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Abstract

A group G is termed conjugacy separable (c.s.) if any pair of distinct conjugacy classes may be
mapped to distinct conjugacy classes in some finite epimorph of G. The free product of A and
B with cyclic amalgamated subgroup H is shown to be c.s. if A and B are both free, or are both
finitely generated nilpotent groups. Further, one-relator groups with nontrivial center and
HNN extensions with c.s. base group and finite associated subgroups are also c.s.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 E 26,20 E 06; secondary
20 F 10.

1. Introduction

A group is conjugacy separable (c.s.) if, whenever x and y are not conjugate in G,
there is a finite quotient group of G in which the images of x and y are not conjugate.
In this paper we shall prove that the free product of the groups A and B with
amalgamated subgroup H is c.s. if A and B are c.s. and H is finite, or if A and B are
finitely generated nilpotent groups and H is cyclic, or if A and B are free groups
and H is cyclic. These results extend work if Lipschutz (1966) and of Stebe (1968,
1970, 1971). It is my pleasure to acknowledge that conversations with them,
M. Anshel and G. Baumslag led to my interest in these problems.

We shall also establish that one-relator groups with nontrivial center, and HNN
extensions of c.s. groups with finite associated subgroups, are c.s. The first of these
results is due to S. M. Armstrong (1977); that both follow from Dyer (1979) was
communicated by D. J. Collins (in letters), and the proofs follow his suggestions.
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36 Joan L. Dyer [2]

The main theorem of Dyer (1979) is that free-by-finite groups are c.s. Since an
amalgamated free product (A*B: H) with finite factors A and B is free-by-finite
(Neumann (1954)), as is an HNN extension (G, t: t~1Ht = K) with finite base
group G (Karrass et al. (1973)), we have

THEOREM \.IfA,B and G are finite groups, then (A*B: H) and (G,t: t-1 Ht = K)
are both c.s.

Observe that, whenever any pair of nonconjugate elements in the group G can
be mapped to nonconjugate elements in a c.s. image of G, then G is itself c.s.
Moreover, using theorems of Solitar and Collins (stated below as Theorems 2 and
3), we can determine when two elements either of an amalgamated free product or
of an HNN extension are conjugate. This puts us in a position to exploit Theorem 1.
The pattern of argument is similar to that used by G. Baumslag (1963) to establish
the residual finiteness of certain amalgamated free products of nilpotent groups.

In Section 2, after establishing notation, we recall some facts about amalgamated
free products and HNN extensions and state the conjugacy theorems; full state-
ments of the results asserted above and their proofs occupy Section 3.

The final version of this paper was prepared while the author was a Visiting
Scientist at the Thomas J. Watson Research Center, I.B.M., under the auspices of
the Mathematics Department.

2. Preliminaries

For x,y elements of G and S a subset of G, write x~sy if there exists an seS
such that x = s~1ys and x*sy otherwise. Let {x}G be the conjugacy class
{y: y~ QX). Let {SJ be a family of pairwise disjoint subsets of G and a: G->L be
an epimorphism. Say that <x separates the St if the a ^ ) are pairwise disjoint subsets
of L. In particular, xeG is conjugacy distinguished (c.d.) in G if x^Gy implies
that there is an epimorphism <x: G->L that separates {x}° from {y}° where L is a
finite group. Hence G is c.s. if and only if all its elements are c.d.

Let P be the free product of A and B with amalgamated subgroup H; we write

P = (A*B:H), or

= (A*B:

where H-> A and //->- B are injective homomorphisms. We shall view A and B as
subgroups of P with H = AnB; P satisfies a universal mapping property with
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[3] Separating conjugates 37

respect to pairs of homomorphisms A->G, B-+G which agree on H. Each element
of P may be written as an alternating product

where u{eAuB and if k^2, successive syllables belong to different factors of P
(that is, either u^A-H and ui+1eB—H, or else UiEB—H and ui+1eA — H, for
each i = 1,2,..., A:— 1). Call the alternating product u1u2...uk cyclically reduced if
A: = 1 or if fc# 1 and uk, u± also belong to different factors of P. Each product

is a cyclic permutation of z^Mj... «fc to which it is conjugate in P, and is alternating
jfu1u2... uk is cyclically reduced. Note that {x}p always contains cyclically reduced
elements. The length of an alternating product is defined as follows:

u1u2...uk =

(0 ifk= 1 and

ifk=landu1e(AuB)-H,

Kk otherwise.

