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Abstract. Current-driven instabilities in stellar radiation zones, to which we refer as Tayler
instabilities, can lead to complex nonlinear evolutions. It is of fundamental interest whether
magnetically driven turbulence can lead to dynamo action in these radiative zones. We investi-
gate initial-value simulations in a 3D spherical shell including differential rotation. The Tayler
instability is connected with a very weak kinetic helicity, stronger current helicity, and a pos-
itive αφφ in the northern hemisphere. The amplitudes are small compared to the effect of the
tangential cylinder producing an eddy with negative kinetic helicity and negative αφφ in the
northern hemisphere. The αφφ from the Tayler instability reaches about 1% of the rms velocity.
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1. Introduction
Stellar radiation zones are often hosting magnetic fields. The majority of solar dynamo

models include the presence of strong toroidal magnetic fields in the tachocline, the
transition from differential to uniform rotation below the convection zone. Also a fair
fraction of intermediate-mass stars shows strong magnetic fields hosted by their radiative
envelopes and are called magnetic Ap stars.

These magnetic fields may become unstable because they are connected with currents
(Vandakurov 1972; Tayler 1973). We will use the term Tayler instability for this class of
current-driven instabilities. Rotation and differential rotation alter the stability limits of
the Tayler instability.

The limiting magnetic fields strengths have been determined under various conditions
and in various contexts in a series of studies, e.g., Pitts & Tayler (1985), Gilman &
Fox (1997), Cally (2000), Dikpati et al. (2004), Braithwaite (2006b), Arlt et al. (2007),
Rüdiger & Kitchatinov (2010). The linear stability of magnetic fields is fairly well under-
stood. Non-axisymmetric, large-scale modes are typically the consequence of the Tayler
instability.

The nonlinear development of the instability may lead to turbulence as well as enhanced
diffusivity and angular-momentum transport in radiative stellar zones. Another issue is
the existence of a sustained dynamo, if the magnetic field which becomes unstable has a
source of replenishment (Spruit 2002). While the large-scale non-axisymmetric unstable
mode will only be able to produce a non-axisymmetric magnetic field, a turbulent state
may imply the generation of a substantial axisymmetric part. The non-axisymmetry is
then hidden in the turbulent field as to comply with Cowling’s theorem. Mixed results
have been obtained in attempts to show sustained dynamo action in simulations (e.g.
Braithwaite 2006a; Brun & Zahn 2006; Gellert et al. 2008).

Our paper deals with the possible dynamo-effect from the Tayler instability by mea-
suring the mean-field dynamo coefficients during the nonlinear evolution of the system.
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Zahn et al. (2007) pointed out that a turbulent electromotive force (EMF) is the only
way of regenerating the large-scale magnetic field from the non-axisymmetric instability.
Measuring the EMF appears to be a suitable approach, even though we do not have
an energy source in the system which would be necessary for sustained generation of
magnetic fields from a continuously excited instability.

2. Numerical setup
We consider a spherical shell extending from the normalized radii ri = 0.5 to ro =

1. The colatitude θ and the azimuth φ are covered in their full extent. The spectral
spherical MHD code in Boussinesq approximation by Hollerbach (2000) is employed for
the simulations. In this study, the buoyancy term and the equation for temperature
fluctuations are dropped for the sake of simplicity. The remaining, normalized equations
are

∂u

∂t
= −(u · ∇)u + (∇× B) × B

−∇p + Pm�u, (2.1)
∂B

∂t
= ∇× (u × B) + �B, (2.2)

where u and B are the velocity and magnetic fields and p is the pressure. Additionally,
the relations ∇·u = 0 and ∇·b = 0 hold. The equations are normalized by the magnetic
diffusivity η, whence the magnetic Prandtl number Pm = ν/η in the Navier-Stokes
equation, where ν is the kinematic viscosity. The magnetic permeability and the density
are set to unity and do not appear in this system of equations.

The initial velocity profile is that of a differential rotation with the angular velocity Ω
depending on the axis distance, s = r sin θ,

Ω(s) =
Rm√
1 + s q

, (2.3)

where we start with Rm = 20 000 and q = 2. The initial magnetic field is purely poloidal
and confined to the computational domain. The parameter Rm is the second dimension-
less parameter entering the system in the initial conditions:

Rm =
R2Ω∗

η
, (2.4)

where Ω∗ is the angular velocity of the star and R is its radius. By comparing the
Alfvén velocity of the magnetic field with the velocity of the fluid, one can convert the
dimensionless magnetic fields of the simulations into physical units,

Bphys =
√

µρΩ∗R
B

Rm
(2.5)

where µ is the permeability and ρ is the bulk density of the fluid, now in physical units.
The spectral truncations for these simulations were typically at 40 Chebyshev poly-

nomials for the radial decomposition and 60 Legendre polynomials for the latitudinal
decomposition. For each Legendre degree l, the spherical harmonics were running from
m = −l to m = l accordingly.

https://doi.org/10.1017/S1743921311017637 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311017637


Dynamo coefficients from the Tayler instability 215

3. Results
The simulations are initially entirely axisymmetric, but apply a non-axisymmetric

perturbation after a given time tpert . As long as no perturbation has been applied, the
differential rotation winds up toroidal magnetic fields from the initial, purely poloidal
one. Lorentz forces, however, start to act on the differential rotation and reduce it, while
the total angular momentum of the spherical shell is preserved in the simulations. This
scenario alone leads to uniformly rotating radiative zones.

