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ON THE HOPF FIBRATION OVER Z
TAKASHI ONO

§1. Statement of the result
Let h: R*— R® be a quadratic map defined by

W) = (af + 23 — 23 — i, 2(x, 2 — 7,2,), 2(2, 25 + ,7,)) .
For a natural number £, put

S(t) = {xeR,al + at + 2} + al = t},
SHt) ={ye Ry + vi + vi=t}.

Then % induces a map
h,: S¥(t) — St .
Since everything is defined over Z, h, induces the map
hez: Sz — SH(t)z .

Because of the presence of 2 in the last two coordinates of h(x),k:, is
actually a map

hez: S(t); — SH(EHF*,
where
SHt)7" = {y € S*(t))z, ¥2» Y5 are even} .

To each ¥y e Si(t)ye we shall associate two numbers as follows. First,
we denote by a(y) the number of = e S%t); such that £, ,(x) = y. Next,
we denote by 4, the greatest common divisor of the four integers
3@ + ), 3 — v, Y5 3Ys.  On the other hand, for a natural number =,
denote by r(n) the number of integral solutions (X,Y) of the equation
X?+ Y =mn. It is well known that

r(n) = 4(d,(n) — dy(n))
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where d,(n) and dy(n) are the numbers of divisors of n of the form
4m 4+ 1 and 4m 4 3 respectively.

The purpose of the present paper is to prove the relation:
1.1 ay) =rd), yeSPF™.

As the readers notice, (1.1) reflects the fact that each fibre of h, is
a circle.

§2. Change of the fibration

Let H be the classical quaternion algebra over R with the quaternion
units 1,7,7, k, with the relations = j° = —1,k =1 = —7i. We shall
make the following natural identifications:

C=R+Ri=R, H=C+C(Cj=C=R,
Zl=Z+ Zi=2", Hy= Zll + ZL)j = ZIiP = Z* .

As usual, for each z = x + yj ¢ H,z,y € C, we write its conjugate, trace
and norm by Z2=% —yj,Trz=2 + 2z and Nz = Zz, respectively. In
working with H, we shall mean by R® the subspace Ri 4+ Rj 4 Rk
= Ri + Cj. This space is known as the space of pure quaternions and
is characterized as the set of all z¢ H such that Trz = 0.

For ze H, put

@2.1) nz) = ziz .

Since Tr (W(z)) =0, h is a map: R*— R’. A simple calculation shows
that

2.2) h(z) = (Nx — Ny)i + 2zyk

= (@} + 2 — ¥ — YD + 2@ Y — 2 y)J + 2@y, + T YDk,

where z=2o 4+ YJ, =2y + .8, ¥ = Yo + Y%, %o, X1, Yo, V1 € R. Hence the
map (2.1) coincides with the map & introduced in §1.
For t > 0, put

S¥t) = {#ze R\, Nz = t}, S (t) = {we R, Nw =t} .
Since N(h(z)) = (Nz)* by (2.1), h induces a map
he: S3(E) — S .

When ¢ is a natural number, put

https://doi.org/10.1017/50027763000016482 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016482

HOPF FIBRATION 203
S (), = S N z*, S¥t), = S¥t) N Z°.
Then, &, induces a map
Bez: S(8)z — S8z

Our problem is to determine the image and the fibres of the map
h:z. To do this, it is convenient to replace the map s, by a map f, in
the following way. Namely, put

Z(t) ={0= (a,ﬁ,r),a,ﬁeR,TeC,a +ﬁ= t,NT“-—‘-‘O(‘B} )
and f,() = (N, Ny,1%y) for z = x + yj e S¥(%).

S*(®)

hf/ \ft

SHE) — 3(t)

Since Nz + Ny = Nz =t and N(@ixy) = (Nz)(Ny), f, is a map S*(t) — 2(t).
Next, put

9:(0) = (@ — P + 277, for o = (a,8, ) e 2() .

Since N(9,(0)) = (@ — )+ N@p) = (@ —p’ +4af=(a+ p*=1, g, is a
map (@) — S*t). If g,0) = g,(¢") with ¢ = (&', 8,7), then o« — =«
— p and y =7y. Since a + g =0o + p' =1, we see that g, is injective.
For any w = ut + vj e S¥t?), we have w = ¢,(¢c) with

2.3) o= QGC + w, ¥t —w,3v) .

Hence ¢, is surjective, and so bijective. Finally, it follows from (2.2)
that g.(f:(2)) = 9.(Nz, Ny, izy) = (Nx — Ny)i + 2iZyj = (Nx — Ny)i + 2zyk
= h,(2), the commutativity of the diagram.