If MX...uk and vx...Vj are alternating products and

u1...ule = v1...vi,

then j = k and there exists a sequence

h1,h2,...,hk.1

of elements in H such that

Observe that KJ ... wfc is cyclically reduced if and only ifv1...vk is, and that length
is defined on P.

The criterion for conjugacy in an amalgamated free product is the following:

THEOREM 2 (Magnus et al. (1966), p. 212). Let P = (A*B: H) and let xeP be
of minimal length in its conjugacy class. Suppose yeP, y is cyclically reduced, and
y~Px.

(1) #"||JC|| = 0, then ||^||<1 and if ye A say, there is a sequence hx,h%, ...,hr of
elements in H such that
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(2) If\\x\\ = 1, then \\y\\ = 1 and either xeA, yeA and x~Ay, or else xeB,
yeB and x~By.

(3) 7/"||x||^2, then \\y\\ = \\x\\ andy~Bx* where x* is a cyclic permutation of x.

Note that any cyclically reduced element of P is of minimal length in its conjugacy
class except for elements of length one that are conjugate to elements in H:

aeA-H and {a}AnH^0,

or

beB-H and {b}BnH^0.

Finally, observe that if x = ux... uk and y = v1...vk where both products are
alternating, then x~Hy if and only if there exists a finite sequence ho,hly ...,hk of
elements in H such that

(I)

and

(II) hk = h0,

for (I) and (II) are equivalent to x = h^1 yh0 with h0 e H (see Stebe (1971), Lemma 8).
The structure of HNN extensions parallels that of amalgamated free products

and will be employed in a similar fashion below (see Miller (1971)). Let Q be the
HNN extension (G, t: t'1 Ht = K). Here G is the base group, H and K the associated
subgroups, and H-+K is a fixed isomorphism effected by conjugation by t within
Q. Each element of Q may be written as a t-reducedproduct

where gteG, e(i) = ±l, and no subwords t~xht(heH) or tkt-x(keK) occur.
Such a product has length k; length is well defined on Q, and will be denoted as
above by a double bar. Herein, we term a product cyclically reduced if it is of
length zero or else is a ^-reduced product of the form

all of whose cyclic permutations

teH)g. ...

are also f-reduced. The notation u~GJtmv will be used for elements u, veG to mean
either u ~ a v, or u e H and v = t~l ut (e K), or u e K and v = tut'1 (eH).
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THEOREM 3 (Collins (1969) or see Miller (1971) p. 21). Let x and y be cyclically
reduced elements of Q, and suppose that x~Qy. Then \\x\\ = ||j>||, and one of the
following holds:

(1) || x\\ = ||j>|| = 0 and there is a finite sequence of elements z1,z2, ...,zm in HuK
such that

*~ a z i ~ ajf Z 2~ ajf zz • • • ~ a,i* zm~ ay-

(2) ||x|| = || 71 |^ 1 and y~ HUKx* where x* is a cyclic permutation ofx.

Note that any element of Q is conjugate to some cyclically reduced element
which is of minimal length in its conjugacy class. Finally, if x = teil) wx... t

eik) uk

and y = tnx)v1...t
t{k)vk are both cyclically reduced products, then x~HUKy if

and only if

(III) e (0=/ (0 for i = l,...,*

and there is a finite sequence of elements zo,...,zk in HuK for which

(IV) t-^z^t^ = WfEHuK for i = 1, ...,k,

(V)

and

(VI) zk = z0;

for these equations are equivalent to x = z^1yz0 with zoeHuK. (The associated
subgroup to which zt belongs is determined by the sign of e(i).)

