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CURVES IN GRASSMANN VARIETIES

AIGLI PAPANTONOPOULOU

§ 0. Introduction

The following question was the main motivation of this paper: which
are the necessary and sufficient conditions for a non-singular subvariety
of a Grassmann variety to have an ample normal bundle. Knowing that
a non-singular subvariety of a Grassmann variety has an ample normal
bundle we can apply on it several well-known theorems.

a) A vanishing theorem on formal schemes (Hartshorne [6], Theorem
4.1.).

b) A theorem on meromorphic functions (Hartshorne [7], Chapter
6.).

c) Results on the cohomological dimension of a protective variety
minus a subvariety (Hartshorne [7], Chapter 7.).

Let E be the universal subbundle on the Grassmannian G(r,ri), Q
its universal quotient bundle, Y a closed subscheme of G(r,ri), and C a
non-singular curve in G(r,n). In this paper we prove the following
results.

1) Necessary and sufficient conditions for E\γ to be ample.
2) Necessary and sufficient conditions for Q\γ to be ample.
3) Necessary and sufficient conditions for TG\Y to be ample, where

TG is the tangent bundle of G = G(r,n).
4) Necessary and sufficient conditions for Nc/G to be ample, where

Nc/G is the normal bundle of a non-singular curve C in G = G(r,ri).
5) Sufficient conditions for Nγ/G to be ample, where in this case Y

is a non-singular subvariety of G = G(r,ri). We also give examples of
non-singular subvarieties of a G(r,n) with ample normal bundle which
do not satisfy conditions 5) to show that these are not necessary con-
ditions.

The paper is organized as follows: § 1 contains the basic definitions
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and facts about Grassmann varieties, Schubert cycles and ample vector

bundles which will be needed. §2 contains the proofs of the main re-

sults of this paper. In §3 several examples are given to illustrate our

results. Also the different applications are explained. In the appendix

we outline a proof of the fact that Ω\, the sheaf of 1-differentials on

G = G(r,n) can be expressed as £7® Q.

I would like to thank my advisor Robin Hartshorne for introducing

me in these questions and for his invaluable help.
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§1. Definitions and elementary properties

Let G = G(r, n) be the Grassmannian of Pr spaces in a fixed Pn

space. The fixed Pn induces a trivial bundle OQ+1 on G of rank n + 1,

and the Pr subspaces induce a subbundle E of O%+1 of rank r + 1. So

on G we have the following canonical short exact sequence

0 — > E > O%+1 — > Q — > 0 .

Q is a vector bundle on G of rank n — r, called the canonical quotient

bundle on G, and E is called the canonical subbundle on G.

G = G{r, n) is uniquely determined by the following universal pro-

perty of the canonical quotient bundle Q. For all schemes X, for all

locally free sheaves Qo of rank n — r on X and for all n + 1 global

sections sQ, , sn G Γ(X, QO) which generate the stalks of Qo at every

point peX, there exists a unique morphism / : X —> G such that:

a) f*Q = Qo and

b) Si = /*(#<) for i = 0, , n where xt e Γ(G, Q) is the image of 1

in the ith place of OS+1 under the canonical map

o r 1 — > Q — > o .

DEFINITION 1.1. Let 0 < a0 < < ar < n be r + 1 integers and let
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Ao c c Ar c Pn be r + 1 linear subspaces such that dim At = at. Let

Ω(AQ, « ,A r) be the subspace of G(r,n) parametrizing all Pr c P71 such

that P r Π A< ^ 0 and dim P r Π At > i for i = 0, , r. We know from

[9] that these subspaces are actually subvarieties of G(r, n) and that they

depend, up to rational equivalence, only on the integers a0, , ar and

not on the choice of the linear subspaces At. We call them Schubert

subvarieties or Schubert cycles of G(r,ή).

We are interested in the following two Schubert cycles.