Now, for a natural number ¢, put

2t =21 N (2" + Z[1D .
Then, f;, 9; induce maps
Juz: Sz — 2@z 9i,z: 2 — NE( P

respectively such that ¢, 7.z, = h;z. If w=ui+ vjeSut?); is in the
image of g,,,v must be a multiple of 2 in Z[4] and, since Nw = «* + Nv
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= ¢, both ¢t + u and ¢ — u must be even. In view of (2.3), we see that
g,z 18 a bijection between X(¢), and the set S*(#)F* = {w = wi + vJ
e S¥(t")4,2|v}. Hence, to study the map h, , is equivalent to study the
map [,z

S¥(8)z

hc,f/ \fz,z

SHtHgem «—— Z(H),
9,z

§ 3. Existence of solutions

Notation being as in §2, we shall determine for what ¢¢ X(¢), the
equation f; () = ¢ has a solution z e S%?),. In the following, we shall
put ¢ = (@, 8,7), @, BeZ, v =171, + nteZll, yoreZ We shall first ex-
amine some special cases.

Case 1. 7y=0.

In this case, the relations ¢ + =1t and 0 = Ny = af imply that
either « =0, p=tor a=t, =0, i.e. ¢ =1(0,¢0) or (¢,0,0). Hence
2z = x + yj is a solution of f; ;(z) = ¢ if and only if either z = yj, Ny=1¢
or z =2, Nx =t. Therefore it follows that

(3.1 Sfiklo) # 0 & te NZLD) .

Case 2. 7y =#0 and (75,70 = 1.

Assumptions imply that «,p = 1. Since af = Ny = 72 + 73, we have
(y1,@) = 1. Therefore, there are two integers r, s such that y, = ry, + sa.
Put I = Za + Z(r + 7). We claim that I is an ideal. It is enough to
show that ia,%?(r + 9) ¢ I. Firstly, ioa = —ra + (r + 9D)acl. Secondly, we
have

ef=Nr=rn+rn=0n+s+7r=>0+ ™ + 2rspa + sa*,
and so (14 ™y, = a(f — 2rsy, — s’@). Since (y, @) =1, « must divide
1+ 7%: write 1 4+ 72 = aa/. Then, we have
r+d)=wr—1=rr+1) —aa’el,

which shows that I is an ideal. Since Z[i{] is a principal ideal ring,
there is an x e Z[i] such that I = (). Hence Nx = NX = NI = «a. -Since
r=r+ri=0n+80)+nri=00+9+ stecl, we can find ye Z[i]
such that y = i%y. Then the relation Ny = «8 implies that Ny =p. If
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we put z=2x + yj, then we have f, ,(2) = (N2, Ny, iTy) = (@, ,7) = 0.
Hence f;4(c) #+ @ in this case.

Case 8. y =0 and (a,8,75, 1) = 1.

Put (75,7 = do, (doyr) = d;. Hence we have 7, = do}, 1, = do, with
Gor) =1 and d, = ddf,a = da* with (o*,d¥) = 1. From

da*f=ap = Ny =1 + 11 = &id*G7" + 1)
we get
(3.2) a*p = ddG + 1) -
Since d, divides a, 1y, 7, and (a, 8,70, 71) = 1, we have (d;, 8) = 1 and hence

d, divides o*: @* = d,o’. On the other hand, since (a*, d¥) = 1, d}* divides
B:p8 =4dy*p. Then (3.2) implies that

«f =Ny, Vy=rn+r, Gom=1.

Hence, by the argument in Case 2 one can find 2/,% € Z[¢{] such that
No' =o', Ny =f,7 ='y. Put o =da',y=dfy. Then, we have
Nz = diN»' = djo/ = dy(d,a’) = dia* = a, Ny = dF*Ny' = dF*p = B, i%y =
id,dir’'y’ = ddi¥y’ = dy’ = y. Hence we still have f;3(0) + @ in this case.

We are now ready to prove the following criterion for the existence
of solutions. Fore = («, 8, 7) € 2(t)z, put 4, = («, B, 10, 1) Where 7 = 7, + 710.
Then we have

(3.3 i) # 0 & 4, e N(ZLD) .

Proof. When y =0, we have 4, = (¢, §) =t and the assertion is
nothing but (3.1). Hence, from now on, we shall assume that y # 0.
(=) Take z = x + yj € S¥(t); such that f,(z) = ¢. Thus we have « = Nz,
B=Ny,y=1ixy. Put a =4,&,p=4,8,7, = 4,70, = 4.75. Then, by the
argument in Case 3, there are a/,y’ € Z[{] such that N2’ =o', Ny = f,
vy’ = 1%y, where y/ = 75 + rit. Since a« = 4,’/, we have Nx = 4,No/, i.e.
4, = N(xz/2’). Then we have 4, = Nd,0¢ Z[i], e.g. by the lemma of
Davenport-Cassels applied to the binary form X* 4 Y%
(&) Let «’,% be as in the proof of (=). By the assumption, there is
a number Je Z[7] such that 4, = No. Put z = ox/,y = oy’. Then, Nz
=AN2' = 4,0/ = a, Ny = A, Ny’ = 4,8 = B, 1%y = 10%'0y’ = 4,7’ = y. Hence,
we have f, ,(2) = ¢ with z =2 + yJ, q.e.d.

