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Inertial and viscous dynamics of jump-to-contact
between fluid drops under van der Waals
attraction

Edward Beaty1,† and John R. Lister1

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, UK

(Received 16 September 2022; revised 21 December 2022; accepted 19 January 2023)

When two small fluid drops are sufficiently close, the van der Waals force overcomes
surface tension and deforms the surfaces into contact, initiating coalescence. The
dynamics of surface deformation across an inviscid gap falls into two distinct regimes
(Stokes and inertial–viscous) characterized by the forces that balance the van der Waals
attraction at leading order (viscosity, and both inertia and viscosity). The previously
studied Stokes regime holds for very viscous drops but fails for less viscous drops
as inertia becomes significant before contact is reached. We show that the subsequent
inertial–viscous dynamics is self-similar as contact is approached, with the gap width
decreasing as t′3/8 and the radial scale of the deformed region decreasing as t′1/2 as
t′ → 0, for time until contact t′. The self-similar behaviour is universal and is the generic
asymptotic behaviour observed in time-dependent simulations. The unique self-similar gap
profile of the inertial–viscous regime suggests new initial conditions for the coalescence
of the drops after contact.

Key words: drops, breakup/coalescence

1. Introduction

Coalescence of fluid drops is a central process in many natural, industrial and medical
settings, including raindrop formation (Bowen 1950), ink-jet printing (Stringer & Derby
2009) and drug delivery (Schwarz et al. 1994). Consequently, the fundamental problem of
the coalescence of two isolated drops has been the the focus of a large body of work,
with the many different dynamical regimes of coalescence being studied theoretically
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(e.g. Hopper 1984; Eggers, Lister & Stone 1999; Duchemin, Eggers & Josserand 2003),
numerically (e.g. Baroudi, Kawaji & Lee 2014; Anthony, Harris & Basaran 2020) and
experimentally (e.g. Paulsen, Burton & Nagel 2011; Chireux, Tordjeman & Risso 2021).

The early-time rate of drop coalescence is strongly influenced by the initial surface
profile of the drops. For example, theoretical models of coalescence for viscous drops in an
inviscid exterior fluid often take the initial drop geometry to be two spheres touching at a
point (e.g. Hopper 1984; Eggers et al. 1999), which gives an early-time rate of coalescence
∼ −(log t)/π for time t. This result, which has been confirmed numerically with full
Navier–Stokes simulations (e.g. Sprittles & Shikhmurzaev 2014; Anthony et al. 2020), is
faster than, and has a different time dependence to, the apparently constant early-time rate
of coalescence that has been observed in experiments (e.g. Paulsen et al. 2012; Chireux
et al. 2021). One possible reason for this discrepancy might be a finite separation between
the drops at the onset of coalescence, with some local surface deformation leading to
(local) contact: Anthony et al. (2020) showed numerically that such initial conditions
can give rise to a nearly constant early-time rate of coalescence, and Paulsen (2013)
suggests that there may have been a finite initial separation in his experiments. Due to
the micrometre scales of the initial contact region, it is difficult to observe directly the
initial conditions in experiments.

The drop profile at the onset of coalescence is determined by any deformation of
the drops prior to contact. At contact, there is a topological transition between disjoint
and connected drops. Singular problems such as the approach to transition often exhibit
self-similar behaviour (see Eggers & Fontelos 2005), in which case we would expect
a generic surface profile prior to contact that gives the surface profile at the onset of
coalescence. For example, the similar topological transition for capillary pinch-off of a
viscous drop has self-similar dynamics prior to pinch-off that sets the conical initial shapes
of the resulting drops at the onset of subsequent recoil (Lister & Stone 1998).

Experiments (Crassous et al. 1993) have shown that for drops that are effectively
stationary with any bulk motion occurring on a time scale much greater that the time
scale of local deformation, the drop surfaces deform due to van der Waals intermolecular
attraction across the gap between the drops. If the gap width is sufficiently small, then the
van der Waals attraction overcomes stabilizing effects, such as surface tension, inertia and
viscosity, to rapidly deform the drop surfaces into contact. This process is often known as
jump-to-contact. When the drops are surrounded by a viscous exterior fluid, the dynamics
is controlled by the thinning intervening sheet (Jones & Wilson 1978; Davis, Schonberg
& Rallison 1989; Jiang & James 2007; Chan, Klaseboer & Manica 2011; Duchemin &
Josserand 2020). When the sheet is much more viscous than the drops, the thinning
of the sheet is self-similar, with van der Waals attraction, surface tension and viscous
forces all acting at leading order (Zhang & Lister 1999; Vaynblat, Lister & Witelski
2001; Moreno-Boza, Martínez-Calvo & Sevilla 2020). However, such analyses are not
appropriate when the exterior fluid is effectively inviscid, including for jump-to-contact
between liquid drops in air (e.g. Chireux et al. 2018), and in atomic force microscopy of a
fluid, where understanding jump-to-contact is essential to prevent the wetting of the solid
probe (e.g. Ledesma-Alonso, Legendre & Tordjeman 2012; Quinn, Feng & Stone 2013).

For two very viscous drops in an effectively inviscid exterior fluid Beaty & Lister (2022)
(referred to henceforth as BL22) found that jump-to-contact is self-similar. The dynamics
is driven by the van der Waals attraction in a small neighbourhood of the tip, inducing
a flow in the drop that is resisted by viscosity. Surface tension does not act at leading
order, consistent with the description of jump-to-contact as occurring when the van der
Waals attraction is too great to be constrained by surface tension. The dynamics remains
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viscously dominated throughout jump-to-contact for drops with Ohnesorge number Oh ≡
μ/(ργ a)1/2 � 1, where μ is the dynamic viscosity, ρ is the density, γ is the surface
tension, and a is the radius of the unperturbed spherical drop profile. However, for only
moderately viscous fluid drops, Oh � 1, inertia becomes significant before contact is
reached.

In this paper, we elucidate the various dynamical regimes for jump-to-contact between
two drops in an effectively inviscid exterior fluid by including the inertia of the fluid within
the drops. There are distinct Stokes and inertial–viscous regimes in which either viscous
forces or both inertial and viscous forces are balanced with the driving van der Waals
force at leading order. As contact is approached, the dynamics is then given, respectively,
either by the viscous self-similar solution of BL22, or by a new self-similar solution in the
inertial–viscous regime. We argue that there is no distinct inertial regime.

In § 2, we formulate the problem, obtaining the general governing equations for
jump-to-contact. We also simplify the equations under a shallow-slope approximation that
is shown to hold initially. In § 3, we discuss the possible leading-order force balances
and scaling relations, and include a recap of numerical results for the Stokes regime
studied in our previous paper (BL22). We identify a possible new balance between inertial,
viscous and van der Waals forces, and predict its similarity scalings. In § 4, we perform
time-dependent simulations of jump-to-contact with inertia, and demonstrate that the
numerical results confirm the new predicted scalings. We conclude in § 5, where we give a
full description of the different dynamical regimes for jump-to-contact and the dynamics
in each regime. We also discuss how the results suggest new initial conditions for the
coalescence of two drops that differ from the condition of touching spheres often used in
models of coalescence.