1) Let Z1 be the Schubert cycle of G(r, n) parametrizing all Pr c Pn

which are contained in a fixed Pn~ι in Pn. This is the Schubert cycle

which satisfies the condition in — r — 1, , n — 2, n — 1) and it is

isomorphic to G(r, n — 1). The fixed Pn~ι space induces a trivial subbundle

of On

G

+1\Zl of rank n, namely O%\Zl9 and E\Zl is a subbundle of OQ\ZI. In

other words, the canonical short exact sequence,

0 > E\Zl • On

G

+1\Zl • Q\Zl • 0

factors through

0 • E\Zχ • Ol\Zχ >Q' • 0

where Q' is the canonical quotient bundle of Zl9 when Zx is viewed as

a G(r9 n — 1) and Q\Zχ = Q' Θ OZl is the vector bundle on Zx of rank

n — T, which induces the embedding of Z1 <=—> G(r,ri).

2) Let Z2 be the Schubert cycle of G(r, n) parametrizing all Pr c Pn

such that p e Pr c Pn, for some fixed point p in Pn. This is a Schubert

cycle satisfying the condition (O,n — r + 1, , n — 1,^). The fixed point

p induces a trivial subbundle of £7|Z2 of rank 1. In other words, we have

on Z2 the following short exact sequence,

0 > OZ2 • E \Z2 > Ef > 0

where Έr is a vector bundle on Z2 of rank r. Thus on Z2 we have the

short exact sequence,

0 >Ef >0%\z% >Q\Z% • 0 .

By the Principle of Duality we can consider G{r,n) equivalent to

Gin — r — l,ri). On G(n — r — l,ri) we will have the dual short exact

sequence,

0 > Q > On

G

+1 > E > 0 .
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If we let d = n — r — 1, we can see from [9] that Z2 as a Schubert
cycle now of G(d, n) it satisfies the condition in — d — 1, , n — 2, n — 1).

DEFINITION 1.2. A vector bundle E on a scheme X is ample if for
every coherent sheaf F on X there exists an integer n0 > 0 such that
for all integers n > nQ the sheaf F ® Sn(E), (where Sn(E) is the nth sym-
metric product of E), is generated as an Ox-module by its global sections.

Throughout this paper we will be using basic properties of ample
vector bundles which are proved in (Hartshorne [5], 2 and 4).

DEFINITION 1.3. Let L be a line bundle on a non-singular curve C.
We define the degree of L to be the degree of D, where D is the cor-
responding divisor. If C is singular we define degL = degL(x) O5,
where C is the normalization of C. If E is a vector bundle of rank r
then we define degE = deg /\r E.

The following results of Hartshorne and Gieseker will be very useful.

THEOREM 1.4 (Hartshorne [8], Theorem 2.4.). Let X be a complete
non-singular curve over k, char k = 0, and E a vector bundle on X.
Then E is ample if and only if every quotient bundle of E has positive
degree.

THEOREM 1.5 (Gieseker [4], Prop. 2.1.). Let X be a complete scheme
over a field k. Let E be a vector bundle on X which is generated by
its global sections. Then E is ample if and only if for every curve
C c X , and for every quotient line bundle L of E\c, degL>0.

Throughout the paper we are working over a field k of characteristic 0.

§2. Curves with ample normal bundle

Our main theorem can be stated as follows.

THEOREM 2.1. Let C c G(r,ri) be a non-singular curve. Let Nc/G

be the normal bundle of C in G(r,ri). Then Nc/G is not ample if and
only if C lies in some Z3, where Z3 is the Schubert cycle parametrizing
{Pr c Pn\ some fixed point pePr c some fixed P71'1 c Pn}.

The proof of the theorem will follow immediately from the following
four propositions. By Zx and Z% we denote the two Schubert cycles as
defined in §1.
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PROPOSITION 2.2. Let Y be a subvariety of G(r,ri). Then S\r is
not ample if and only if there is a curve C in Y which lies in some Z2.

PROPOSITION 2.3. Let Y be a subvariety of G(r,ri). Then Q\γ is
not ample if and only if there is a curve C in Y which lies in some Zx.

PROPOSITION 2.4. Let Y be a subvariety of G(r,ri). Then TG\Y is
not ample if and only if there is a curve C in Y which lies in some Z3.

PROPOSITION 2.5. Let C be a non-singular curve in G(r9n). Then
Nc/G is ample if and only if TG\C is ample.

We will need the following lemmas.

LEMMA 2.6. Let Y be a subvariety of G(r9n). Then there exists
a splitting Q\γ = Q o θ O r if and only if Y lies in some Zλ = G(r,n — 1)
aG(r,ri). Then Q\γ embeds Y <=—>G(r,ri) and Qo embeds Yc=—>ZX.