3. The proofs

Our first result concerns the free product P of c.s. groups with a finite amalga-
mated subgroup. Stebe (1971) proved that cyclically reduced elements of length at
least two in P are c.d., by reducing first to the case in which the factors are finite
in a fashion dictated by Theorem 2, and then by producing the requisite finite
image. The presence of Theorem 1 shortens this argument, and a complete proof
is included.

THEOREM 4. If A and B are c.s. and H is finite, then {A*B: H) is c.s.
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PROOF. Since A and B are residually finite, the families

J( = {M: M< A, \A/M\«x>, HnM = 1}

and

JT = {N: N< B, | B/N\ <oo, HnN = 1}

satisfy the two conditions

* C L r A f = 1 = = n ̂
and

fl MH=H-

For any (M,N)eJVx.Jf, the natural projections A-+A/M and B-+B/N extend
to an epimorphism 77^^: P->PMJf where P = (A*B: H) and

P j , ^ {AIM*BIN: A/M^H^B/N)

(with, for example, H^H/HnM~HM/M-+A/M naturally). The groups P ^ ^
are c.s. by Theorem 1.

Note that ^ and Jf are closed under intersections with normal subgroups of A
and of B that are of finite index. It follows from this and the c.s. of A (and E) that
any collection of pairwise disjoint sets, each of which is either a conjugacy class or
is finite, can be separated by some projection A^-A/M (or some B->B/N) with
MsJl (or NejT).

Suppose that x is of minimal length in {x}p, and write x as a cyclically reduced
alternating product:

x = u1u2...uk.

The set S = {ult ...,uk}uHis finite; and so there is an (A/,N)e^(xjV such that
A-+A/M separates the elements of S n ^ and B-+B/N separates the elements of
S n B. Therefore

is a cyclically reduced alternating product in PMN whose length is equal to ||x||.
If || x\\^ 1, TTyijiipc) is therefore of minimal length in its conjugacy class. If ||x|| = 1,
assume for definiteness that xeA. By the minimality of ||x|| in {x}p, H and {x}A

are disjoint; and so A-+A/M separates {x}A and H for some Me^. In this case,
for any Ne^V, Theorem 2 shows that irMtN(x) is of minimal length in its conjugacy
class.
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Let x and y be nonconjugate elements of P, each of minimal length in its con-
jugacy class. By the argument above, there exists {M,N)eJKx^V such that
TrM>N(x) and nM>N(y) are of minimal length in their conjugacy classes and

)II, IHIHIW^II-
Thus 7rMN separates {x}p and {y}p if ||JC||T^||y\\. Assume now that ||*|| = IMh we
distinguish three cases.

Case 1. ||JC|| = \\y\\ = 0. Let Q,...,Cr be the distinct conjugacy classes in A of
the form {h}A with heH, and let Dlt...,DS be the distinct conjugacy classes
{h}B {h e H). Then {CJ, {Dj} are each pairwise disjoint finite families, and we may
choose (M, N)e^x^V such that A -> A/M separates the Q and B -»• B/N separates
the Dj. If TM>N(X)~PMN^M,N(y)> by Theorem 2 there exist hx, ...,hreH such that

By our choice of (M, N),

contradicting x* Py.
Case 2. ||x|| = | | j | | = 1. Assume, for definiteness, that xeA, If ye A choose

(M,N)e^xJ/' so that {x}A, {y}A, H are separated by A-+A/M, and if yeB so
that {x}^, ^ are separated by A^-A/M and {y}B, H are separated by B->B/N.
Then by Theorem 2, 7rM>JV separates {x}p and {j}p.

Case 3. \\x\\ = | | j | |^2. Write x as a cyclically reduced alternating product

x = u1...uk

and put
...ui_1h: heH,i= 1,...,&}.

Then Xis a finite set, and there exists (M,N)e*#x<Ar so that the sets .Sf and {y}
are separated by 77 îN and

Since ITMAX)~PM.snM,N(y) imp'ies TT^^CJ)GnMfN(X) by Theorem 2, it follows
that 77^^ separates {x}p and {j}p.