2. Formulation of the problem

We consider the jump-to-contact dynamics between two identical drops of Newtonian fluid
in an effectively inviscid surrounding fluid. The drops are assumed to be sufficiently close
to each other for the van der Waals attraction between them to be significant. The van der
Waals attraction between the opposing drops draws them together, deforming them in the
process, until the separation between the drops is comparable to molecular length scales,
at which point the drops have effectively reached contact. Deformation of the drop profile
is resisted by surface tension. Throughout this paper, we assume that the unperturbed
drop radius a is much greater than the characteristic length scale of the van der Waals
attraction. The deformation to the drop radius due to the van der Waals attraction is then
small compared to the unperturbed radius and localized to some ‘near-contact’ region. We
focus on the deformation to the drops in the near-contact region, and neglect any bulk
motion due to the net attractive van der Waals force. In the experiments that motivate this
study (e.g. Paulsen et al. 2012; Chireux et al. 2018), the bulk motion is resisted by some
apparatus holding the drops on the macroscopic scale.

As the exterior fluid is effectively inviscid, there is no resistance to the contact dynamics
from the gap. In this case, contact is made at a single, central point determined by the
initial point of closest approach (Jiang & James 2006). We thus consider axisymmetric
point contact, as depicted in figure 1. We take a cylindrical coordinate system with the
plane z = 0 equidistant from both drops, the z axis through the centres of the drops, and a
radial coordinate r. The system has both up–down symmetry about z = 0 and axisymmetry
about r = 0. The total vertical gap width between the drops at some radius is 2h(r, t) � a,
with the surfaces of the drops at z = ±h. We will henceforth consider the evolution of the
surface z = h by utilizing the symmetry of the system.
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2h(r, t)z
r

n

Figure 1. Two drops with surfaces z = ±h(r, t) attracted by the van der Waals force across an inviscid gap.

The van der Waals attraction between the two drops arises from pairwise interactions
between molecules across the gap. The force experienced by one drop due to the presence
of the other can be expressed as an effective pressure Π , known as the ‘disjoining
pressure’, exerted by the gap on the surface of the drop. Thus the total forcing on the drop
due to the van der Waals attraction, surface tension and pressure in the gap is given by an
applied normal stress on the drop surface, expressed as a dynamic boundary condition

σ · n = −( pe + γ κ + Π)n on z = h, (2.1)

where σ is the stress tensor for the flow in the drop, n is the outward surface normal, pe is
the pressure in the gap, γ is the surface tension, and κ is the surface curvature. As the gap
is effectively inviscid, pe is constant and so can be set to zero.

The van der Waals attraction drives the dynamic jump-to-contact process through
gradients of the normal stress on the surface (2.1) which force a flow in the drop. The
flow satisfies the Navier–Stokes equations

ρ
∂u
∂t

+ ρu · ∇u = −∇p + μ∇2u, ∇ · u = 0. (2.2a,b)

The gap between the drops evolves according to the velocity on the surface of the drops,
as given by the kinematic boundary condition

∂h
∂t

+ ur
∂h
∂r

= uz on z = h, (2.3)

where ur and uz are the radial and vertical velocity components, respectively.
Conversely, when the normal stress on the surface is constant, there is no flow in the drop

and thus no surface evolution. This is consistent with experiments (e.g. Chireux et al. 2018)
that reveal that jump-to-contact between drops is preceded by a regime where the drop
surfaces are locally in a static equilibrium. In equilibrium, the gap profile is determined by
a balance between surface tension and van der Waals attraction in (2.1), with the constant
value of the normal stress set on the macroscopic scale by the capillary pressure 2γ /a due
to a spherical far-field shape. Analytical and numerical studies (Ledesma-Alonso et al.
2012; Quinn et al. 2013; Hilaire et al. 2020) show that such an equilibrium exists when
the separation between the drops is above a critical value. Below the critical separation,
no equilibrium is possible as the van der Waals attraction is sufficiently large that surface
tension is unable to restrain it. Motivated by these experimental and theoretical results, we
consider jump-to-contact as an instability between two drops where initially the van der
Waals attraction and surface tension are approximately in balance.

As jump-to-contact begins when the equilibrium balance fails, the initial length scales
of the near-contact region are given by the equilibrium balance between the van der Waals
attraction, surface tension and the constant capillary pressure set by the far field. The van
der Waals disjoining pressure between two surfaces separated by a gap of width 2h scales
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as A/h3 (Hamaker 1937), where A is the Hamaker coefficient. Here and later in this paper,
we use h, r and other terms in scaling arguments to denote the typical magnitudes of the
respective variables. The disjoining pressure in equilibrium is in balance with the surface
tension in the deformed region ∼γ h/r2 and the capillary pressure ∼γ /a, giving

h ∼ aH1/3, r ∼ aH1/6, (2.4a,b)

where the non-dimensional parameter

H = A
3πγ a2 (2.5)

represents the square of the molecular length scale relative to the drop radius. The
numerical factor 3π is included for later convenience. Typically, H is very small, H � 1.
For example, the silicone-oil drops used in the post-contact coalescence experiments of
Paulsen et al. (2012) have A = 10−20 J, γ = 0.02 Nm−1 and a = 0.001 m, which gives
H ≈ 5 × 10−14.

For H � 1, the gap-width scale is much shorter than the radial length scale, with
h/r ∼ H1/6 � 1. This suggests that the deformed surface profile has a shallow gradient,
∂h/∂t � 1, as is indeed confirmed by a full calculation of the equilibrium profile (e.g. see
Quinn et al. 2013). We therefore make a shallow-slope approximation that considerably
simplifies the disjoining pressure and the dynamics of jump-to-contact, as we will see in
the next subsection.

2.1. Shallow-slope approximation
For a drop with a shallow surface gradient, ∂h/∂r � 1, the van der Waals disjoining
pressure is given at leading order by the Derjaguin approximation (Derjaguin 1955)

Π = − A
6π(2h)3 . (2.6)

In this approximation, the disjoining pressure at some point r is given by the disjoining
pressure between two infinite, flat, parallel surfaces with separation 2h(r, t). The
Derjaguin approximation has been shown to give excellent agreement with full body-force
calculations in many problems similar to that considered in this paper, provided that
the shallow slope is maintained (e.g. Jiang & James 2006). Furthermore, under the
shallow-slope approximation, the curvature can be linearized to

κ = 1
r

∂

∂r
r

∂h
∂r

. (2.7)

The shallow-slope approximation also allows the geometry of the flow problem to be
simplified. As the flow in the drop is driven by gradients of the normal stress on the surface,
the characteristic flow length scale is given by the scale on which the surface stress varies,
that is, the radial scale r 	 h of the near-contact region. Thus the gap width 2h is small
compared to the flow length scale r, so the flow domain can be linearized to z > 0, with
boundary z = 0 and outward surface normal n = −ez. The flow problem reduces to the
flow in a half-space due to an applied normal stress on the surface. The evolution of the
gap width 2h influences the flow only though the dynamic boundary condition, with both
the surface tension and van der Waals disjoining pressure depending on it through (2.6)
and (2.7).
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It can also be shown that the nonlinear terms in (2.2a,b) and (2.3) can be neglected. As
∂h/∂r � 1, the consistent leading-order balance in the kinematic boundary condition (2.3)
is ∂h/∂t = uz, so the time scale for evolution of the gap width and contact is t ∼ h/u. The
relative sizes of the inertial terms in the Navier–Stokes equations can then be compared:

u · ∇u
∂u/∂t

∼ u2/r
u/(h/u)

∼ h
r

� 1. (2.8)

Consequently, the nonlinear term can be neglected in (2.2a,b) to give the unsteady Stokes
equations in z > 0:

ρ
∂u
∂t

= −∇p + μ ∇2u, ∇ · u = 0. (2.9a,b)

We non-dimensionalize the linearized problem according to the macroscopic scale of
the drop by scaling lengths with the drop radius a, velocities with a capillary speed γ /2μ,
pressures with a capillary pressure γ /2a, and time with aμ/γ . The numerical constants are
included for convenience. As the deformation due to van der Waals attraction is localized
to the small near-contact region of radius r � a, we define perturbations from the far field
by subtracting the spherical far-field profile (∼r2/2a for r � a) and the associated uniform
capillary pressure 2γ /a to obtain a local perturbation gap width d = 2h − r2/a and
perturbation pressure p − 2γ /a. Thus, using tildes temporarily to denote dimensionless
variables, we define

d̃ = 1
a

(
2h − r2

a

)
, (r̃, z̃) = (r, z)

a
, ũ = 2μu

γ
, p̃ = 2a

γ

(
p − 2γ

a

)
, t̃ = γ t

aμ
.