Proof of lemma, a) Assume Y lies in some Zxc:G(r,ri). Then
Q\7 = (Q\Zl)\γ = Qr\γ®Oγ, where Qf is the canonical quotient bundle of
Zx = G(r9n- 1).

b) Suppose there exists a splitting of Q\r, and Q\γ = Q0(BOY. Qo

is a vector bundle on Y of rank n — r — 1, generated by n global sec-
tions. Therefore, QQ induces a unique morphism,

f:Y •Z1 = G(r ,w- l )

such that /*(Q0 = Qo, where Q' is the canonical quotient of Zl9 and
f*(xt) = st for all n global sections st e Γ(Y, Qo) generating the stalks of
Qo at every point p of Y. Let

be the embedding induced by Q' 0 OZl. By the universal property of
the canonical quotient bundle Q on G(r,ri) we know that g*(Q) = Qf®OZl

a n d g*(Vt) = %» w h e r e y 0 , , y n e Γ(G, Q) a n d x O f - - , x n - ι , 1 e Γ(Zl9 Qf 0

OZl). T h u s

and

f*(g*(yΰ) = s,,

where s0, •• ,5n_1, 1 are in Γ(Y,Q0®OY), so by uniqueness gof is the
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embedding induced by Q 0 ΘO r , Γc=—>G(r,ri). Therefore,

is an embedding. q.e.d.

By the Principle of Duality and its application on Z2 that we ex-

plained in §1, the following lemma is equivalent to Lemma 2.6.

LEMMA 2.7. Let Y be a subvarίety of G(r,ri). Then there exists a

splitting of E\γ = Eo® Oγ if and only if Y lies in some Z2 c G(r,n).

We can now prove our four propositions.

Proof of Proposition 2.2. Suppose that there is a curve C in Y

which lies in some Z2. By Lemma 2.7. there is a splitting ϊt!\c = 2?0 ®

Oc. Hence E\c is not ample and that implies that E\γ is not ample.

Now suppose that E\γ is not ample. Then by Theorem 1.5. there

exists a curve C in Y and a quotient line bundle Ef of έ | c on C

E\c >W >0

such that deg E! < 0.

CLAIM. Er = Oc- We break the proof of the claim into two cases.

Case 1. Assume C is a non-singular curve. Έf is a line bundle on

C generated by its global sections. Therefore, Ef corresponds to an

effective divisor D on C such that D = Σ t niVu where nt > 0 and Σ t %

= deg £7' < 0. Therefore 2]< % = 0 and Z) = 0, the zero divisor. Hence

# ' = Oc.

Case 2. Let C be any reduced, irreducible curve not necessarily

non-singular. Ef is generated by its global sections; hence there exists

0 Φ s e Γ(C, Ef) which induces an injective map Oc —> ̂ 7

? and J577 has no

torsion. Thus we have the short exact sequence,

1) 0 > Oc > E' > F > 0 ,

where F is the quotient sheaf. Let C be the normalization of C. Ten-

soring the short exact sequence 1) by 0$ we get

Oc • Ef (x) Oa • F ® Od • 0 .

C is non-singular and by definition deg E' ® 0$ = deg E' < 0. Therefore

by the non-singular case E'®Os = Oδ This implies that F ® O5 = 0.
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The morphism C -> C is finite and surjective, therefore F = 0 also.
Hence E' = Oc.

Going now back to the proof of Prop. 2.2., we have shown that on
C we have a surjective map

f:S\c—>OC—>0.

We actually have the following diagram on C

e = fog but e splits, i.e. there exists a map j such t h a t eoj = id0o.

Now if we let i = g o j we get

foί = / o j f o ; = e o j = i d O σ .

Therefore the map / splits and E\c = Eo φ Oc, where 2£0 is some vector
bundle on C of rank r. Thus by Lemma 2.7. C lies in some Z2. q.e.d.

Proo/ o/ Proposition 2.3. Suppose that there is a curve C in Y
which lies in some Zx. Then by Lemma 2.6. there exists a splitting of
Qlfl, Q|σ = Q0ΦOC. Thus Q|c7 is not ample. Hence Q\γ is not ample.