The proof above used the easy fact that, in a c.s. group, any finite subgroup can
be separated from any (disjoint) conjugacy class by a map onto a finite group.
It need not be the case that conjugacy classes and arbitrary subgroups are separable,
and this provides an obstruction to the c.s. of free products as observed in the lemma
below.
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LEMMA 5. Suppose G contains a subgroup H and an element x such that {x}G and
H are disjoint, but are not separated by any homomorphism of G with finite image.
Then (G*G: H) is not c.s.

PROOF. Write

P = (G1*G2: GX^H^G2)

where G~GX under g^-gx, G~G2 under g^-g2, and H^GV H^-G2 are induced
by restriction. Then xv x2 lie in different factors of P and are not conjugate to any
element of the amalgamated subgroup, whence x^ Px2. But TT(X1)~MP)TT(X2)

whenever n(P) is finite, for let M, N be the normal subgroups of G corresponding
to G1nKeTn, G2nKeTn respectively. Put K^MnN; then K<\G, \G/K\<oo,
and therefore xK~GjKhKiov some heH. The homomorphism n factors through
the map

P -> Px = (GJ^ * G2/K2: GJ^ -> HK/K-+ G2/K2)

induced by the natural projections on the factors, and

*i ̂ i ~ GJKI hi %i = h2K2~ GjKi x2 K2.

Consequently 7r(x1)~7r(P)7r(jc2).

The same argument shows that (G * G: H) is not residually finite if there exists
an xeG—H such that 7r(x)eTr(H) whenever TT(G) is finite. The HNN extensions
constructed by Miller (1971) may be imbedded in amalgamated free products in
the usual way, and provide examples of residually finite finitely presented groups
with unsolvable conjugacy problem. Thus the class P of amalgamated free products
contains residually finite groups that are not conjugacy separable. Moreover, if
each group in P that has a solvable conjugacy problem were c.s., there would
exist a partial algorithm for the conjugacy problem over P; this is impossible.
I thank Collins and Miller for settling questions I had raised in an earlier version
of this paper.

We turn now to free products with cyclic amalgamated subgroup. We first
examine the situation in which the factors are finitely generated nilpotent groups.
Blackburn (1965) (or G. Baumslag (1971), p. 6) proves that finitely generated
nilpotent groups are c.s. And a theorem of Stebe (1976a) shows that, for any
subgroup H of a finitely generated nilpotent groups G and any x,yeG, whenever
{x} and HyH are disjoint sets, they may be separated by a homomorphism from G
onto a finite group. An elegant proof of both these results can be found in Stebe
(1976b). Recall that, for a nilpotent group G in which x has infinite order,

xr~ QX8 if and only if r = s.
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[9] Separating conjugates 43

LEMMA 6. Let G be a finitely generated nilpotent group, and let H = gp{h), a
cyclic subgroup of G. If {x}G and H are disjoint subsets of G, then there is a finite
quotient group G/M such that the projection G-+G/M separates {x}° and H.

PROOF. Observe first that Blackburn's Theorem yields the required quotient when
H is finite. And if h has finite order m say modulo the center of G, then the natural
projection G->G/gp(hm) separates {x}° and H.

We argue by induction on the Hirsch rank, rk(G), which is the number of infinite
cyclic factors in any polycyclic series for G. If rk (G) = 0, G is finite and there is no
problem. Suppose now that rk(G) is positive; then there is an element c, say, of
infinite order and in the center of O (see Baumslag (1971), p. 3). Put Cn = gp(c"),
and note that rk (G/Cn) = rk(G)-l . By induction and the observation made
above, it suffices to separate {x}G and H by some projection G->G/Cn(n^l)
under the additional assumption that Hngp(c) = 1.

If G-> G/Q separates {x}G and H, we are done; otherwise there exists an element
u e G and integers i,j such that

Since x* ah\ by Blackburn's Theorem there is an epimorphism v. G-+L which
separates {x}° and {h1}0 with L finite. Let n be the order of TT(C) in L. Then n
factors through the projection G-^GjCn; that is, there is a homomorphism
a: G/Cn->L such that the diagram

commutes. We claim G^>G/Cn separates {x}G and H; if not, there is an element
veG and integers k,m such that

v-ixv - hkcnm.