(2.10a–e)
The dimensionless governing equations (2.9a,b) in z̃ > 0 become

1
Oh2

∂ũ
∂ t̃

= −∇̃p̃ + ∇̃2ũ, ∇̃ · ũ = 0, (2.11a,b)

where the Ohnesorge number Oh ≡ μ/(ρaγ )1/2 relates viscous, inertial and surface
tension forces on the scale of the drop. The dynamic boundary condition (2.1) becomes

σ̃ · ez = −
(

1
r̃

∂

∂ r̃
r̃

∂ d̃
∂ r̃

− H
(d̃ + r̃2)3

)
ez on z̃ = 0. (2.12)

From now on, we drop the tildes. The coupled evolution of the surface is given by the
dimensionless kinematic condition

∂d
∂t

= uz on z = 0. (2.13)

The flow in the drop given by (2.11a,b) includes both viscosity and inertia. The relative
strength of the viscous and inertial terms, determined by the scales of the flow in the
near-contact region, sets the leading-order force balance for the flow in the drop. In the
next section, we investigate the different dynamical regimes for jump-to-contact that arise
depending on the dominant force balance.
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3. Dynamical regimes

To compare the relative strength of the viscous and inertial forces during jump-to-contact,
we define a Reynolds number R from the ratio of the inertial and viscous terms in the
unsteady Stokes equation (2.11a,b):

R ∼ 1
Oh2

∂u/∂t
∇2u

∼ 1
Oh2

u/t
u/r2 ∼ 1

Oh2
ur2

d
, (3.1)

where, as before, t ∼ d/u from the surface evolution, and Oh2 has taken the place of the
kinematic viscosity ν in the dimensionless equations. This Reynolds number is greater
by a factor r/d 	 1 than the usual Reynolds number, ur/Oh2, as the time scale ∼d/u of
the gap evolution is much less than the time scale ∼r/u of the flow in the drop. We term
R the ‘increased Reynolds number’, by analogy with the ‘reduced Reynolds number’ in
lubrication theory. To estimate the velocity scale in (3.1), we assume that it is given by a
viscous balance in (2.11a,b) between ∇2u and the pressure gradient ∇p. As van der Waals
attraction drives jump-to-contact, it must be included at leading order in any dynamical
regime, thus the pressure scales with the disjoining pressure and ∇p ∼ H/rd3. Therefore,
the viscous balance gives u ∼ Hr/d3, and the increased Reynolds number scales as

R ∼ H
Oh2

r3

d4 . (3.2)

The characteristic gap width d decreases during jump-to-contact. We therefore expect the
other scales of the flow, and consequently R, also to evolve.

From the increased Reynolds number, the dynamics can be classified into three distinct
possible regimes based on the current gap width and radial scale of the near-contact region,
and the fluid properties of the drop. When R � 1, the viscous forces are much greater than
the inertial forces, suggesting a Stokes regime where the flow in the drop is characterized
by viscous resistance to the van der Waals attraction. Conversely, when R 	 1, there is
a possible inertial regime where viscosity is negligible. Finally, when R ∼ 1, both inertia
and viscosity act at leading order. In general, R ∼ 1 could occur either as a transition
between the Stokes and inertial regimes, or as a distinct inertial–viscous regime with
a stable balance between the viscous, inertial and van der Waals forces. We assess this
possibility using scaling arguments in § 3.2.

At the onset of jump-to-contact, the gap width and radial scale are, respectively, d ∼
H1/3 and r ∼ H1/6, from (2.4a,b). Thus initially,

R ∼ H1/6

Oh2 . (3.3)

As discussed previously, H � 1 for the millimetre-scale fluid drops used typically in
jump-to-contact and drop-coalescence experiments. However, the Ohnesorge number Oh
and hence R can vary considerably. For example, the silicone-oil drops used in Paulsen
et al. (2012) had a range of viscosities such that 0.1 < Oh2 < 1000 and initially 10−5 <

R < 0.05; thus the jump-to-contact dynamics began in the Stokes regime. However, for
less viscous drops, inertia is significant from the outset: for example, millimetre drops of
water have R ∼ 450 initially.

In the following subsections, we first consider the Stokes regime for jump-to-contact,
before returning to the effects of inertia.
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Figure 2. Gap-width profile d(r, t) in the Stokes regime scaled by the initial gap-width and radial scales
(2.4a,b), and shown for minimum gap widths d0(t)/H1/3 = 0.9, 0.7, 0.5, 0.3, 0.1 and 10−8 corresponding
to times t = 0, 2.552, 3.372, 3.569, 3.604 and 3.605, respectively.

3.1. Stokes regime
In our previous paper (BL22), we examined the Stokes regime with R ≡ 0. As the van der
Waals attraction diverges as contact is approached, jump-to-contact is an example of a flow
with a finite-time singularity, hence we might expect self-similar behaviour (see Eggers &
Fontelos 2005). We searched for possible self-similarity with a power-law dependence on
the time until contact t′ by positing

r, z ∼ t′α, d ∼ t′β, u ∼ t′γ , (3.4a–c)

where the exponents α, β and γ are to be found. The gap-width evolution equation (2.13)
determines γ = β − 1. Then gradients of the van der Waals disjoining pressure scale with
time as ∇p ∼ 1/rd3 ∼ t′−α−3β , and viscous diffusion scales as ∇2u ∼ u/r2 ∼ t′β−1−2α .
Force balance for Stokes flow requires that the time exponents of these two terms match,
determining β in terms of α as β = (1 + α)/4. To fix both exponents, we would require
another term in the leading-order force balance. The only other force in the Stokes regime
(inertia being ruled out) is from surface tension. However, as jump-to-contact begins when
van der Waals attraction overcomes surface tension, it seems unlikely that surface tension
should act at leading order in any similarity solution. We thus seem to have a second-kind
similarity problem where the force balance does not fix the time exponent, which instead
must be selected by other means, for example by an existence condition (cf. capillary
pinch-off of viscous threads; Papageorgiou 1995).

