AN INEQUALITY FOR PROBABILITY DENSITY FUNCTIONS ARISING FROM A DISTINGUISHABILITY PROBLEM

BORIS GULJAŠ¹, C. E. M. PEARCE² and JOSIP PEČARIĆ³

(Received 2 August 1995)

Abstract

An integral inequality is established involving a probability density function on the real line and its first two derivatives. This generalizes an earlier result of Sato and Watari. If f denotes the probability density function concerned, the inequality we prove is that

$$\int_{-\infty}^{+\infty} \frac{[f'(x)^2]^{\gamma\alpha}}{[f(x)]^{\gamma(\beta+1)-1}} dx \le \left(\frac{2\alpha-1}{\beta-1}\right)^{\gamma\alpha} \left(\int_{-\infty}^{+\infty} \frac{|f''(x)|^{\alpha-1}}{[f(x)]^{\beta-\alpha}} dx\right)^{\gamma}$$

under the conditions $\beta > \alpha > 1$ and $1/(\beta + 1) < \gamma \le 1$.

1. Introduction

In this article we establish a general integral inequality involving a probability density and its first two derivatives (in the distributional sense). Integrals of the sort involved can arise in probabilistic extremal problems *via* the calculus of variations and optimal control theory and our result has an interest for such applications.

The genesis of the present ideas lies in a striking distinguishability problem whose roots go back half a century to a paper of Kakutani [2]. Suppose $X = (X_i)_1^{\infty}$ is a sequence of independent and identically distributed random variables and $a = (a_i)_1^{\infty}$ an associated numerical sequence, a_i representing the error in centering X_i . When are the sample paths X and X + a distinguishable?

A key concept to unlock this question is that of *finite information*. We say that X has finite information if the common distribution of the X_i has an almost surely positive and (locally) absolutely continuous density function f satisfying

$$I_{1}(f) \equiv \int_{-\infty}^{\infty} [f'(x)]^{2} / f(x) \, dx < \infty, \tag{1.1}$$

¹Department of Mathematics, University of Zagreb, Bijenička c. 30, 41000 Zagreb, Croatia

²Department of Applied Mathematics, The University of Adelaide, Adelaide SA 5005, Australia

³Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 41000 Zagreb, Croatia

[©] Australian Mathematical Society, 1998, Serial-fee code 0334-2700/98

where f' is the derivative of f in the distributional sense. For X with finite information we can distinguish if and only if $\sum a_i^2 = \infty$. These results were established by Shepp [6], who made use of the machinery of the Hilbert space L_2 of squareintegrable functions and of some work of Kakutani on the equivalence of infinite product measures. This introduces the stronger concept of *total indistinguishability*, which signifies in physical terms that for every observed sequence, there is doubt as to whether it came from X or from X + a. A necessary and sufficient condition for total indistinguishability is that the infinite product measures μ_X and μ_{X+a} induced by Xand X + a be mutually absolutely continuous or *equivalent*, denoted by $\mu_X \sim \mu_{X+a}$.

Subsequently there was exploration of the more general question where *a* is replaced by an identically and independently distributed sequence $Y = (Y_i)_1^{\infty}$ of symmetric random variables. Kitada and Sato [3] have given sufficient conditions for distinguishability under the requirement

$$I_{2}(f) \equiv \int_{-\infty}^{\infty} [f''(x)]^{2} / f(x) \, dx < \infty.$$
 (1.2)

They proved also that (1.2) implies (1.1) if f is monotone for large |x|.

More recently Sato and Watari [5] established that

$$I_1(f) \le \frac{3}{2} [I_2(f)]^{3/2}, \tag{1.3}$$

showing that (1.2) implies (1.1) quite generally. They derive as an application that if (1.2) holds and the distributions of Y are symmetric with $Y \in \ell_4$ almost surely, then X + Y and X induce mutually absolutely continuous probability measures and so are totally indistinguishable. Here ℓ_{α} (for $\alpha > 1$) denotes the space of all random sequences such that $\sum_{k=1}^{\infty} Y_k^{\alpha} < \infty$ a.s. The condition $Y \in \ell_4$ a.s. had arisen in early work by Rozanov [4] and Fernique [1] as a necessary and sufficient condition for equivalence of the measures on sequence space in the case when X, Y are centred Gaussian.

In the present paper we provide a generalization of (1.3). To be specific, suppose that f is an a.s. positive density function and write

$$I_{\gamma,\alpha,\beta} = \int_{-\infty}^{+\infty} \frac{[f'(x)^2]^{\gamma\alpha}}{[f(x)]^{\gamma(\beta+1)-1}} \, dx, \qquad J_{\alpha,\beta} = \int_{-\infty}^{+\infty} \frac{|f''(x)|^{\alpha}}{[f(x)]^{\beta-\alpha}} \, dx.$$

In Section 2 we establish the following result.