Now suppose that Q\γ is not ample. Then by Theorem 1.5. there
exists a curve C in Y and a quotient bundle (7 of Q\c on C

Q\c—>Q'—>0

such that degQ^O. Q\c is generated by its global sections and hence
Q' is also, so we can go through the same steps as in the proof of
Proposition 2.2. and show that Q\c = Q f lΘOc, where QQ is some vector
bundle on C Thus by Lemma 2.6. C lies in some Zx.

With the two propositions we just proved and with the fact that
TG — Q®il (see Appendix), where TG is the tangent bundle on G =
(?(r,n), we can prove immediately the next proposition.

Proof of Proposition 2.4. Assume that TG\Y is not ample. Hence
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by Theorems 1.4. and 1.5. there exists a curve C in Y such that TG\C

~Q\C®E\G is not ample. Since both Q\c and E\c are generated by

global sections and their tensor product Q\G®E\C is not ample, we get

from (Hartshorne [5], 2) that neither Q\c nor JE\C is ample. Hence by

Propositions 2.2. and 2.3. C lies in some Zz = Zx Π Z2.

Now assume that C lies in some Zz — Zx{\ Z2, where C is a curve

in Y. By Lemmas 2.6. and 2.7. we have the following splittings

Q\c = Qo®Oc and

£\0 = E0®Oc .

Thus

Tσ I* = Q l<7 <8> £|σ = (Qo ® #o) θ Qo θ £Ό θ Oc

and hence T^lc is not ample. Therefore TG\Y is not ample. q.e.d.

Proof of Proposition 2.5. Assume that Nc/G is not ample. Then

from the short exact sequence

0 Tc >TG\C • Nc/G > 0

we have that TG\C is not ample.

Now assume that TG\C is not ample. Hence by Proposition 2.4. C

lies in some Zz. The cycle Zz is isomorphic to the Grassmannian

G(r — 1, n — 2). So let Q^ and Ez be its canonical quotient bundle and

its canonical subbundle, respectively. Let Tz be its tangent bundle.

Hence Tz = QZ®EZ. We have on Zz the short exact sequence

0 Tz >TG\Z > Nz/G • 0

and furthermore

TG\Z = Q\z (x) E\z = (Q z θ Oz) ® ( ^ θ Oz)

Therefore

Nz/β = Qz®έz®Oz and

Nz/β\c = (Qz@Ez)\c®Oc.

Hence Nz/β\c is not ample. Finally from the short exact sequence

0 > Nc/Z > Nc/β > Nzιo \c > 0
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we get that Nc/G is not ample. q.e.d.

Remark. One can easily show that any Schubert cycle in G(r,n)

which is isomorphic to a lower Grassmannian does not have an ample

normal bundle. In particular if Z is a cycle of type Z19 then its normal

bundle is not ample and it is actually isomorphic to β\z.

For non-singular subvarieties of G(r, n) of dimension higher than 1,

we have the following sufficient conditions.

PROPOSITION 2.8. Let Y be a non-singular subvariety of G(r,ri).

Assume that Y does not contain any curve C which lies in a Z3. Then

the normal bundle Nγ/G is ample.

Proof. Nγ/G is generated by its global sections. Hence if Nγ/G is

not ample, then there is a curve C in Y such that Nγ/G\c is not ample.

Thus from the short exact sequence

0 Tγ\c > TG\C > Nγ/G\c > 0

we get that TG\C is not ample. Therefore by Proposition 2.4. C lies in

some Z3, and this contradicts our hypothesis. q.e.d.

For non-singular subvarieties of codimension 1 in G(r9n) we can

show that their normal bundle is always ample.

PROPOSITION 2.9. Let Y be a non-singular subvariety of G(ryn)

with codG Y = 1. Then Nγ/G is ample.

Proof. A subvariety Y of codimension 1 can be seen as an effective

divisor on G = G(r,n). Therefore it corresponds to a line bundle L.

Since Pic (G) ^ Z, L = OG(v). Y is an effective divisor. This implies

that v > 0. We have the short exact sequence

0 > OG(-v) > OG > Oγ > 0 ,

where OG(—v) is the sheaf of ideals defining Y in G. Therefore

(Nγ/G) = OG(-v) (g) Oγ = O r (-i;) and

Nγ/G = Oγ(v) where v > 0 .