In BL22, we performed full time-dependent simulations of jump-to-contact in the Stokes
regime, including surface tension. Figure 2 shows the evolution of the gap-width profile
d(r, t) at fixed values of the minimum gap width d0 ≡ d(0, t). Contact is made in finite
time, consistent with the definition of t′. Figure 3 shows how the maximum surface
velocity ḋ0 ≡ dd0/dt and a radial scale r∗, defined by ḋ(r∗, t) = ḋ0(t)/2, vary with the
minimum gap width d0 in log–log space. After an initial transient, ln |ḋ0| varies linearly
with −ln d0. The observed gradient is 2, suggesting that ḋ0 ∝ d−2

0 , which integrates to
give d0 ∝ t′1/3 as contact is approached. Similarly, −ln r∗ varies linearly with gradient 1,
therefore r∗ ∝ d0 ∝ t′1/3. The clear power-law behaviour is consistent with the self-similar
scalings (3.4a–c) for the value α = 1/3.

With α = 1/3, the curvature scales as κ ∼ t′−1/3. Thus the surface tension is indeed
much weaker than the disjoining pressure Π ∼ t′−1 as contact is approached, and as
expected, is therefore not part of the leading-order force balance. Neglecting surface
tension, we found an analytic solution for the self-similar Stokes flow and gap-width profile
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Figure 3. The evolution in the Stokes regime of ln |ḋ0| (solid line) and − ln r∗ (dashed line) plotted against
−ln d0(t). After the initial transient, the solid line has gradient 2, and the dashed line has gradient 1.

with α = 1/3. Remarkably, the similarity profile is an exact hyperbola:

d(r, t′) = (d0(t′)2 + θ2r2)1/2, d0(t′) =
(

3H t′

2θ

)1/3

, (3.5a,b)

where θ is a constant defined by limr→∞ ∂d/∂r → θ . The value of θ in (3.5a,b)
is arbitrary; it is determined by the specific choice of initial conditions. Whilst the
exact processes that set θ were not investigated fully, the time-dependent simulations
demonstrated that the initial curvature at the origin strongly influenced the observed value
of θ , and hence the aspect ratio of the similarity solution. As there is some memory
of initial conditions in the similarity solution, viscous jump-to-contact is an example of
non-universal self-similarity.

We argued in BL22 that the value α = 1/3 is selected by the regularity condition of
finite curvature at r = 0, which physically is enforced by surface tension, even though
surface tension is not part of the leading-order force balance. (A loose analogy might be
drawn with finger-width selection for vanishing surface tension in the Saffman–Taylor
problem.) Selection of α = 1/3 by regularity at r = 0 is supported first by the fact
that solutions to the similarity equations for α /= 1/3 are non-smooth at the origin, for
example as shown in figure 4 for α = 0.44. Second, in time-dependent simulations with
no surface tension and non-smooth initial conditions, the gap profile converges to one
of these non-smooth similarity solutions. Finally, in recent unpublished time-dependent
simulations with surface tension and a generalized disjoining pressure Πq ∝ −d−q, we
have found convergence to smooth self-similar solutions with irrational exponents α and
β = (1 + α)/(1 + q), where α(q) is determined by regularity at r = 0, and α /=β for
q /= 3.

We note that the similarity solution (3.5a,b) has the same time scaling for both
the gap-width and radial scales, thus d/r remains of constant magnitude. Thus as the
shallow-slope approximation d/r � 1 is initially valid for H � 1, it remains valid
throughout jump-to-contact in the Stokes regime.

An important inference from BL22 for the purposes of this paper is that in the Stokes
regime with self-similar behaviour (3.5a,b), the increased Reynolds number evolves as

R ∼ H1/6

Oh2 t′−1/3. (3.6)
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Figure 4. Plot of two solutions to the similarity equations (equation (9) in BL22) for the gap profile in the
Stokes regime with different α. The profile for α = 0.44 is not smooth at r = 0, but the profile for the selected
value α = 1/3 is.

Thus even if viscosity is initially dominant (Oh2 	 H1/6), there is a crossover time
t′c ∼ H1/2/Oh6 at which R is order 1 and inertia becomes significant. At crossover, the
minimum gap width scales as d0 ∼ H1/3tc′1/3 ∼ H1/2/Oh2, which is potentially very
small. From (2.5) and (2.10a–e), H1/2 is the non-dimensionalized molecular length scale
for the drop, thus the continuum approximation fails when d0 ∼ H1/2. For the purposes
of continuum-scale modelling, inertia is significant only if the crossover gap width is
reached before the continuum approximation fails, H1/2/Oh2 	 H1/2. We conclude
that for moderately viscous drops with Oh2 � 1, inertia is negligible throughout the
jump-to-contact dynamics, but for less viscous drops with Oh2 � 1, inertia becomes
significant before contact is reached.

3.2. Inertial–viscous regime
We now consider the possibility of a stable balance between inertial, viscous and van der
Waals forces for R ∼ 1. Setting R ∼ 1 in (3.2) gives a scaling relation for the radial length
scale in terms of the gap width:

H
Oh2

r3

d4 ∼ 1 =⇒ r ∼ Oh2/3

H1/3 d4/3. (3.7)

As before, the velocity scales as u ∼ Hr/d3. With the radial length scale (3.7), the velocity
scales with the gap width as u ∼ Oh2/3 H2/3/d5/3. Then the kinematic condition (2.13)
can be integrated,

∂d
∂t

∼ Oh2/3 H2/3d−5/3 =⇒ d ∼ Oh1/4 H1/4t′3/8, (3.8)

to give the dependence of the gap width on the time until contact t′. We note that the
three-way force balance in an inertial–viscous regime fixes both the time exponent and
the parametric dependence to give a first-kind similarity problem. Substituting the scaling
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(3.8) for the gap width back into the radial and velocity scales gives

d ∼ Oh1/4 H1/4t′3/8, r ∼ Oh t′1/2, u ∼ Oh1/4 H1/4t′−5/8. (3.9a–c)

When determining (3.9a–c), we did not include the surface tension in the leading-order
force balance. From (3.9a–c), the curvature increases as κ ∼ d/r2 ∼ Oh−7/4 H1/4t′−5/8,
and the disjoining pressure increases as Π ∼ H/d3 ∼ Oh−3/4 H1/4t′−9/8. We see that the
growth of the disjoining pressure is stronger than the growth of the surface tension as
t′ → 0. Therefore, as surface tension is initially no greater than the disjoining pressure, it
can be neglected.

We also consider the validity of the shallow-slope approximation in an inertial–viscous
regime. With scalings (3.9a–c), the surface gradient is ∂d/∂r ∼ (H/Oh2 d)1/3. Thus the
shallow-slope approximation ∂d/∂r � 1 remains valid until the gap width d shrinks
to ds ∼ H/Oh2. We compare ds to the molecular length scale H1/2. For Oh2 � H1/2,
the critical gap width ds � H1/2 is therefore not reached on continuum scales, so the
shallow-slope approximation remains valid throughout jump-to-contact. We note that
H1/2 � 1 is typically very small, for example H1/2 ≈ 2 × 10−7 for millimetre-scale
drops, so the condition Oh2 � H1/2 is satisfied by drops with even fairly low viscosity,
including millimetre drops of water that have Oh2 ≈ 10−5.

The arguments within this subsection have identified the possible scaling behaviour of
an inertial–viscous regime and demonstrated that it is consistent with the shallow-slope
approximation. We have not yet demonstrated such a regime to exist or be stable. In § 4,
we describe numerical simulations to investigate the inertial–viscous regime further.

