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Abstract

The influence of thermal buoyancy on neutral wave modes in Poiseuille-Couette flow is
considered. We examine the modifications to the asymptotic structure first described by
Mureithi, Denier & Stott [16], who demonstrated that neutral wave modes in a strongly
thermally stratified boundary layer are localized at the position where the streamwise
velocity attains its maximum value. The present work demonstrates that such a flow
structure also holds for Poiseuille-Couette flow but that a new flow structure emerges as the
position of maximum velocity approaches the wall (and which occurs as the level of shear,
present as a consequence of the Couette component of the flow, is increased). The limiting
behaviour of these wave modes is discussed thereby allowing us to identify the parameter
regime appropriate to the eventual restabilization of the flow at moderate levels of shear.

1. Introduction

Our concern is with the effect of thermal buoyancy on unstably stratified Poiseuille-
Couette flow between parallel plates; the ultimate aim is to describe the restabilization
of the flow to two-dimensional travelling wave modes as the degree of basic shear
(due to the Couette component of the flow) is increased.

The influence of thermal stratification on the stability of a wide variety of fluid
flows is of considerable practical interest with areas of applicability ranging from the
design of efficient heat exchangers to the problem of free convection in the upper
mantle of the earth. There is a large body of literature on the problem of the stability
of thermally stratified parallel flows, both uniform and with a component of basic
shear. Gage [9] considered the effect of stable thermal stratification on the stability
properties of a parallel flow and demonstrated that the flow is rendered stable by the
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application of a sufficiently large thermal gradient. This work utilized the asymptotic
solutions obtained by Koppel [14] to the equations governing infinitesimally small
perturbations to the basic flow and was restricted to fluids of unit Prandtl number. The
problem of unstable thermal stratification was considered by Gage & Reid [10] who,
by noting the similarities between the flow of a stratified fluid with unit Prandtl number
and that of the spiral flow between rotating cylinders considered earlier by Hughes
& Reid [13], were able to construct the three-dimensional stability boundary from
the corresponding two-dimensional results by making use of Squire's transformation.
This allowed them to delineate the regions in Rayleigh number-Reynolds number
space for which the flow is susceptible to longitudinal rolls (aligned with the direction
of the mean flow) or three-dimensional wave motions (which in the large Reynolds
number limit evolve into Tollmien-Schlichting waves).

Further work on the stability of stratified plane Poiseuille flow can be found in
Tveitereid [19] who considered flows of arbitrary Prandtl number (thus extending the
results of [10]); Schafer & Herwig [18], who considered the effect of temperature
dependent viscosity on the flow stability, and Vasilyev & Paolucci [20], who removed
the Boussinesq assumption employed in earlier studies. By considering fluids whose
thermal conductivity and viscosity are governed by Sutherland's law they demon-
strated that the dominant form of motion is still the longitudinal roll (aligned with
the direction of the mean flow) and that the critical Rayleigh number increases as a
function of the difference in the applied temperatures of the bounding plates.

The modifications to the stability properties of the flow in the presence of basic
shear (as exemplified by thermally stratified Couette flow) has been considered by
several authors, see for example [4] or [11]. The results of early studies in this area
are summarized by Fujimura & Kelly [8] who resolved some misconceptions that had
arisen concerning the stability of stratified Poiseuille flow. By solving the eigenvalue
problem spectrally using Chebyshev polynomials, Fujimura & Kelly [8] were able to
demonstrate that the effect of the imposition of a component of shear to the underlying
basic flow is to increase the critical Rayleigh number of the flow. Their study was,
however, restricted to small to moderate values of the Reynolds number, typically in
the range [0.01, 100], and so was unable to consider the ultimate restabilization of the
flow as the level of shear is increased. (As will be demonstrated in the present paper it
is the large Reynolds number asymptotic regime that holds the key to understanding
the restabilization of the flow due to increased shear.)

The large Reynolds number limit is a natural one in the context of stratified bound-
ary layer flows and it is recent results in this area that have motivated the current
investigation. Findings of Mureithi, Denier & Stott [16], who were concerned with
the effect of thermal stratification on accelerating boundary layers, demonstrated that
in the limit of strong thermal coupling (between the momentum and energy fields)
neutral wave modes become localized in a thin viscous layer situated at the position
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at which the streamwise velocity in the boundary layer attains its maximum. The fact
that the streamwise velocity attains a maximum within the boundary layer is a direct
consequence of the strong thermal coupling thus resulting in an enhanced buoyancy
driven acceleration in the streamwise direction; furthermore these neutral wave modes
travel at the maximum speed of the flow. In the case of thermally stratified Poiseuille
flow the streamwise velocity attains a maximum at the centreline of the channel and
so we anticipate that, in the large Reynolds number limit, the viscous neutral wave
structure described by Mureithi et al. [16] will become relevant. However, with the
introduction of basic shear (represented by a Couette component of the flow) the
position of maximum streamwise velocity moves from the centreline of the channel
towards the upper rigid surface. There must then be a level of shear at which the
viscous structure of [16] must be adapted in order to account for the presence of the
rigid boundary. The major aims of this work are to describe these modifications to
the analysis of [16] and to account for the eventual re-stabilization of the flow as a
function of the level of wall shear.

