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ON THE FLOW OF AVALANCHING SNOW 

By M. HEIMGARTNE R 

(Eidgenoss isches Institut fur Schnee- und Lawinenforschung, 7260 Weiss fluhjoch jDavos, 
Switzerland) 

ABSTRACT. Variation of flow depth of a flowing avalanche caused by a change in the slope angle is 
examined using Bernoulli's energy equation, used in hydraulics to d e termine a non-uniform steady flow. 
This equa tion is modified for a material with internal friction and a strongly curved t rack. The calcula ted 
fl ow d epths a re compared with those obtained by tes ts with a snow slide. In the flow model dry and turbulent 
fri ction a re taken into account. Friction coeffi cien ts are es timated compa ring calculated a nd measured flow 
depths. It appears that in wet snow they differ from those of dry snow. Finally, this model is used to calcula te 
the runout distance of a natura l avalanche. 

REsuME. Sur le mouvemmt d'une avalanche eoulante. La variation e n epaisseur d 'une avalanche coulante 
causee par un changement d e pente e,t examinee a u moyen de l'equa tion de Bernoulli qui est connue en 
hydra ulique pour determiner un ecoulement stationnaire non unifo rme. Cette equation est adaptee a des 
materiaux possedan t un frottement interne e t a une trajectoire fortem ent courbee. L es epaisseurs ainsi 
calculees sont comparees a celles qui on t ete obtenues par des essa is sur une glissoire de neige. Dans le modele 
d 'ecoulem ent un frottem ent independant de la vitesse et un frottem ent turbulent sont pris en compte. Les 
coefficients de frottement sont estimes par comparaison de, epaisseurs ealculees et m esurees. Il apparai t 
qu'ils different dans une neige mouillee de ceux d 'une neige seche. Pour finir ce modele est utilise pour 
calculer la distance d'arret d 'une avalanche naturelle. 

ZUSAMMENFASSUNG. Zur Bewegullg VO Il Fliesslawinen. Mit der in d e r Hydraulik Ublichen Energiegleichung 
von Bernoulli fUr stationar ungleichfiirmige AbflUsse, welche fUr ein Material mit innerer R e ibung und stark 
gekrUmmte Bahnkurven umgeformt wurde, wird die Fliesshiihenanderung einer Fliess lawine nach einem 
Gefallsbruch untersucht und mit Messungen auf einer Schneegleitbahn verglichen . Das Abflussmodell 
berUcksichtigt trockene und turbulente R eibung, deren Koeffizienten a us Vergleich d er gemessenen mit d er 
gerechneten Fliesshiihe abgeschatzt werden. Es zeigt sich, dass diese Koeffizien ten fur trockenen und nassen 
Schnee verschieden sind. Abschliessend wird mit diesem Modell die Auslaufstrecke einer na tUrlichen Lawine 
machgercchnet. 

I . GENERALITIES AND ASSUMPTIONS 

In this pa per the motion ofjlowing avalanches is calculated using some methods of technical 
hydraulics. Avalanching snow behaves differently from water, hence, the equations des
cribing the flow model have to be adapted to the properties of snow. In doing so one has to 
consider the restrictions made by Salm ( 1968) : 

(I) The material is ideal elasto-plastic, similar to a dry sand. 
(2) The flow is bi-dimensional and steady, but non-uniform. This non-uniformity IS 

caused by a change in the slope angle. 

Furthermore, we assume the friction forces T along the avalanche track to depend upon 
velocity v like T = aovo+azvz, where the aj are constants. The viscosity term a, v' , is neglected 
(Salm, 1966) . These limitations allow us to describe a Bl)wing avalanche by the Bernoulli 
equation of non-viscous discharge. 

2. BASIC EQUATIONS 

2. I . Velocity distribution in a curved channel 

In a curved channel the velocity is not constant over the flow depth t, but changes with 
increasing z (Fig. I), as shown by Franke ( 1971 ) : 

Ro 
v = Vo Ro± z. 
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Fig. I. Velocity distribution in curved channels. 