Hence Nγ/G is ample. q.e.d.
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§ 3 . Applications and examples

Let G = G(l, 3), the Grassmannian parametrizing P1 spaces in a fixed

P3. Then dim G — 4 and G is a quadric in P5.

The Schubert cycles of G can be described as follows.

a) Zo = G Γt if, if a hyperplane in P5, dim Zo = 3,

Zo = {P1 c P'lP 1 Π some fixed P1 Φ 0}.

b) Zx = {P1 c P31P1 c some fixed P2 c P3} ^ P2.

Z2 = {P1 c P3 | some fixed point p e ? 1 C P 3 } ^ P2.

c) Z3 = {P1 c P3 | some fixed point peP1 c some fixed P2 c P3} ^ P1.

d) p = any point.

So according to our Theorem 2.1., the only curves in G(l,3) that

do not have an ample normal bundle are the Schubert cycles of the type

Z3 = P1. Using Grothendieck's theorem on the decomposition of vector

bundles on P1, one can actually calculate the normal bundle of a curve

C in G(l, 3) of the type Z3 and show that Nc/G = Oc(l) 0 OC(X) θ Oc.

By §2, the non-singular subvarieties of G of dimension 3 always

have an ample normal bundle, the non-singular surfaces in G which do

not contain a cycle of type Z3 have an ample normal bundle, while

the surfaces which are cycles of type Zλ or Z% do not. The case left

unanswered is the case of a non-singular surface in G which is not a

Schubert cycle but which contains a curve of type Zz. With the follow-

ing example we show that such a surface in G could have an ample

normal bundle. Hence we show that the conditions in Proposition 2.8.

for a non-singular subvariety Y in a G(r, n) to have an ample normal

bundle are sufficient but not necessary conditions.

EXAMPLE 3.1. Let Y = G(l,3) Π some general linear P3 c P5. Y is

a proper intersection of G(l, 3) and P3 in Pδ. Therefore

which is ample. It is easy to see that Y contains a cycle of type Z3.

6r(l, 3) C P 5 is a quadric defined by the equation x^xλ + x2x3 + xAx5 = 0,

(x09 xu x29 #3, xif %d are the homogeneous coordinates of P5. Let P 3 be

given by (x0 — x2 — 0). Let C be given by (x0 = x2 — x± = xδ = 0). Then

C is a cycle of type Z3 and lies in G(l, 3) Π P 3 = Y.

Therefore Y is an example of a subvariety of a Grassmannian such

that TG\Y is not ample though Nγ/G is ample. Hence Proposition
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2.5. can not be extended to sub varieties of a G(r,n) of dimension greater

than 1.

Another application of our main theorem is the following corollary.

COROLLARY 3.2. Let G = G(r,n). Then TG is ample if and only if

G is a trivial Grassmannian, i.e. G = Pn.

Proof. Assume G — G(r,n) is a non-trivial Grassmannian, i.e. r Φ 0,

r Φ n — 1. Therefore if Z c Gir, n) is a cycle of type ZZJ then άimZ > 1.

Hence it contains at least a curve. Hence TG\Z is not ample, which

implies that TG is not ample.

Now assume that G — Pn. On Pn we have the following short exact

sequence

0 > E > Ojί1 > OP»(1) > 0 .

where rank E — n and Opn(ϊ) = Q. Tensoring the short exact sequence

by Q and then dualizing we get

0 > OPn > 0^(1) > E®Q > 0 .

Hence Tpn — E ® Q is ample.

To subvarieties of G(r,ri) with ample normal bundle we can apply

the following well-known results.

THEOREM 3.3 (Hartshorne [6], Theorem 4.1.). Let X be a non-

singular protective variety over a field k, char k — 0, and let Y be a non-

singular subvariety of X of dimension d. Let X be the formal completion

of X along Y. Assume that Nγ/X is ample. Then Hι(X,F) is a finite-

dimensional k-vector space for all locally free sheaves F on X and all

i< d.

DEFINITION 3.4. Let S be a noetherian scheme of finite Krull dimen-

sion. We define the cohomological dimension of S, written cd(S), to be

the smallest integer n > 0 such that H\S, F) — 0 for all i > n and for

all coherent sheaves F o n S .

