NGD).9

As for the present scheme, since the value of λ is restricted to be very small
(<10−12) in the standard inflationary models (so that the magnitude of the

9 There are, of course, simpler ways to generate NGD. A changing Hubble rate H = ȧ/a as in
a “slow-roll” transition, or an exponential potential V (φ) [LucMat85] will do. However,
such mechanisms only generate NGD at very long wavelengths, much longer than the
horizon size to be relevant to the observable spectrum. See, e.g. Proceedings of ICTP
meeting, July 2006 [SelCre06].
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density contrast is compatible with the observed value δρ/ρ ≈ 10−4 when the
fluctuation mode enters the horizon), the constituency of the colored portion of
the noise is accordingly small. The effect of nonlinear coupling on the generation
of inhomogeneities is an active research topic at the accumulation of increas-
ingly detailed observational data. Details of galaxy formation analysis from the
stochastic equations of motion derived here with different types of colored noise
and realistic physical parameters will come from solutions to these stochastic
equations for galaxy formation considerations. We will have more discussions on
the effect of quantum noise on structure formation in Chapter 15.

9.7.3 Partitioning one interacting field:

noise from high frequency modes

In an earlier section we have discussed the appearance of classical features in a
quantum phase transition. There the separation between long and short wave-
lengths is determined by their stability, which depends on the parameters of
the potential. For our present consideration of quantum-to-classical transition
in inflationary cosmology, this separation is conveniently set by the existence of
the Hubble radius. Modes crossing the horizon during their evolution are usually
treated as classical. The rationale for it can only come from a detailed study of
decoherence, such as identifying the conditions whereby the behavior of a quan-
tum fluctuation field can be adequately described by a classical stochastic field.
We now discuss this issue.

The influence functional and the density matrix

For this case, we consider a massless quantum scalar field minimally coupled to
a de Sitter spacetime. We choose the initial time ηi to be when a(ηi) = 1(ηi =
−H−1). Perform a system–environment field splitting [LomMaz96]

χ = χ< + χ> (9.110)

where the system field χ< contains the modes with wavelength longer than the
partition scale �c ≡ 2π/Λ, while the environment field χ> contains modes with
wavelength shorter than �. As we set a(ηi) = 1, a physical length �phys = a(η)�
coincides with the corresponding comoving length �i at the initial time. There-
fore, the splitting between the system and the environment defines a system
sector containing all the modes with physical wavelengths longer than the par-
tition scale �c at the initial time ηi.

The influence functional for a similar problem has been computed in Chap-
ter 5, Section 5.1, except that here a is a function of time. If there is a natural
separation of the real and imaginary terms in this functional (as illustrated in
the QBM model discussed in Chapter 3) one can then identify a noise and dissi-
pation kernel related by a categorical fluctuation–dissipation relation. Assuming
that the initial state ρ̂>[ηi] is the Bunch–Davies vacuum state, the real and
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imaginary parts of the influence action are given by

ReSIF = −λ

∫
d4x1

{
χ

(4)
− (x1) − 6χ(2)

− (x1)GΛ
F (x1, x1)

}
+λ2

∫
d4x1

∫
d4x2 θ(η1 − η2)

{
32χ(3)

+ (x1)ImGΛ
F (x1, x2)χ

(3)
− (x2)

−144χ(2)
+ (x1)Im[GΛ

F (x1, x2)]2χ
(2)
− (x2)

}
, (9.111)

ImSIF = λ2

∫
d4x1

∫
d4x2

{
8χ(3)

− (x1)ReGΛ
F (x1, x2)χ

(3)
− (x2)

+ 36χ(2)
− (x1)Re[GΛ

F (x1, x2)]2χ
(2)
− (x2)

}
, (9.112)

θ(x) is the Heaviside step function, and the integrations in time run from ηi to
η. GΛ

F(x1, x2) ≡ 〈Tχ1
>(x1)χ1

>(x2)〉0 is the relevant short-wavelength closed time
path correlator (it is proportional to the Feynman propagator of the environment
field, where the integration over momenta is restricted by the presence of the
partition momentum Λ), and we have defined

χ
(n)
− = (χ1

<)n − (χ2
<)n, χ

(n)
+ =

1
2
[(χ1

<)n + (χ2
<)n] (9.113)

with n = 1, 2, 3.

Master equation and diffusion coefficients

As we learned by the QBM model (Chapter 3) and the field theory example
(Chapter 5) once one obtains the evolutionary operator Jr for the reduced den-
sity matrix one can derive the master equation for the reduced density matrix.
These expressions for a quantum scalar field in the de Sitter universe were
obtained by Zhang [Zha90].

To get a qualitative idea of decoherence, as noted earlier, one could just
focus on the behavior of the diffusion “coefficients” (actually nonlocal functions)
related to the noise kernel obtained from the imaginary part of the influence
action. Making the further simplification that the system field contains only one
mode k0, Lombardo and Nacir showed that the terms in the master equation
relevant to decoherence are [LomNac05]

i∂ηρr[φ1
<f |φ2

<f ; η] = 〈φ1
<f |[Ĥren, ρ̂r]|φ2

<f 〉
− i [Γ3D3(k0, η,Λ) + Γ2D2(k0, η,Λ)] ρr[φ1

<f |φ2
<f ; η] + . . .

where Γ2 = λ2V
4 [(φ1

<f )2 − (φ2
<f )2]2 and Γ3 ≡ λ2V

H2 [(φ1
<f )3 − (φ2

<f )3]2. (The sub-
scripts 2, 3 refer to the order of the system field φ<f = χ<f/a(ηf ).) The ellipsis
denotes additional terms coming from the time derivative that do not contribute
to the diffusive effects.

This equation contains time-dependent diffusion coefficients Dj . Up to one
loop, only D2 and D3 survive. Coefficient D2 is related to the interaction term
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φ2
<φ

2
> while D3 is related to φ3

<φ>. These coefficients can be (formally) written
as

D2(k0, η,Λ) = 36
∫ η

ηi

dη′ a2(η)a2(η′)F 2
cl(η, η

′, k0) (9.114)

×
{
Re[G>

F (η, η′, 2k0)]2 + 2 Re[G>
F (η, η′, 0)]2

}
,

and

D3(k0, η,Λ) = −H2

2

∫ η

ηi

dη′ a3(η)a3(η′)F 3
cl(η, η

′, k0) (9.115)

×ReG>
F (η, η′, 3k0) θ(3k0 − Λ)

with the function Fcl defined by

Fcl(η, ηi, k0) =
sin[k0(η − ηi)]

k0η
+

ηi cos[k0(η − ηi)]
η

(9.116)

Note that only the effect of normal diffusion terms are included in our consid-
erations here. It is known from QBM studies [Zha90, HuPaZh92, HuPaZh93a,
PaHaZu93, Paz94, HalYu96] that anomalous diffusion terms can also be relevant
at zero temperature.

Using these expressions for the two diffusion functions and placing the phys-
ical parameters relevant to successful inflationary models, Lombardo and Nacir
[LomNac05] calculated the decoherence times td2 and td3 associated with D2 and
D3. They conclude that if one sets Λ ≤ H, the decoherence time-scale for the
system field is shorter than the minimal duration of inflation for all the wavevec-
tors in the system sector. This is by far the most detailed and thorough study
of the decoherence of the inflaton.
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