Ro is the constant radius of curvature at the flow surface and Vo the surface velocity. The 
positive and negative signs are set for decreasing and increasing slope angles respectively. 
Equation ( I) is only valid with a positive denominator. Vo may be obtained from the con
tinuity equation 

t t 

g = f v dz = f v ~ d .. B 0 Ro±z "" 
o 0 

where Q means the constant flow rate and B the flow width. Hence it follows that 
Q 

Vo = ------'--R-=-o±-t ' 
BRo In-y-

and the velocity Vt at the depth z = t 

when R = Ro±t. 

o 

Q 
Vt = ----=-::R' 

BRlnR' 
o 

2.2. Friction forces on the suiface of the avalanche track 

As suggested by Salm (1968), the shearing stress TXZ between the avalanching snow and 
the stationary underground is considered to depend linearly upon the normal stress CIz acting 
on the sliding plane, and also upon the square velocity vZ, the roughness of the avalanche 
track k- z, and the mean gravity of the moved snow y, in accordance with the equation of 
Chezy for turbulent flow. Thus we assume 

where fL is a dry-friction coefficient. 
If the avalanche track is bent with an actual radius of curvature R, CIz is set to 

( 
VtZ ) 

CIz = ty cos ifi+ Rg , (5) 

where tP is the slope angle and g is the acceleration due to gravity. 
Equations (4) and (5) do not depend upon the material, the only material term being y, 

thus these equations are valid for plastic and elastic materials. 
By inserting Equation (3) into Equation (5) we get 

crz = ty [cos tP + g~3 (B In ~/Ro) r] (6) 

The importance of the second term within the brackets grows with decreasing radius of 
curvature R. 
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2.3. Avalanching snow 

In soil mechanics, soil yielding is often described by the Coulomb criterion for cohesive 
materials 

Txz :::;;; Tf = C1z tan cp+c, (7) 

where Txz is the shear stress and C1z the normal stress on a plane element. Tf stands for the 
shear strength, cp for the angle of internal friction and c for the cohesion of the considered 
material. As shown by Terzaghi (Terzaghi and Jelinek, 1954), Equation (7) leads to 

(8) 

in the case of plain strain. The directions of the stress symbols C1 and T are explained in 
Figure 2. 

0, 

112 

. -[10, -Ox / 1 2] ',- --,-+ x, 

i = 1,2 

~ .. _/ ~ 
0" , Oxp <' ' ''d'' .. 

': .. , 
avalanche t,ack~ 

Fig. 2. Mohr-Coulomb hypothesis. 

Equation (8) is perfectly compatible with general plasticity theory, as demonstrated by 
Drucker and Prager (1951). 

A dry sand is not cohesive (c = 0), and in this case Equation (8) becomes 

(9) 

In an elastic material C1x is given by the confined three-dimensional stress state (Ziegler, 1962), 

V 
C1x = -- C1z, 

I-v 

here v is Poisson's ratio. Equation (9) is restricted to non-curved tracks. 

( 10) 

As long as the stresses C1z, C1x, TxZ, calculated from Equations (5), ( 10) and (4), do not fulfil 
the yield criterion (Equation (9)), the material remains elastic, but as soon as the left side 
of Equation (9) equals the right-hand side, Equation (10) is invalidated and C1x is obtained 
from Equation (9) : 

TXZ 
where cc = 2 - . 

C1z 

_ [1 + sin2cp ((I + sin2cp)2_cos2cp+ct.2)i] 
C1x - crz A. ± A. A.' 

I, Z cos2 't' cos2 't' cos2 't' 
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The positive sign gives the maximum value crXI' corresponding to the passive stress state 
of Rankine, and the negative sign the minimum value crX2 corresponding to Rankine's active 
stress state (Fig. 2) . 

3. BERNOULLl'S EQUATION 

Flow depths of non-uniform steady flow are generally calculated stepwise using Bernoulli's 
equation 

u2 p H=- +- +w, 
2g y 

H denotes the energy head, p the pressure in flow direction x on the sliding plane, and w the 
geometrical head. 