Translating (3.3) in terms of h, ,, we obtain the following criterion.

* See, e. g. J-P. Serre, Cours d’arithmétique, Paris, 1970, p. 80.
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Notation being as in §2, for w = ui -+ vje Stz UcZ, v =1v,+ v
e Z[i], we have

3.4 hiyw) #0S2v and 4,eN(Z[ED,

where 4, = G + ), 3 — w), 3v,, $v)).

§4. Number of solutions

For a finite set F, we denote by Card F the number of elements in
it. Thus r(n) = Card {(x,y) € 2% «* + y* = n}. Using notations in §2, §3,
one restates the proposition (1.1) as

“4.1) Card (h;%(w)) = r(4,) for any w e S*(tHg*" .
Translating (4.1) in terms of f; ;, we are reduced to prove that
4.2 Card (f;%(0) = r(4,) for any o¢ 2(t); .

Proof. Put, as before, ¢ = («,8,7). In case y =0, since 4, =1t
(4.2) follows from the argument in §3, Case 1. Hence, from now on,
we shall assume that y #= 0. Since we already have the criterion (3.3),
it is enough to consider the case where f;4(0) # @. So, take a point
2=2 4 yje fiy(o) and call I, the ideal in Z[i{] generated by x and
y: I, = Z[i]x + Z[{ly. Let 2 = a2/ + ¥’ be another point in the same
fibre as 2. We want to compare I, and I,.. Since f; ,(2) = f;4(?), we
have Nx = N/, Ny = Ny/, =y = ®y’. From these relations, we see that
there is an element pe Q) with Np =1 such that 2’ = px, ¥ = py. It
then follows that I,, = pI, and so NI, = NI, =n,, a natural number
depending only on ¢¢ 3(t),. For a natural number n, Put:

O(n) = {fe Z[1], N6 = n} .

Hence we have Card (@(n,)) = r(n,). We shall show that there is a
bijection between f;%(¢) and O(n,). To do this, fix a point { =& + 77
€ fiz(o) and, for any z = + yj e f;%(0), denote by p, the element in
Q@) with Np, =1 such that z = p,§, ¥ = p,y. Since Z[i] is a principal
ideal ring, there is an element we Z[i] such that I, = (v). Put

TR =wp,,  zefijlo).

We claim that T is the bijection we are looking for. TFirst of all, write
=24, ApeZli]l. Then, T(2) = wp, = Ap, + pmp. = A% + py € Z[i]
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and N(T()) = No = NI, = n,, which shows that T maps f;%() into
O(n,). Next, assume that T(z) = T(z)). Then, we have p, = p,. and hence
=z, y=1, i.e. 2=2. To see that T is surjective, take any 6 € O(n,)
and put x = 6w™'§, Yy =60y, z=2a + jy. Since I, = (w), we have &
= do, 7 = bo with a,b e Z[{]. It follows that x = 6a and y = 6b both
belong to Z[7]. Now, since Nx = N(@n;'N& = N& =a, Ny = N@n; Ny
= Nyp=2p8, we have N2 =Nz + Ny =a + g =t, i.e. 2€ 8*%);. Further-
more, we have iZy = i0a 60w~ = IN(O)n;'Ey = i€y = y, which shows that
ze fi30). Finally, since ¥ = fw™'¢, ¥ = fw™'y, we have p, = 6o~ and so
T(z) = p.» = 6, which completes the proof of the surjectivity of T. In
order to complete the proof of (4.2), we must show that

4.3) n, =4, whenever f;4(o) =0 .

First, observe that I.I, = (n,) and so n, = (¢§,%7, &7 + &) = (a, B, 27).
From the relation ap = y; + i, one sees easily that n, and 4, contain
each odd prime p with the same exponent. Hence, it remains to examine
the exponent of 2. Denote by v,(a) the exponent of 2 in an integer a.
Since we obviously have v,(4,) < v,(n,), it is enough to show that v,(n,)
< y,4,). Hence, we may assume that v,(n,) =1. Put e =y(n,) and
write a = 2a*, g = 2°8*%, y, = 2°7'¥ and 7, = 2/y¥ with 2,7%) =1. We
have then 2%a*p* = 22/yf? 4 2e-Dyi2 or 2Myf? = 2Me-D(4a*p* — ¢¥?). If
r¥ were odd, we must have f = e — 1, and then 4a*g* = ¢§* + 1¥*, which
is impossible because both of ¥, 7¥ are odd. Therefore, rf must be
even and so we have e < inf (v,(r), v(y), which implies that v,(n,)
< y,4,), a.e.d.
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