3.3. Inertial regime
For R 	 1, viscosity is negligible at leading order and there is a two-way force balance
between inertia and van der Waals attraction. We again posit time-dependent scalings of
the form (3.4a–c) with γ = β − 1 from the kinematic boundary condition (2.13). The
inertial and pressure terms in (2.11a,b) scale as ∂u/∂t ∼ t′β−2 and ∇p ∼ t′−3β−α , thus
equating time exponents gives β = (2 − α)/4 and consequently

r, z ∼ t′α, d ∼ t′(2−α)/4, u ∼ t′−(2+α)/4. (3.10a–c)

As in the Stokes regime, the time-dependent scalings in the inertial regime are
under-determined with α not being fixed by the force balance. We defer further discussion
of a possible inertial regime to § 4.3.

4. Numerical simulations of jump-to-contact with inertia

4.1. Method
We now consider time-dependent simulations of the full unsteady Stokes equations
(2.11a,b)–(2.13). Motivated by the possibility of an inertial–viscous balance, we scale the
dimensionless parameters H and Oh out of the problem according to (3.9a–c), and define
rescaled variables

d̄ = d
Oh1/4 H1/4 , (r̄, z̄) = (r, z)

Oh
, ū = u

Oh1/4 H1/4 , p̄ = Oh3/4

H1/4 p. (4.1a–d)

The unsteady Stokes equations (2.11a,b) in z̄ > 0 become

∂ū
∂ t̄

= −∇̄p̄ + ∇̄2ū, ∇̄ · ū = 0. (4.2a,b)
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As surface tension is negligible in an inertial–viscous regime, the dynamic boundary
condition (2.12) is given by the disjoining pressure at leading order:

σ̄ · ez = 1
d̄3

ez on z̄ = 0. (4.3)

From now on, we drop the bars on the rescaled variables.
We solve (4.2a,b) as an evolution equation for the velocity due to the instantaneous

pressure gradient ∇p and viscous diffusion ∇2u. As the fluid is incompressible, ∇ · u = 0,
the velocity field can be expressed in terms of a Stokes streamfunction Ψ with
u = ∇ × (Ψ eθ /r). Furthermore, taking the divergence of (4.2a,b) shows that ∇2p = 0.
Thus ∇p is also divergence-free and so can also be expressed in terms of a vector potential.
As the problem is axisymmetric, this vector potential can be expressed in terms of a scalar
function Φ with ∇p = ∇ × (Φeθ /r). Using the functions Ψ and Φ, the unsteady Stokes
momentum equation (4.2a,b) can be uncurled to give

∂Ψ

∂t
= −Φ + E2Ψ + c1, (4.4)

where E2 ≡ ∂2/∂r2 − r−1 ∂/∂r + ∂2/∂z2, and c1 is an arbitrary constant that gives no
flow and so can be set to 0 without loss of generality.

We view (4.4) as a forced diffusion equation for the Stokes streamfunction Ψ , and hence
the velocity. The viscous diffusion term E2Ψ is given instantaneously by the current
streamfunction field. The instantaneous forcing Φ can be determined from the current
streamfunction field and the gap profile by the dynamic boundary condition as follows. By
the substitution of σ = −pI + ∇u + (∇u)T into (4.3), where I is the identity matrix, we
obtain

p = 2
∂uz

∂z
− 1

d3 on z = 0. (4.5)

The Stokes streamfunction Ψ determines the viscous normal stress 2 ∂uz/∂z, hence the
pressure p is known on z = 0. As the pressure is harmonic (∇2p = 0), it is determined
throughout z > 0 by its value on z = 0. Thus the pressure is known everywhere, thence
the vector potential for ∇p, and hence Φ, can be found everywhere. We present further
details and an explicit boundary integral representation of Φ in Appendix A.

The normal component of the dynamic boundary condition (4.3) is enforced when
determining Φ. However, the tangential component remains and is applied as a boundary
condition to (4.4). In terms of the Stokes streamfunction, this yields

∂

∂r
1
r

∂Ψ

∂r
− 1

r
∂2Ψ

∂z2 = 0 on z = 0. (4.6)

The gap-width evolution, and hence the evolution of the disjoining pressure, is described
by the kinematic equation (2.13), given in terms of the Stokes streamfunction Ψ as

∂d
∂t

= 1
r

∂Ψ

∂r
on z = 0. (4.7)

Equations (4.4)–(4.7), together with those in Appendix A, are sufficient to determine the
evolution of p, Φ, Ψ and d.

We performed numerical simulations of (4.4)–(4.7) on an adaptive grid with tighter
spacing of grid points in the centre and increasing spacing with distance, chosen both
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Figure 5. Evolution with inertia under (4.4)–(4.7) of the initial gap-width profile d(r, 0) = (1 + 0.4r2)1/2

with inertia, shown (from top to bottom) at minimum gap widths d0(t) = 1, 0.7, 0.3, 0.2, 0.1 and 10−8. The
corresponding times are t = 0, 1.085, 1.464, 1.490, 1.502 and 1.504.

to resolve the radial length scale of the near-contact region and to capture the far-field
behaviour. At a given time, the forcing term Φ in (4.4) is calculated at each grid point
by the integrals (A8)–(A10) using the current values of the Stokes streamfunction Ψ and
gap-width profile d. The viscous term E2Ψ is calculated using central differencing and the
boundary condition (4.6). Given Φ and E2Ψ , the Stokes streamfunction Ψ is advanced
on the grid by time stepping (4.4) using the forward Euler method. The gap width d
is advanced likewise by (4.7). Throughout the dynamics, the grid is rescaled adaptively
to maintain a good resolution of the evolving length scale of the flow, with Ψ and d
interpolated at new grid points using a quintic spline. Further details of the numerical
scheme are given in Appendix B. Also included in the appendix is a verification of the
numerical parameters that we used in the simulations.

4.2. Results
We took initial conditions with no flow in the drops and prescribed gap-width profiles,
with results from a wide range of initial profiles presented below. We note that the initial
size of the increased Reynolds number R is determined by the gap width d and radial
length scale r of the initial profile by (3.2), which becomes R ∼ r3/d4 in the rescaled
variables defined by (4.1a–d).

We first considered evolution from an initial gap-width profile d(r, 0) = (1 + 0.4r2)1/2.
This choice has increased Reynolds number R ∼ 4 and thus dynamics that are initially in
the inertial–viscous regime. The evolution of the gap-width profile is shown at selected
times in figure 5, with contact made in finite time. To examine the predicted self-similar
behaviour, we show in figure 6 the evolution of ln |ḋ0| with −ln d0 (a proxy for time until
contact t′). After the initial transient, there is a clear linear relationship between the two
quantities, with gradient 5/3. This relationship implies that ḋ0 ∝ d−5/3

0 , which can be
integrated to give d0 ∝ t′3/8 and ḋ0 ∝ t′−5/8. Thus the observed time dependence of both
the velocity and the gap width matches the scaling behaviour (3.9a–c) expected in an
inertial–viscous regime. To examine the evolution of the radial length scale of the flow,
we define r∗ to be the radius at which the surface velocity is half its maximum value,
ḋ(r∗, t) = ḋ0(t)/2. The observed surface velocity is peaked at r = 0 (e.g. see figure 10),
which suggests that r∗ gives a characteristic radial scale for the near-contact region. We
also show in figure 6 the evolution of −ln r∗ with −ln d0. After the initial transient, there is
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Figure 6. The evolution of ln |ḋ0| (solid line) and −ln r∗ (dashed line) with −ln d0(t) for the initial gap-width
profile d(r, 0) = (1 + 0.4r2)1/2. The characteristic radial length scale r∗ is defined by ḋ(r∗, t) = ḋ0(t)/2. After
the initial transient, the solid line tends to a constant gradient 5/3 and the dashed line tends to a constant
gradient 4/3, consistent with the predicted inertial–viscous regime.

again a linear relationship with a different gradient, 4/3, which implies r∗ ∝ d4/3
0 ∝ t′1/2.