Consequently

hici~Gx~ah
kcnm,

which implies that
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Since hC± has infinite order in the nilpotent group G/Clt i = k. Therefore

•n{x)~LTr(hkcnm) = n(hk) = n(Jf),

contradicting the choice of n.

THEOREM 7. If A and B are finitely generated nilpotent groups and H is cyclic, then
(A*B:H)isc.s.

PROOF. We argue by induction on rk (A) + rk (B). Observe that, when H is finite,
Blackburn's Theorem and Theorem 4 yield the desired conclusion. We may there-
fore assume that H is infinite; put

H=gp{h), P = (A*B:H).

Suppose next that hm is in the center of P for some m^O. For each «^ 1, set

Pn = P/gp (*•») ~ (/(/gp (*»•») * B/gp (hnm): H/gp (h™)),

and let -nn: P->Pn be the natural projection. The Pn are c.s., so that it suffices to
separate disjoint conjugacy classes {x}p and {y}p by some nn. Observe that for any
x eP, || x|| = || TTn(x) || and, if x is of minimal length in {x}p, sa is Trn{x) in {7rm(jc)}p».
Moreover, if k^2 and ux... ukeP is cyclically reduced, then its cyclically reduced
conjugates are the elements of the finite set

X= {h^Ui... uku1...ui_1h
j:j = \,...,m and i= 1,...,A}.

The argument used to establish Theorem 4 shows that disjoint conjugacy classes
{x}p and {y}p are separated by some irn except for the case x = hr, y = hs with
r^s, for which a direct computation shows that 7T|r_S|+i works.

Finally, we may assume that H has infinite order modulo the center of P. Since
the center of P is the intersection of the centers of A and of B, at least one of these
factors contains a central element c of infinite order such that gp(c) nH = 1. For
definiteness, assume c e A and for n ̂  1 put

Pn = (A/gp (c») * B: A/gp (cn)

Let TTn: P->Pn be inducted by the natural projections. Since

rk (A/gp (c»)) + rk (f?) = rk (A) + ik(B)-l,

the Pn are c.s. by induction. Observe that any homomorphism a: A->L with L
finite factors through A -> A/gp (cn) whenever the order of CT(C) is a divisor of n.
Consequently sets separated by maps onto finite quotient groups of A are also
separated by the projections A->A/gp(cn).
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[11] Separating conjugates 45

Suppose now that {x}p and {y}p are disjoint, with x and y of minimal length in
their respective conjugacy classes. The observation above and Lemma 6 imply that
for some n, irn(x) and nn(y) are distinct, each of minimal length in its conjugacy
class in Pn, and satisfy

-KMII-

Thus nn separates {x}p and {y}p whenever | |JC||^| |J| |- We now assume ||x||
and again distinguish three cases.

Case 1. ||;c|| = | | j | | = 0; and so x — hr, y — h* for some pair of distinct integers
r,s. If 771(jc)~pi7r1(_v), there exist integers ev...,em such that

But n^h) has infinite order in both n^A) and TT^B) SO r = ex = e2 = ... = s, a
contradiction.

Case 2. ||x|| = Ĥ ll = 1. Apply Lemma 6 and Blackburn's Theorem to separate
{x}x, {y}T, and H, where X= A if xeA, X= B if xeB, and simUarly for Y.