THEOREM 1. If f is such that $J_{\alpha,\beta} < \infty$ for some $\beta > \alpha > 1$, then

$$I_{\gamma,\alpha,\beta} \leq \left(\frac{2\alpha-1}{\beta-1}\right)^{\gamma\alpha} J_{\alpha,\beta}^{\gamma}$$

for $1/(\beta + 1) < \gamma \leq 1$.

This includes the inequalities of Sato and Watari [5] as the special cases $\alpha = 2$, $\beta = 3$, $\gamma = 1$ and $\gamma = 1/2$.

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma.

LEMMA 1. Let [a, b], $(-\infty \le a < b \le +\infty)$ be a closed interval and h a nonnegative continuously differentiable function on [a, b]. Suppose the derivative h' is an absolutely continuous non-vanishing function on (a, b), h'(a+) = h'(b-) = 0, and $\int_a^b |h''(x)|^{\alpha} / [h(x)]^{\beta-\alpha} dx < \infty$ for the second derivative h'' when $\beta > \alpha > 0$. Then

$$\int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha}}{[h(x)]^{\beta}} dx = \frac{2\alpha - 1}{\beta - 1} \int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha - 1} h''(x)}{[h(x)]^{\beta - 1}} dx, \qquad (2.1)$$

$$\int_{a}^{b} \frac{[h'(x)^{2}]^{\gamma \alpha}}{[h(x)]^{\gamma(\beta+1)-1}} dx \leq \left(\frac{2\alpha-1}{\beta-1}\right)^{\gamma \alpha} \left(\int_{a}^{b} h(x) dx\right)^{1-\gamma} \left(\int_{a}^{b} \frac{|h''(x)|^{\alpha}}{[h(x)]^{\beta-\alpha}} dx\right)^{\gamma}$$
(2.2)
for $1/(\beta+1) < \gamma \leq 1$.

PROOF OF LEMMA 1. For $\eta > 0$ we define $h_{\eta}(x) = h(x) + \eta$ as in [5]. For every $\beta - 1 > \varepsilon > 0$, since h'(a+) = h'(b-) = 0, we can choose a closed interval [a', b'] contained in (a, b) such that

$$\left| \left[\frac{[h'(x)^2]^{\alpha}}{[h_{\eta}(x)]^{\beta-1}} \right]_{a'}^{b'} \right| \le \varepsilon \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_{\eta}(x)]^{\beta}} \, dx.$$
(2.3)

Further we have

$$\begin{split} \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha-1}h''(x)}{[h_\eta(x)]^{\beta-1}} \, dx &= \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_\eta(x)]^{\beta-1}} \frac{h''(x)}{[h'(x)^2]} \, dx \\ &= -\left[\frac{[h'(x)]^{(2\alpha-1)}}{[h_\eta(x)]^{\beta-1}}\right]_{a'}^{b'} + 2\alpha \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha-1}h''(x)}{[h_\eta(x)]^{\beta-1}} \, dx \\ &\quad -\beta \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_\eta(x)]^{\beta}} \, dx, \end{split}$$

that is,

$$\int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx = \frac{2\alpha - 1}{\beta - 1} \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha - 1} h''(x)}{[h_{\eta}(x)]^{\beta - 1}} dx - \frac{1}{\beta - 1} \left[\frac{[h'(x)]^{(2\alpha - 1)}}{[h_{\eta}(x)]^{\beta - 1}} \right]_{a'}^{b'}.$$

From (2.3) and Hölder's inequality we have

$$\begin{split} \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx &\leq \frac{2\alpha - 1}{\beta - 1 - \varepsilon} \int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha - 1}h''(x)}{[h_{\eta}(x)]^{\beta - 1}} dx \\ &\leq \frac{2\alpha - 1}{\beta - 1 - \varepsilon} \left[\int_{a'}^{b'} \left(\frac{[h'(x)^2]^{\alpha - 1}}{[h_{\eta}(x)]^{(\alpha - 1)\beta/\alpha}} \right)^{\alpha/(\alpha - 1)} dx \right]^{1 - 1/\alpha} \\ &\times \left[\int_{a'}^{b'} \left(\frac{|h''(x)|}{[h_{\eta}(x)]^{(\beta - \alpha)/\alpha}} \right)^{\alpha} dx \right]^{1/\alpha} \\ &\leq \frac{2\alpha - 1}{\beta - 1 - \varepsilon} \left(\int_{a'}^{b'} \frac{[h'(x)]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx \right)^{1 - 1/\alpha} \\ &\times \left(\int_{a'}^{b'} \frac{|h''(x)|^{\alpha}}{[h_{\eta}(x)]^{\beta - \alpha}} dx \right)^{1/\alpha}. \end{split}$$

From the last inequality we have

$$\int_{a'}^{b'} \frac{[h'(x)^2]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx \leq \left(\frac{2\alpha - 1}{\beta - 1 - \varepsilon}\right)^{\alpha} \int_{a'}^{b'} \frac{|h''(x)|^{\alpha}}{[h_{\eta}(x)]^{\beta - \alpha}} dx$$
$$\leq \left(\frac{2\alpha - 1}{\beta - 1 - \varepsilon}\right)^{\alpha} \int_{a}^{b} \frac{|h''(x)|^{\alpha}}{[h(x)]^{\beta - \alpha}} dx$$
$$< \infty.$$