Thus the observed radial length scale also agrees with the expected scaling behaviour
(3.9a–c) in the inertial–viscous regime.

Having established the adherence of the numerical simulations to the scaling relations
(3.9a–c), we solved directly for the corresponding self-similar solutions in similarity
variables d/d0, r/d4/3

0 and u/d−5/3
0 . We used an iterative procedure, starting from an

initial guess, in which each iteration consisted of taking a fixed number of steps (1000)
with the time-dependent code on a fixed grid, followed by a rescaling of all variables
with the relevant power of d0. We continued to iterate until the gap width d/d0 at
radius r/d4/3

0 = 40 did not change by more than 10−6 in one iteration, with d0 more
than halving in this time. The self-similar gap-width profile, shown in figure 7 (dashed
line), is quadratic near r = 0 with d/d0 ≈ 1 + 0.076r2/d8/3

0 , and has d/d0 ≈ 0.57r3/4/d0
in the far field. Figure 7 also shows the evolution of the gap-width profile in similarity
variables, from time-dependent simulations of initial profiles d(r, 0) = (1 + 0.4r2)1/2 and
d(r, 0) = (1 + 0.04r2)1/2. There is clear convergence to the same self-similar profile from
both sides, confirming that the dynamics of jump-to-contact in the inertial–viscous regime
is self-similar as contact is approached. Convergence to the same solution from both these
initial conditions suggests that it is stable and universal.

To investigate further the universality of this solution, we considered the evolution of the
rescaled characteristic radius r∗/d0(t)4/3, which must converge for any similarity solution,
for a range of initial profiles. Figure 8 shows that in each case, r∗/d0(t)4/3 converges to the
same value ≈2.94 observed in the self-similar solution, providing further strong evidence
that the self-similar solution shown in figure 7 is universal. We note that the initial profiles
considered have a wide range of radial length scales, corresponding to several orders of
magnitude of initial reduced Reynolds numbers, 0.1 � R � 4000. Figure 8 also shows
that the manner in which r∗/d0(t)4/3 converges is very similar in simulations with initial
profiles d(r, 0) = (1 + 0.4r2)1/2 and d(r, 0) = 1 + 0.2r2, which have the same quadratic
behaviour, and hence radial scale, at r = 0, but are linear and quadratic in the far field,
respectively. This suggests that the dynamics is determined primarily by the surface profile
near r = 0.
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Figure 7. The evolution of the rescaled gap-width profile d(r, t)/d0(t) plotted against the rescaled radial
variable r/d0(t)4/3 for initial profiles (a) d(r, 0) = (1 + 0.4r2)1/2, and (b) d(r, 0) = (1 + 0.04r2)1/2. The
profiles are shown (solid lines) at minimum separations (a) d0(t) = 1, 0.03, 0.003, 10−4, 10−6, 10−9, and
(b) d0(t) = 1, 0.2, 0.005, 10−4, 10−6, 10−9. In both cases, the profiles converge to the same self-similar solution
(dashed lines).
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Figure 8. Evolution of the parameter r∗/d0(t)4/3 with −ln d0(t) for various initial gap profiles. In each case,
there is convergence to r∗/d0(t)4/3 ≈ 2.94 (dashed line) corresponding to the similarity profile shown in
figure 7. (a) Initial profiles d(r, 0) = (1 + 0.4r2)1/2 (solid line) and d(r, 0) = 1 + 0.2r2 (dot-dashed line)
have the same curvature near r = 0 but are linear and quadratic in the far field, respectively. In these cases,
r∗/d0(t)4/3 converges in a very similar manner. (b–d) Initial profiles d(r, 0) = (1 + 4r2)1/2, (1 + 0.04r2)1/2

and (1 + 0.004r2)1/2, respectively, show the effect of increasing the initial increased Reynolds number R.

Furthermore, we can show that the decay to the similarity solution shown in figure 8 is
algebraic with a constant exponent by plotting the evolution of ln(r∗/d4/3

0 − 2.94) against
−ln d0(t) in figure 9. After the initial transient, there is a linear relationship with gradient
approximately −1/5. Thus perturbations to the self-similar solution decay as d1/5

0 ∝ t′3/40

as contact is approached. We do not have a theoretical argument for −1/5, and it may be
that ≈ − 0.2 is just the least stable eigenvalue in a system of stable modes (for a similar
problem, cf. Sierou & Lister 2003).

Finally, we examine the flow in the drop in the inertial–viscous regime using the
self-similar solution for the Stokes streamfunction Ψ and gap-width profile d. Figure 10
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Figure 9. Evolution of ln(r∗/d4/3
0 − 2.94) with −ln d0(t) for initial gap profiles (a) d(r, 0) = (1 + 0.4r2)1/2,

and (b) d(r, 0) = (1 + 0.04r2)1/2. After the initial transient, the lines tend to a constant gradient of
approximately −1/5.
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Figure 10. (a) Streamlines (solid lines) of the Stokes streamfunction Ψ and contours of the vorticity ω for the
inertial–viscous self-similar flow inside the drop. (b) The inertial–viscous similarity solution for the normal
velocity uz(r, 0), tangential velocity ur(r, 0), vorticity ω(r, 0), and van der Waals disjoining pressure Π =
−1/d(r)3 on the surface of the drop.

shows the streamlines of Ψ in similarity variables, as well as the vertical velocity uz(r, 0)

and tangential velocity ur(r, 0) on the surface, and the van der Waals disjoining pressure
Π = −1/d(r)3. The van der Waals attraction drives a predominantly vertical flow with a
small radial correction towards the origin. Vorticity ω ≡ ∂ur/∂z − ∂uz/∂r, shown both on
z = 0 and in the drop, is generated along z = 0 and is maximum at an order 1 distance
away from r = 0 in the similarity frame, corresponding approximately to the inflection
point in the gap-width profile. The vorticity diffuses into the drop and is also advected
outwards in the similarity frame as the shrinking flow length scales leave the vorticity
behind in the far field.

4.3. Inertial regime
To investigate the possibility of an inertial regime, we attempted time-dependent
simulations as in § 4.2 for purely inviscid drops, setting the viscous terms E2Ψ in the
governing equation (4.4) and 2∂uz/∂z in the dynamic boundary condition (4.5) to zero.
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Figure 11. Diagram showing how the dynamical regime of jump-to-contact changes as the minimum
dimensional gap width d0(t) decreases for different Ohnesorge numbers Oh2 for fixed H = 5 × 10−14 and
d0(0) = aH1/3. For Oh2 	 H1/6 ≈ 0.006, the dynamics is initially in the Stokes regime, with, for Oh2 � 1,
a transition to the inertial–viscous regime when d0(t) ∼ aH1/2/Oh2. For Oh2 � H1/6, the dynamics is in the
inertial–viscous regime throughout. At the dotted line, the minimum gap width reaches molecular length scales
and the drops effectively reach contact.