Case 3. ||x|| = | | j | |>2. Write

x = u1...uk, y = v1...vk,

where both products are cyclically reduced and alternating. For each /, 0< /< A:— 1,
denote by (/: /) the set of k equations

for elements ho,...,hkeH=gp(h)<P, with subscripts taken modulo k. Denote by
TTJJ : i) the image of the system (/: i) in Pn. Whenever ui+k and vt are in different
factors of P, TTX(I : i) has no solution in ir^H). Whenever ui+k and vk are in the same
factor of P but ui+k$HvkH, Stebe's Theorem guarantees that irn(I:i) has no
solution in nn(H) for some n. Consequently there exists a positive integer n such
that firstly for each i = 0,...,k— 1,

(/: i) has a solution hQ,...,hkeH

if and only if

7rn(/: i) has a solution 77n(g0), ...,irn(gk)enn{H),
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and secondly such that

••*«(«*) and

are cyclically reduced alternating products.
We claim that nn(x)'*' Pnrrn(y). H" not> t n e r e exists a cyclic permutation of

7rn(M1)... 7rn(Mfc) which lies in {7rB0>)}""<H>. Relabel so as to assume

Consequently wn(J: 0) has a solution irn(go), ...,irn(£^eirn{H) for which also

•"nigo) = ^ (

(see the comments following Theorem 2). By our choice of n, there exist ho,...,hkeH
satisfying (/: 0). Since XfHy, hQ=£hk; and so

However, -n-Jh^), ...,nn(h^) satisfy wn(/: 0) whence

Therefore

Since irn(H) is infinite cyclic and irn(A), irn(B) are nilpotent,

or

Multiply these equations over i (1 <i<A:) to obtain

n̂(Afc1Ao) = ^ntefc1fo)=l.

which is the required contradiction.

The next result of this paper concerns free products with cyclic amalgamation in
which the factors are free groups, extending work of Lipschutz (1966) who shows
that the conjugacy problem is solvable for such groups, and of Stebe ((1971),
Theorem 1) who treats the cyclically reduced elements of length at least two. A
result of Baumslag-Higman (Baumslag (1965) Remark, p. 278, or see Lyndon and
Schupp (1977), p. 26) asserts that distinct conjugacy classes in free groups are
separated by maps onto finite nilpotent groups. Consequently for a free group F,
the maps F->F/ycF separate conjugacy classes, where ycF is the cth term of the
lower central series of F.
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LEMMA 8. Let G be a free group, and H be a cyclic subgroup of G. If{x}° and H
are disjoint subsets ofG, there is a positive integer c such that the projection G -*• G/yc G
separates {x}° and H.

PROOF. Since f\ycG= 1 and G/ycG is torsion-free (Magnus (1935), or see
Magnus et al. (1966), chapter 5), there exists an integer dsuch that h$ydG (where
H = gp(/i)) which implies that HnydG = 1.

If {x}a and H are not separated by the projection G^>G/yd G, there is an integer
n such that

Since x and hn are not conjugate in G, there is a c ̂  d such that G -> G/yc G separates
{x}° and {hn}° (Baumslag-Higman). If the images of {x}° and H in G/yc G are not
disjoint, there is an integer m such that

But ycG^ydG. Consequently m = n, contradicting our choice of c.

We also require the following consequence of a result of Stebe (1971); a proof is
included.

LEMMA 9 (Stebe 1971)). Suppose that G is free, H is a cyclic subgroup, and x, ye G.
If x^ HyH, then for some c>0 the projection G^-G/ycG separates {x} and HyH.

PROOF. We may assume that x^ 1 and y=£ 1. Put H = gp(A) and suppose that
the images of {x} and HyH intersect nontrivially in G/ycG for all c> 1. Thus, for
all c^ 1, there exist integers e(c) and/(c) such that

xzsheic)yhfM, modulo ycG.

Choose d so that gp(h)nyd(G) = 1. When

Yc(G)<Ya(G) and

modulo yd(G), or

(d> yd G „ ohiQ hHd)-Hc) y<J G .

Hence the exponents are equal and

e{c) +f(c) = e(d) +f(d) for all c > d.
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Denote this common value by m, and observe that for c^d,

h-mx=h-'ic)yh'ic\ modulo ycG.

If y and h commute, xeHyH. Otherwise f(c)=f(d) for c^d, and again,
xeHyH.

THEOREM 10. If A and B are free groups and H is cyclic, (A*B: H) is c.s.