During the amplification of toroidal fields, the stability properties of the magnetic field
changes. The Tayler instability is suppressed by rotation, and non-axisymmetric insta-
bilities are even further suppressed if differential rotation is present. Now, the differential
rotation is gradually reduced while toroidal fields grow – the system will turn supercrit-
ical for the Tayler instability quite suddenly after some time. This is the time when the
non-axisymmetric perturbation is injected into the system. In the case described here,
tpert = 0.003 diffusion times.

The instability now develops a fairly complex pattern with higher modes being excited
through nonlinear coupling, and some energy dropping back into the m = 0 mode as
well. The latitudinal structure exhibits a very steep energy spectrum of El ∼ l−3.7 at
t − tpert = 0.001 diffusion times. The system does not develop a fully turbulent state in
these simulations. The azimuthal spectrum is even steeper with Em ∼ m−6.7 .

Here, we are interested in the question whether the averaged electromotive force can
be expressed in terms of an (axisymmetric) α-effect. In other words, can the Tayler
instability – through nonlinearities – act like a mean-field dynamo.

Assuming that the turbulent electromotive force EMF only depends on the mean
magnetic field B and its first spatial derivatives, one can write in general

EMF = αB + γ × B − β(∇× B) − δ × (∇× B) − κ(∇B)(sym) , (3.1)

with the symmetric α- and β-tensors, the vectors γ and δ, and the third-rank tensor κ
acting on the symmetric part of the tensor gradient of B.

We employ the test-field method developed by Schrinner et al. (2007) to measure the
components of the above mentioned tensors. While running the actual simulation, an
additional set of 27 test equations is integrated delivering the various components of the
mean-field tensors and vectors simultaneously as functions of the meridional location and
time. The spatial distribution of the components of the symmetric part of the α-tensor,
averaged over 0.0005 diffusion times or 1.6 rotation periods, is shown in Fig. 1.

The strongest effect comes from the inner cylinder which tends to produce an eddy
of helical motion giving rise to an α-effect which is not primarily caused by the Tayler
instability. The actual Tayler-α is the positive αφφ (alpha pp) in the bulk of the northern
hemisphere at r > 0.6. Note that the component αφφ – the one which generates the
poloidal field from the toroidal one – is the smallest among the diagonal components
of the tensor. The rms velocity fluctuations in the computational domain are around
0.005RΩ∗. The αφφ in the Tayler unstable region of the domain is roughly 1% of this
rms value or 5 · 10−5RΩ∗. The tangent-cylinder effect delivers an αφφ of about 7% of the
rms velocity.

The velocity fluctuations are mostly horizontal, even in this unstratified setup. Radial
velocity fluctuations are about five times smaller than horizontal motions. The positive
αφφ which we think results from the Tayler instability is associated with a positive cur-
rent helicity and very weak, negative kinetic helicity. This is certainly an indication for
the magnetic nature of the instability and the raising turbulence which is different from
convection. However, this actually means the test-field method will probably underesti-
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Figure 1. Distributions of αrr , αθθ , and αφφ in the upper row, and αrθ , αrφ , and αθφ in the lower
row, averaged from a period which is 0.0005 to 0.0010 diffusion times after the perturbation was
injected. Light areas (solid lines) represent positive αij while dark areas (dashed lines) represent
negative values.

mate the values of α. The magnetic-field fluctuations are by a factor of 3–4 larger than
the velocity fluctuations, so αφφ could also be about 3–4% of the rms velocity instead of
only 1%.

4. Outlook
While the simulations show that the Tayler instability may act like a mean-field dy-

namo, the α is very small. There is no energy source in these simulations, sustained
dynamo action is thus not possible. Future simulations with some sort of energy source
will tell whether a continuous dynamo is possible and feasible for stellar radiation zones.
Just as for convection-driven dynamos, the question also matters of how long it takes
for the large-scale magnetic field to grow. If this happens on a resistive time-scale, one
again has to be puzzled with the slow generation of large-scale magnetic fields from a
small-scale dynamo, as it was seen in forced and convective turbulence (see Brandenburg
& Subramanian 2005 for a review, and e.g. Käpylä et al. 2010 for a solution).
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Discussion

Donati: Ap stars are unlikely no more dynamo-type fields as this would imply some
kind of positive correlation between field strength and rotation rate that we don’t see. It
would also be difficult to explain why only 9–10% of massive stars are magnetic. However,
this exotic dynamo may be responsible for the weak field cutoff of the Ap star histogram.
And for the weak fields recently in normal A, B and O stars.

Arlt: The measurements of the dynamo coefficients were not particularly addressing
Ap stars, but of general nature. The simulations indicate that dynamo action without
a sharp inner boundary or with strongly dominating toroidal fields (like in the solar
tachocline) will be very weak.

Brun: Do you find a genuine dynamo action in your simulation of stellar radiative
interior of a massive star, or just a transitory growth of field due to Tayler’s instability?
If dynamo action is present, at which magnetic Reynolds number is the onset?

Arlt: The simulations lack an energy source, so are not capable of showing a genuine
dynamo. All we could do at this stage is measure the mean-field coefficients generated
by the nonlinear evolution of the instability. Differential rotation and fields all decay at
large times.
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