We found the inviscid dynamics to be unstable, with the radial length scale r of the
near-contact region quickly shrinking and becoming arbitrarily small relative to the gap
width d. In these simulations, the observed radial length scale was regularized numerically
only by the minimum grid spacing. In real drops, one would expect there to be some
physical process that provides a short wavelength cut-off and regularizes the instability.
In particular, for any small but non-zero viscosity, there is a radial length scale on which
viscosity cannot be neglected, thus providing a cut-off scale at which the dynamics enters
the inertial–viscous regime. We therefore conclude that there is no distinct inertial regime
of jump-to-contact. Indeed, as shown in figure 8, in time-dependent simulation from
d(r, 0) = (1 + 0.004r2)1/2 with very large, but finite, initial increased Reynolds number
R ∼ 4000, viscosity quickly became significant, with the increased Reynolds number
suggesting that the inertial–viscous regime was reached before the minimum separation
d0 had decreased by one order of magnitude. Subsequently, the dynamics converged to the
inertial–viscous similarity solution.

5. Discussion

We have shown that for jump-to-contact due to van der Waals attraction between fluid
drops separated by an effectively inviscid exterior fluid, there are two distinct dynamical
regimes distinguished by the forces – viscosity, or viscosity and inertia – that act at
leading order alongside the strong van der Waals attraction. In each case, surface tension is
negligible as contact is approached. The regimes are classified by an ‘increased’ Reynolds
number R ∼ Har3/Oh2 d4, which depends on the fluid properties through the ratio of the
molecular and drop length scales H1/2 and the Ohnesorge number Oh, and on the current
dimensional gap width d and radial length scale r. As the length scales of the near-contact
region evolve during jump-to-contact, R is not constant, thus the dynamical regime can
change over time. Figure 11 shows the different dynamical regimes and how, depending
on the Ohnesorge number, the relevant regime changes as the gap width decreases.

Viscous drops with Oh2 	 H1/6 are initially in the Stokes regime, with R � 1 and a
leading-order force balance between viscosity and van der Waals attraction. BL22 showed
that in this regime, the dynamics is given by a non-universal self-similar solution as contact
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is approached, with the gap-width and radial length scales both decreasing with the same
t′1/3 time dependence for time until contact t′. As both the gap-width and radial scales have
the same time dependence, there is no interfacial steeping as contact is approached. Thus
the gradient of the gap-width profile, which is initially shallow for H � 1, remains shallow
throughout, in spite of the diverging van der Waals attraction. However, the divergence of
the velocity outpaces the decrease of the flow length scale such that the inertia in the drop
becomes increasingly significant. For moderately viscous drops with H1/6 � Oh2 � 1,
inertia becomes significant before contact, and a new, inertial–viscous, dynamical regime
then takes over. Drops with Oh2 � 1 remain in the Stokes regime until contact.

Conversely, for less viscous drops with Oh2 � H1/6, the dynamics is in an
inertial–viscous regime throughout jump-to-contact, with R ∼ 1 and a three-way
leading-order force balance between inertia, viscosity and van der Waals attraction. For
initial increased Reynolds number R 	 1, where viscous forces in the drop are initially
much weaker than inertia, the radial length scale of the near-contact region decreases
rapidly until R ∼ 1 and viscosity becomes significant. In the inertial–viscous regime, we
have shown that there is a unique self-similar solution for the jump-to-contact dynamics,
with the dimensional gap width d and radial length scale r decreasing as

d ∼ a Oh1/4 H1/4
(

γ t′

aμ

)3/8

, r ∼ a Oh
(

γ t′

aμ

)1/2

, (5.1a,b)

with time until contact t′. The similarity solution is seen to be stable in time-dependent
simulations, and gives the generic behaviour as contact is approached. The three-way force
balance does not admit any scaling symmetry, other than a rescaling of t′, which provides
some justification for the uniqueness of the self-similar behaviour, and contrasts with
the Stokes regime, where a time-independent radial rescaling gives rise to non-universal
behaviour.

In the inertial–viscous regime, there is some interfacial steeping as contact is
approached, with d/r ∝ t′−1/8. However, the growth rate is sufficiently weak that the
gradient of the gap-width profile remains shallow, d/r � 1, throughout jump-to-contact
for all but the least viscous drops, failing only if Oh2 �H1/2, where H1/2 ≈ 2 × 10−7 �1
for millimetre-scale drops.

The jump-to-contact dynamics sets the surface profile of the drops at the point of contact
and gives an initial profile on scales smaller than (2.4a,b) for the subsequent coalescence
of the drops. The radial length scale of the near-contact region vanishes at contact, leaving
behind the far field of the similarity solution as the surface profile. For less viscous drops
with Oh2 � 1, the dynamics preceding contact is in the inertial–viscous regime, thus
in dimensional variables, the gap-width profile at contact is d ≈ 0.57(H/Oh)1/4a1/4r3/4.
Conversely, for more viscous drops with Oh2 � 1, BL22 found that the Stokes regime
gives a conical profile at contact, with the O(H1/6) angle set by the initial conditions of
jump-to-contact. The surface profile in each regime is shown in figure 12.

There are no images of the drop profile on the length scale of this near-contact region
during the very early stages of coalescence to confirm either of these initial profiles.
However, both of these profiles would lead to slower rates of coalescence than would be
expected for touching spheres: the driving surface tension in both cases is less effective as
the curvature of the meniscus at the edge of the contact patch is smaller when matching to a
far-field wedge from the Stokes regime than to a cusp, and smaller again when matching to
the h ∝ r3/4 profile from the inertial–viscous regime. The early-time rate of coalescence on
scales smaller than (2.4a,b) would still be proportional to −log t with these initial profiles,
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Figure 12. The surface profiles after (a) inertial–viscous and (b) viscous jump-to-contact on the scale of the
initial gap-width and radial length scales. The profile in each case is given by the outer behaviour of the
self-similar solution, with (a) h ∝ r3/4, and (b) h ∝ r. Note that in (b), the angle of the cone is arbitrary due to
the non-universality of the self-similar behaviour in the Stokes regime.

but with a smaller coefficient, which may partly help to explain the slower-than-expected
early-time rates of coalescence observed in experiments (e.g. Paulsen et al. 2012, 2013).

We began the modelling in § 2 by considering two identical spheres with some small
deformation. However, since the radial length scale decreases rapidly as contact is
approached, the original gap-width profile is asymptotically negligible. Thus the analysis
in this paper applies equally to jump-to-contact between fluids of any smooth shape across
an inviscid gap, and jump-to-contact between a viscous fluid and a solid object. For
example, the dynamics of jump-to-contact in atomic force microscopy will also follow
the physical regimes and self-similar behaviour given in this paper.
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Appendix A. Calculation of Φ

To calculate the evolution of the streamfunction Ψ from (4.4), we need to know the vector
potential Φeθ /r for ∇p in z ≥ 0. In this appendix, we show how to determine Φ from the
pressure p on z = 0, which is known from (4.5).

The pressure p satisfies Laplace’s equation ∇2p = 0 in z > 0, with p regular on z = 0
and p = o(|x|) as |x| → ∞. Thus p in z > 0 can be expressed as a boundary integral over
z′ = 0,

p(x) = −
∫

z′=0
p(x′)

∂H(x′, x)

∂z′ dS′, (A1)

where H is the Green’s function for Laplace’s equation that satisfies H = 0 on z = 0, given
by

H(x′, x) = − 1
4π

(
1

|x′ − x| − 1
|x′ − x + 2zez|

)
. (A2)
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Here, the primes denote dummy variables. As the pressure is axisymmetric about the z
axis, the azimuthal integral in (A1) can be calculated analytically to give

p(r, z) = 2z
π

∫ ∞

0

p(r′, 0) r′ E(k)
[(r − r′)2 + z2][(r + r′)2 + z2]1/2 dr′ for z > 0, (A3)

where k2 = 4rr′/(z2 + (r + r′)2), and E(k) is the complete elliptic integral of the second
kind.