On taking $\varepsilon \to 0$ together with $a' \searrow a$ and $b' \nearrow b$ we have

$$\int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx = \frac{2\alpha - 1}{\beta - 1} \int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha - 1} h''(x)}{[h_{\eta}(x)]^{\beta - 1}} dx,$$
(2.4)

$$\int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha}}{[h_{\eta}(x)]^{\beta}} dx \leq \left(\frac{2\alpha - 1}{\beta - 1}\right)^{\alpha} \int_{a}^{b} \frac{|h''(x)|^{\alpha}}{[h_{\eta}(x)]^{\beta - \alpha}} dx.$$
(2.5)

Relations (2.1) and (2.2) for $\gamma = 1$ follow from (2.4) and (2.5) on letting $\eta \searrow 0$.

If $1/(\beta + 1) < \gamma < 1$, (2.2) follows from Hölder's inequality and (2.2) for $\gamma = 1$, that is,

$$\begin{split} \int_{a}^{b} \frac{[h'(x)^{2}]^{\gamma \alpha}}{[h(x)]^{\gamma(\beta+1)-1}} \, dx &= \int_{a}^{b} \frac{[h'(x)^{2}]^{\gamma \alpha}}{[h(x)]^{\gamma \beta}} [h(x)]^{1-\gamma} \, dx \\ &\leq \left(\int_{a}^{b} h(x) \, dx\right)^{1-\gamma} \left(\int_{a}^{b} \frac{[h'(x)^{2}]^{\alpha}}{[h(x)]^{\beta}} \, dx\right)^{\gamma} \\ &\leq \left(\frac{2\alpha-1}{\beta-1}\right)^{\gamma \alpha} \left(\int_{a}^{b} h(x) \, dx\right)^{1-\gamma} \left(\int_{a}^{b} \frac{|h''(x)|^{\alpha}}{[h(x)]^{\beta-\alpha}} \, dx\right)^{\gamma}. \end{split}$$

PROOF OF THEOREM 1. As in [5], the continuity of f' implies that $R \setminus \{x | f'(x) = 0\}$ is the union of at most a countable number of mutually disjoint open intervals (a_n, b_n) such that f satisfies the hypotheses of Lemma 1 on each closed interval $[a_n, b_n]$. By applying (2.2) and Hölder's inequality we have

$$\int_{-\infty}^{+\infty} \frac{[f'(x)^2]^{\gamma \alpha}}{[f(x)]^{\gamma (\beta+1)-1}} dx = \sum_n \int_{a_n}^{b_n} \frac{[f'(x)^2]^{\gamma \alpha}}{[f(x)]^{\gamma (\beta+1)-1}} dx$$
$$\leq \left(\frac{2\alpha - 1}{\beta - 1}\right)^{\gamma \alpha} \sum_n \left(\int_{a_n}^{b_n} f(x) dx\right)^{1-\gamma}$$
$$\times \left(\int_{a_n}^{b_n} \frac{|f''(x)|^{\alpha}}{[f(x)]^{\beta-\alpha}} dx\right)^{\gamma}$$
$$\leq \left(\frac{2\alpha - 1}{\beta - 1}\right)^{\gamma \alpha} \left(\sum_n \int_{a_n}^{b_n} f(x) dx\right)^{1-\gamma}$$
$$\times \left(\sum_n \int_{a_n}^{b_n} \frac{|f''(x)|^{\alpha}}{[f(x)]^{\beta-\alpha}} dx\right)^{\gamma}$$
$$\leq \left(\frac{2\alpha - 1}{\beta - 1}\right)^{\gamma \alpha} \left(\int_{-\infty}^{+\infty} \frac{|f''(x)|^{\alpha}}{[f(x)]^{\beta-\alpha}} dx\right)^{\gamma}$$

References

- X. Fernique, "Régularité des trajectoires des fonctions aléatoires gaussiennes", in *Lecture Notes in Math.* 480 (Springer-Verlag, New York, 1974), pp. 1–96.
- [2] S. Kakutani, "On equivalence of infinite product measures", Ann. of Math. 49 (1948) 214-224.
- [3] K. Kitada and H. Sato, "On the absolute continuity of infinite product measure and its convolution", Probab. Theory Related Fields 81 (1989) 609–627.
- [4] Yu. A. Rozanov, "On the density of one Gaussian measure with respect to another", *Theory Probab.* Appl. 7 (1962) 82–87.
- [5] H. Sato and C. Watari, "Some integral inequalities and absolute continuity of a symmetric random translation", J. Functional Anal. 114 (1993) 257–266.
- [6] L. A. Shepp, "Distinguishing a sequence of random variables from a translate of itself", *Ann. Math. Statist.* **36** (1965) 1107–1112.