DEFINITION 3.5. Let S be a scheme of finite type over k. We define

the integer q(S) to be the smallest integer n > — 1 such that H^SyF)

is a finite-dimensional fc-veetor space for all i > n, and for all coherent

sheaves F on S.

DEFINITION 3.6. Let S be as above. We define the integer p(S) to
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be the largest integer n (or oo) such that Hι(S, F) is a finite-dimensional
fc-vector space for all i < n, and for all locally free sheaves F on S.

THEOREM 3.7 (Hartshorne [7], Corollary 5.5.). Let X, Y and d be
as in Theorem 3.3. Then

a) p(U) = q(U) = n- d-1, where U = X - Γ, n = dim X,
b) // Ox(l) is an ample line bundle on X, then H%U, F(m)) = 0 for

all ί > n — d, m 0, and for all coherent sheaves F on U = X — Y.

THEOREM 3.8 (Hartshorne [7], Corollary 5.4.). Let X and Y be as
above and assume further that X is connected and that d>l. Then

i.e., there are no non-constant holomorphic functions on X.

Also from (Hartshorne [7], Corollary 6.8.) we get that any subvariety
of a Grassmannian with ample normal bundle is G2, i.e. the field of
meromorphic functions K(G) on the formal completion of G along the
subvariety Y is a finite algebraic extension of K(G).

Appendix

In this paper we have been using the following well-known fact.

THEOREM A.I. Let G = G(r,ri), E the canonical subbundle on G
and Q the canonical quotient bundle on G. Then the sheaf of 1-dif-
ferentials on G can be expressed as follows.

We will outline here a proof of this fact, since we were not able to find
a reference for it.

We will recall first some basic properties of the associated projective
r-space bundle over a projective variety X and state the theorems that
are needed for the proof.

DEFINITION A.2. Let X be a projective variety, E a vector bundle
on X of rank r. We let P(E) be the associated projective (r — l)-space
bundle: the fibre over a point xeX is a projective space of hyperplanes
of the vector space Ex.

Let p: P(E) -> X be the projection map. Then the bundle E lifts to
a bundle p*(E) on P(E). There is a canonical quotient line bundle of
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p*(E), LE, which to each point y e P(E) it associates the 1-dimensional

vector space E/Ep(y), where Evm is the hyperplane corresponding to the

point y. Then p*LE = E and p*LE = 0.

THEOREM A.3 ([3], SGA 1, II, Thm. 4.3.). Let X and Y be non-

singular protective varieties over a field k. Let p: X —» Y be a smooth

morphism. Then there is a short exact sequence of differentials

0 > v*Q\lk • Ω\lk • Q\iY • 0 ,

where Ωχ/Y is the sheaf of relative differentials.

THEOREM A.4 (Manin [11], Prop. 17.12). Let X = P(E) be the as-

sociated protective (r — l)-space bundle over Y, where E is a vector

bundle of rank r on Y. Let p: P(E) —> Y be the projection map. Then

there is a short exact sequence

0 Ω\IY p * ( # ) (x) LE • Ox • 0 ,

where LE is the canonical quotient line bundle of p*(E).

THEOREM A.5 (Manin [11], Prop. 7.7.). Let X and Y be as above.

Then

a) Rip*(p*(H)(g)F) = H®Rlp*F for all i > 0, for all vector bundles

H on Y and for all vector bundles F on X.

b) R°p*(Ox) = Oγ and

= 0 for all i > 0 and for all n>0.

Proof of Theorem A.I. We want to show that

Ω\ = E (x) Q ,

where G = G(r, n) is any Grassmannian and E, Q are the canonical sub-

bundle and quotient bundle on G, respectively. We have seen that the

theorem is true for r = n — 1. So we are going to use descending in-

duction on r and the incidence correspondence. Let Gr,r_i be the sub-

space of

G(r,n) x G(r - l,n)

parametrizing all chains (Pr~ι c Pr) of subspaces of a fixed Pn. Gr>r_x

is called the incidence correspondence.

Let p, q be the restrictions to G>,r_i of the projections of G(r, ή) x

G(r — l,ri) onto the first and second factor, respectively. Let G = G>,r_!,
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Gr — G(r,n) and G" = G(r — l,ri). So we have the following diagram

Gr = Gr,r_!