A friction force T per unit volume, divided by y , is obtained from Equation (4) : 

T Txz fLcr z UZ 

-y = -:yt = -yt+tkz · (13) 

Tfy corresponds to the gradient of the total head, and may be written as 

T ilwe ilwe cos I/J 
-y = t:.x = t:.u 

from which we obtain 

t:.We = c~u I/J (fL;Z + t~Zz) , 

t:.we is the energy loss per length t:.u. 
When the pressure p at the slip plane is replaced by crx cos I/J (Salm, 

of non-uniform steady flow of avalanching snow becomes, 
1968), the equation 

Vu2 crxu VIZ crxl 
H = wu+- + - cos I/Ju = Wl + - +- cos I/J1 + t:.We, 

2g y 2g Y 
( 15) 

using Equations ( I I ) (plastic case) and (10) (elastic case). Here the index u refers to an upper 
and the index l to a lower cross-section of the avalanche track (Fig. 3) . 

W 

H 

:i£ 
2g 

Pu Oxu .I. y=ycos,+,u 

l1We 

u 

~ 
2 9 

El= ~COS 4J1 
Y Y 

Fig. 3. Bernoulli's equation modified for avalanches. 

t er 

H e mm 

Fig. 4. SPecific energy versus flow depth. 
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Plotting the specific energy H e against flow depth t (Fig. 4), where 

crx Q2 V2 crx 
H e = - cos .J1+- - = - +- cos .p, 

y 2gF2 2g Y 

and F is a cross-section of the avalanche track, we obtain a minimum He for a critical value 
i er . If, in a given flow, t > ter , this flow is called "streaming", if t < ter, it is "shooting". 
A streaming flow changes continuously to a shooting one, this happens inversely in a 
"hydraulic jump". Hydraulic jumps are calculated with the momentum theorem; in the 
<:ontinuous changes Equation ( 15) may be used as follows. 

I. Calculate H at the first (known) point (Equation (15)) . 
2. Take next point: use geometry and an assumed value for t. 
3· Calculate crz, crx (elastic) , and T xZ (Equations (6), (10), and (4)). 
4. Is the yielding function (Equation (9)) fulfilled? 

If yes then continue. 
If no then go to step 6. 

5. Calculate crx (Equation ( I I )) . 
6. Calculate ~we (Equation (14)) , 
7. Calculate H at the second point (Equation ( 15)). 
8. Is Equation ( 15) fulfilled? 

If yes then take the next point. 
If no then go to step 2. 

4. EXPERIMENTS WITH THE TEST SLIDE 

The same tests as those described by Salm ( 1968) were made, but with a modified snow 
,collector which could contain 25 m 3 of snow. A steady flow was maintained for more than 
'0.7 s with this modification. Every experiment was filmed , this allowed a measurement of the 
flow depths behind the deflection point. 

TABLE 1. M EASURED AND CALCULATE D FLOW DEPTHS FO R tu = I.om 

M ean snow t2 t, Fitted friction 
T est temperature Vo Y measured calculated coifficients 1'0* 

QC m/s N /m3 m m 1'0 k ml/s 

2/74 - 3 10.2 3492 1.09 I.og 0 .32 2g 0.25 
5/74 - 4 10. 1 3414 1.05 I.og 0 .32 2g 0 .25 
6/74 - 4 10·3 3 600 1.07 LOg 0·33 31 0 .22 

12/74 - 5 9·5 2531 LOg I. 12 0·33 28 0·34 
7/74 - 2 10·9 3 630 1.15 1.10 0.27 33 0.14 

14/75 ± o 10.6 457 1 1.12 1. I I 0.27 31 0. 19 
16/75 ± o 10.2 4405 1. I 7 1. 13 0.28 33 0.25 

Table I compares some test data from the slide inclined at 45 ° with the results of a step-by
step calculation using Equation ( 15) ' Two points 0 and 2 were calculated as shown in Figure 
5, starting at the end of the acceleration part of the test slide and using measured values of 
velocity and flow depth. The calculations were made with friction coefficients fL and k as 
parameters, other values were <p = 26° and v = 0.25. The calculated flow depths at point 2 
are those which give the best fit with the measured values. The corresponding friction 
coefficients are also shown. 