The integral (A3) has an integrable singularity at r′ = r as z → 0, which we can remove
analytically as follows. We note that a constant pressure satisfies both Laplace’s equation
and the far-field and regularity conditions required in the derivation of (A3). We can thus
set p = 1 in (A3) to obtain the identity

2z
π

∫ ∞

0

r′ E(k)
[(r − r′)2 + z2][(r + r′)2 + z2]1/2 dr′ = 1. (A4)

The integrable singularity in (A3) is then removed by writing

p(r, z) = p(r, 0) + 2z
π

∫ ∞

0

[p(r′, 0) − p(r, 0)]r′ E(k)
[(r − r′)2 + z2][(r + r′)2 + z2]1/2 dr′. (A5)

The pressure in z > 0 is thus specified by its value on the boundary z = 0, as given
by the normal component of the dynamic boundary condition (4.5). We now wish to
determine the scalar field Φ, which is defined, like a streamfunction for the solenoidal
∇p, by ∇ × (Φeθ /r) = ∇p.

As ∇p is also irrotational, ∇ × ∇ × (Φeθ /r) = 0, which for axisymmetric Φ yields the
azimuthal equation (

∇2 − 1
r2

)
Φ

r
≡ 1

r
∇2Φ − 2

r2
∂Φ

∂r
= 0. (A6)

The definition of Φ gives ∂Φ/∂r = r ∂p/∂z, so (A6) implies that ∇2Φ = 2 ∂p/∂z. We
note also that ∇2(zp) = 2 ∂p/∂z as p and z are harmonic. Combining these results, we
obtain finally

∇2(Φ − zp) = 0. (A7)

Having shown that Φ − zp is harmonic as well as p, we can re-use (A5) to write down a
boundary integral expression for Φ:

Φ(r, z) − z p(r, z) = Φ(r, 0) + 2z
π

∫ ∞

0

[Φ(r′, 0) − Φ(r, 0)]r′ E(k)
[(r − r′)2 + z2][(r + r′)2 + z2]1/2 dr′. (A8)

Thus Φ(r, z) can be determined from p(r, z) and the values of Φ(r, 0) on the boundary.
As noted previously, ∂Φ/∂r = r ∂p/∂z, which we integrate along the boundary to obtain

Φ(r, 0) =
∫ r

0
r′ ∂p

∂z

∣∣∣∣
(r′,0)

dr′ + Φ(0, 0). (A9)

Setting Φ(0, 0) = 0 is equivalent to setting the arbitrary constant c1 = 0 in (4.4), which,
as mentioned previously, makes no difference to the flow.
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Finally, we note that the value of ∂p/∂z on z = 0 can be obtained from (A5). The integral
in (A5) converges absolutely, so the normal derivative can be taken inside the integral to
give

∂p
∂z

= 2
π

lim
z→0

∫ ∞

0

∂

∂z
z[p(r′, 0) − p(r, 0)]r′ E(k)

[(r − r′)2 + z2][(r + r′)2 + z2]1/2 dr′ on z = 0. (A10)

Given the pressure on the boundary from the normal component of the dynamic
boundary condition (4.5), ∂p/∂z on z = 0 is determined by (A10). This, in turn, determines
Φ on z = 0 through (A9). Furthermore, the boundary pressure determines p in z > 0
through (A5). Finally, Φ is determined throughout z > 0 from its boundary value and
the pressure field by (A8). Thus Φ is determined completely by the normal component of
stress on the boundary.

Appendix B. The numerical scheme

In this appendix, we provide further details of the numerical methods and parameters used
in the simulations of § 4.

At each time step, the current values of the Stokes streamfunction Ψ are known on a
grid, with the gap-width profile also known at the grid points along z = 0. We calculate
the viscous diffusion E2Ψ at each grid point using five-point central finite differencing.
Symmetry on r = 0 and the tangential dynamic boundary condition (4.6) on z = 0 are used
to calculate the normal derivatives on the respective boundaries. The derivatives required
for the normal surface velocity uz = −r−1 ∂Ψ/∂r on z = 0 and the normal viscous surface
stress 2 ∂uz/∂z = −2r−1 ∂2Ψ/∂r ∂z on z = 0 are calculated likewise.

The forcing term Φ in (4.4) is calculated at each grid point using the integrals
(A8)–(A10), with the pressure on the boundary known from (4.5), as follows. We use
Simpson’s method to integrate between consecutive grid points, evaluating the integrand
at an adaptive number of subdivision points where the values of p(r, 0) and Φ(r, 0)

are interpolated using a quintic spline. The number of subdivision points is doubled
successively until the relative change to the result when doubling is less than 10−7. We
restrict the integration range to the finite grid, and note that the contribution to each
integral from r > rmax, for maximum grid extent rmax, is less than r∗/rmax times the
leading-order contribution from near r = 0, where r∗ is the radial length scale of the
near-contact region.

We time march the Stokes streamfunction Ψ and gap width d using the forward Euler
method. We take the time step to be the minimum of d0/200ḋ0 and Δ2/8, where Δ is
the minimum separation between grid points. The first condition ensures that the surface
does not evolve by more than 0.005 % of its current value in any time step, and the second
ensures that the forward Euler scheme is numerically stable.

We continue to time step the solution on the same grid until the minimum gap width d0
reaches 90 % of its starting value on the current grid. We then update the grid by rescaling
both the vertical and radial directions with a characteristic radius r∗, defined as in § 4.2 as
the radius at which the vertical velocity on z = 0, which is peaked around r = 0, is half of
its maximum value: ḋ(r∗, t) = ḋ0(t)/2. We use a quintic spline to interpolate the Stokes
streamfunction Ψ and the gap width d on the new grid.

For the simulations presented in this paper, we used a grid obtained from a fixed grid
{(ηi, ηj)}0≤i,j≤n with uniform spacing δη by the map

ri = R(t) sinh(ηi), zj = R(t) ηj, (B1a,b)
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where R(0) is an initial parameter, and R(t) is determined by the rescaling procedure
given above. We took δη = 0.075, n = 135 and R(0) = 0.5. To verify these choices
of grid parameters, we individually varied δη, n and R(0), and considered the effect
on the evolution of ḋ0 as d0 evolved over one order of magnitude. We found that the
relative cumulative error between simulations with δη = 0.075, n = 135 and R(0) =
0.5, and simulations with δη = 0.075, n = 125 and R(0) = 1 (50 % of the resolution,
same maximum extent), δη = 0.1, n = 100 and R(0) = 0.5 (75 % of the resolution,
same maximum extent), or δη = 0.075, n = 151 and R(0) = 0.5 (same resolution,
10 % of the maximum extent), was less than 10−4. We similarly varied the choice
of grid in the r and z directions independently. We note that with this choice of
grid, r∗/rmax = 1/R(0) sinh(n δη) ≈ 10−4, so neglecting the far-field contribution to the
boundary integrals used to calculate Φ is justified.
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