PROOF. AS usual put P = {A *B: H). Free groups and free products of c.s.
groups are again c.s. (Stebe (1970)), so that we may assume A and B finitely
generated. Choose d so that

ydAnH= 1 =ydBnH

and define for c^d,

Pc = (A/ycA*B/ycB: A/ycA^H^B/ycB)

with epimorphism P->PC induced by the natural projections. Recall that, if x=£ 1
in the free group G, then

xr~ax* implies r = s.

Using the Baumslag-Higman Theorem together with Lemmas 8 and 9, the proof
of Theorem 7 applies to show that disjoint conjugacy classes in P are separated by
some P->PC. Since the Pc are c.s., so is P.

We turn now to HNN extensions and the results communicated by Collins.

THEOREM 11 (Armstrong (1977). IfG is free-by-cyclic with nontrivial center, then
G is c.s.

PROOF. Let G satisfy the short exact sequence

1 > F > G—^- T > 1,

where F is free and T is cyclic. If F is also cyclic, G is polycyclic and therefore c.s.
(see Formanek (1976)); and if T is finite, G is free-by-finite and therefore c.s.
(Dyer (1979)). Thus we may assume that F has rank at least 2 and that T = gp (/)
an infinite cyclic group.

Suppose c is a non-trivial element in the center of G and put C = gp (c). Then C
is infinite cyclic (G is obviously torsion-free) and CnF = 1, whence G/C is free-
by-finite and TT(C)# 1.
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Suppose that x and y are not conjugate in G. If ir{x)^n(y), then n separates
{x}° from {y}G in the c.s. group T. But if n(x) = ir(y), we claim that the projection
G-+G/C separates {x}° from {y}°. Otherwise, x~Gycm for some integer m^O.
Therefore n(x) = Tr(y)Tr(c)m, whence n(c)m = 1 which contradicts TT{C)^ 1.

THEOREM 12 (Armstrong (1977)). Let G be a one-relator group with nontrivial
center. Then G is c.s.

PROOF. Such groups satisfy the hypothesis of Theorem 11 (Baumslag and
Taylor (1968), pp. 318-319).

The analog of Theorem 4 for HNN extensions is:

THEOREM 13 (Collins). Let G be c.s. and H, K finite isomorphic subgroups. Then
the HNN extension (G, t: r1 Ht = K) is c.s.

PROOF. Let Q = (G, t: t^Ht = K),

J( = {M: M<G,\G/M\<co,HnM = KnM = 1},

and for each MeJ1, let

QM = (G/M,t: t^HM/Mt = KM/M);

the isomorphism HM/M-* KM/M is given by the composition

HM/M x H/HnM x H — % K x K/KnMx KM/M.

By Theorem 1, the groups QM are c.s., so that it suffices to show that the induced
homomorphisms Q->QM separate disjoint conjugacy classes. The proof parallels
that of Theorem 4, using Collins' Conjugacy Theorem (Theorem 3 above),
equations (III) through to (VI), the c.s. of G and the finiteness of H u K.

As observed by Collins, Theorem 13 implies Theorem 4 using the fact that free
products of c.s. groups are again c.s. (Stebe (1970), Theorem 3), as follows: let

P = (A*B:A>C <^— H—^ D^B) and Q = (A *B,t: t^Ct = D).

Define homomorphisms <x:P^-Q, {S: Q^>-P by

xt ifxeA, (x ifxeA*B,
|3W =

lfxeB; [I ifx = t.

https://doi.org/10.1017/S1446788700020917 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020917


50 Joan L. Dyer [16]

Then fSac(x) = x for all xeP; and so u + pV implies a(u)*9«(i)), Thus Q c.s.
implies P c.s. On the other hand, in the notation above, Q~P*gp(t) so that
Theorems 7 and 10 imply that certain HNN extensions are c.s. I have chosen to
retain the proof of Theorem 4 via amalgamated free products and their structure
in that the proofs of Theorems 7 and 10 follow the same general line. The by now
familiar non-Hopfian group (a, t: t~1a2t = (P) of Baumslag and Solitar (1962)
shows that the direct analogues of Theorems 7 and 10 are false for HNN extensions.
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