We can divide these experiments up into two groups. The first 4 tests in Table I were 
made at low snow and air temperatures, without snow melting. The slide is dry and the 
friction is high. The remaining tests were carried out at temperatures near o°C . The high 
temperature means that a thin layer of melted snow covers the test slide; this reduces friction. 
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R: 10'000 m 

2 

dead "s now 

Fig. 5. Flow on test slide at Weissjluhjoch. 

The values of ft". were calculated using the known velocity Vo, for the acceleration part of the 
slide (without turbulent friction k- Z). 

Plots of He (Equation ( 16)), show a critical flow depth ler > 1.5 m. All tests began with 
10 = 1.0 m, Table I shows that in all cases 12 < 1.20 m. Thus, we conclude that in these 
tests a continuous flow-depth change in shooting flow occurred without hydraulic jumps; 
this is confirmed by the cine film. 

5. "SKILEHRERHALDE" AVALANCHE IN PARSENN AREA 

The validity of our conclusions was tested with an artificially released avalanche near our 
institute; this has been described by Frutiger (1975). Geometrical data for these calculations 
were obtained by fitting a cubic parabola to the natural avalanche track (Fig. 6). 

Friction parameters were set to ft = 0.18 and kz = I 700 m /52 • Q was calculated with the 
formula given by Salm (Salm, 1972). 

A formula for the runout distance Xr can be derived from Equation ( IS) . 

The velocity head VU2 / 2g and the pressure head crx u cos .pu/y disappear within the distance 
Xr = wu /sin tPm due to friction ~we. Thus we write 

and 

I 

~ 
I 
I 

H el = 0, 

RUNOUT ZONE 

336m 

Fig. 6. Track section of "Skilehrerhalde" avalanche, 20 January 1974, Weissjluhjoch jDavos. 
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Inserting Equation (14) we get 

yVuz+ 2gcrxu cos .pu [( vrnZRom2) vrnz . ] 
2gy--- = Xr fL cos.prn+ gRm 3 + trnkZ- sm.pm. (17 ) 

The steady-state equation of Bernoulli is not exactly valid for this case because velocity v is 
time-dependent. For this reason we have to calculate with mean values. 

The quantities labelled with index m denote such values in the runout process. Assuming 
that the square of velocity decreases linearly along runout Xr , as suggested by Voellmy (1955) 
and Salm (1966), we get 

and 

Xr 

VU Z 

vmz 
- 2 ' 

2yg [fL (cos .pm + RVu
z 

) + VU
2

k2 -sin .prn] 
2 1IIg 2tm 

The value in Table II was calculated with this formula and agrees well with the measured 
value of 224 m. 

TABLE 11. OBSERVATIONS AND D ERIVED DATA FROM THE ARTIFICIALLY

RELEASED AVALANCHE 

Point 

I 

2 

rn 
0·74 
0.68 

b 
m 
122 
107 

Q = 1244 ml ls 

V m 

rnls 
13.8 
17. 1 

Uz 

Pa 
1600 
I 560 

Runout distance X r = 210 m. 

T XZ 

Pa 
590 

700 

H 

m 
80.8 
59.8 

T he va lues in T able II were obtained frc m Equation ( 15), the influence 
of the curved track is negligible. 
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DISCUSSION 

M. R. DE QUERVAIN: How did you introduce the radius R = 4 m in the test slide? 

M. HEIMGARTNER: It was the minimum value we could introduce with our device. 

https://doi.org/10.3189/S0022143000029385 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000029385

	Vol 19 Issue 81 page 357-363 - On the flow of avalanching snow - M. Heimgartner