G' = G(r,ri)

We also have the following canonical short exact sequences

0 > Ef > Oil1 > Q' > 0 o n f f ,

and

0 > E" > Olt1 > Q" > 0 on Gπ .

CLAIM, a) G = P(E'),

b) G = &

Proof.

a) G =

Ί
G' - G(r, w)

Each point p G corresponds to a chain (P7""1 c Pr), so it corresponds

to a hyperplane of the vector space E'vm. Thus G = P(Ef) over G.

Furthermore, on P(E') we have the canonical quotient line bundle, LE..

The kernel of the map

P*(#0 • 1/^ > 0

corresponds to hyperplanes and each hyperplane corresponds to a Pτ~ι.

Therefore, the kernel is exactly q*(E"). So on P(E') we have the short

exact sequence

0 > q*(E") > p*(E') > LE, > 0 .

b) G = Gr,r_x

•i
G" = G(r - lfn)

Each point y e G corresponds to a chain (Pr~ι c P r), hence to a line

in the vector space Q"(y). So each point y eG corresponds to a hyper-

plane of the vector space 0"(y). Hence G = P(Q"). Furthermore,
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on P{Q") we have the canonical line bundle, MQ,,. The kernel of the

map

?*($") > MQ,, • 0

associates to each point yeG a hyperplane of the vector space Q'£m.

Hence the kernel is p*(Q'). So on P(Q") we have the short exact sequence

0 • p*(#) > q*{Q") • MQ • 0 .

From the following diagram

0

ί
LB, 0

ΐ ί
0 > p*(E') >p*(On

βt
1) > p*(Q') > 0

f 18 ί
0 > q*{E") > q*(On

σΐϊ) • q*(Q") > 0

t ί
0 LE,

ΐ
0

we can see that MQ,, = LE,.

So we have shown that on G we have the following short exact

sequences and relations

1)

2)

and

0 —

0 —

-> q*(E") —

-> PHQ') —

P*LB>

P*ίE-

qjdq,.
V

->p*{E')-

> g*(OΌ -

= 2>A- =

= ?*£*' =

= «*!'£' =

—>•.

= 0

= 0"
= 0 .

Applying Theorem A.3. on G" we get

3) 0 • q * ^ • Ωl • Ω\IG,, • 0 .

Applying Theorem A.4.. on G" we get

0 > Ω\IG,, > q*(Q") (x) ]frQ,, >QG • 0 .
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From the short exact sequence 2) we get

4) 0 • p*(Q') ® MQ > q*(Q") ® MQ > Oo > 0 .

Therefore Ωι

0lβ,, — p*(Q') ® "M.q,. and 3) becomes

5) 0 • q*Ω\. • Ω\ > p*(Q') ® ΆQ.. > 0 .

Applying q* to 5) we get

0 > Q\ • q*Ω% • q*(p*(Q') ® * « » ) •

The third term though is zero for the following reason

0 — • g*<3>*(#) ® ΆQ..) — • Q" ® g*(Afβ,.) — •
II
0

Here we applied q# to the short exact sequence 4) and used the projec-

tion formula. Therefore

6) &β» S q*Ωι

β .

We will use now our induction hypothesis. We assume that for

G' = G(r, n) Ωx

β, = E' ® Q' and we will show that for G" = G(r - 1, n)

Ω%,, = E" ® <§". By Theorem A.3. we have on G'

0 > V*Q\, • Ω\ • Ω\ιa, > 0 ,

and by Theorem A.4. we have on G'

0 • Ω\ιa • p*{E>) ®LB, >OO > 0 .

From the short exact sequence 1) we get

0 • q*(E") ® LE, > p*(E') ® LE • Oβ • 0 .

Therefore

&a/g, = q*(E")ΘLE,

and on G' we have

7) 0 • p*Ω%, > Ω\ • q*(E") ® I'm- > 0 .

Applying q^ to 7) we get the following long exact sequence

0 • q*P*Ω%. • q*Ω% ̂ > E" ® Q" •
8)

—>E"
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Using the two short exact sequences 1) and 2) one can easily show that
q*p*Qe, — 0. Hence the map τ in the long exact sequence 8) is injec-
tive. Furthermore, using Theorem A.5. one can show that the map χ
in 8) is also injective. Thus τ is an isomorphism and this completes
the proof by 6). q.e.d.
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