The outline of the paper is as follows. In Section 2 we formulate the problem and
present results of a numerical solution of the equations governing small amplitude
perturbations to the basic flow. The effect of increasing the level of basic shear is
investigated and, in turn, this motivates the high Reynolds number asymptotic limits
considered in Sections 3 and 4. Inviscid wave modes are considered in Section 3
(corresponding to the large Reynolds number-0(1) wavenumber limit) and the results
demonstrate that it is the large wavelength motions which are first stabilized by the
basic shear. As a consequence, within Section 4 we consider the combined asymptotic
limit of large Reynolds number and large wavenumber. At this level modifications to
the structure described by Mureithi et al. [16] are required in order to account for the
effect of basic shear. The ultimate fate of the flow as the level of shear is increased
is found to be governed by a sixth order system of coupled ordinary differential
equations; this system is solved numerically and enables us to predict the value of
wall shear beyond which the flow can no longer support unstable travelling wave
modes. Finally, in Section 5 we present some conclusions and discuss the extension
of this problem to finite amplitude perturbations.

2. Formulation

Consider the flow of a viscous incompressible fluid of density p and kinematic
viscosity v between two parallel plates situated at y* = ±h/2. Suppose that the upper
plate is moving with velocity UQ and has temperature T\ whilst the lower is moving
with velocity — Uo and has temperature To (see Figure 1); in addition there is an
applied streamwise pressure gradient —D. We nondimensionalise all distances with
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respect to the half-width h/2, velocities with respect to Um = 2D/(vh2) (the centreline
speed) and temperature with respect to half the temperature difference, (T\ — T0)/2,
between the upper and lower boundaries. Under the Boussinesq approximation the
basic velocity and temperature fields can then be written in the form

(1)

where we have defined the dimensionless shear uw = U0/UmandT0 =
To). In terms of the non-dimensional variables the upper plate moves at a velocity u
whilst the lower plate moves with velocity — uw.

T,

To -Vo

y

i
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v
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\

FIGURE 1. Diagram illustrating the coordinate system

The equations governing small amplitude, two dimensional, wave-like perturba-
tions to this basic flow are then given by (see [9], [10] and [14])

—• - a2 - iaRe(u
By2

|2

iaRe p + Reuyv,u — c) | u = ic

f a 2 , l dp
\ —- - a2 - iaRe(u - c) \ v = Re— - 4RiRe9,
[ fy2 J 3 v

—- - a1 - iocRePr(u - c) \ 9 = RePr Tyv,
dy2 }

dv
iau + — = 0,

3>

(2)

(3)

(4)

(5)
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together with the boundary conditions

127

u=v=T= 0 on

Here u,v,6 and p are the stream wise velocity, normal velocity, temperature and
pressure perturbations respectively; we have assumed that the perturbations are pro-
portional to exp [ia(x — ct)] and have made the Bousinessq approximation. In 2-5 Pr
is the Prandtl number and the Reynolds number and (bulk) Richardson number of the
flow are defined as

Umh
Re =

2v

where y is the coefficient of thermal expansion and g is the acceleration due to gravity.
Our prime concern will be with the case of unstably stratified flows for which T\ < To

and thus Ri < 0.

1-10

120

100

0.0 4.0 4.0

FIGURE 2. Neutral curves for uw = 0.0,0.75,0.9,0.925,0.95, 1.2. Here Ri = -0.25 and the Prandtl
number Pr = 1. As a point of reference the neutral curve(s) for u , = 0.9 are drawn as dashed lines.

Before proceeding with a discussion of the high Reynolds number regime we
summarize some of the stability properties of the flow at small to moderate values of
the Reynolds number. To this end we present in Figure 2 a series of neutral curves
in Reynolds number-wavenumber space for the eigenvalue problem 2-5; the neutral
curves are for the particular case of Richardson number Ri = —0.25 and unit Prandtl
number. The lowest curve in Figure 2a corresponds to simple heated Poiseuille flow
(uw = 0). From this figure we can easily describe the effect of basic shear, here
measured in terms of the parameter uw, on the stability characteristics of the flow.
Increasing uw from zero is seen to increase the critical Reynolds number of the flow.

Figures 2a,b also demonstrate that it is no simple matter to describe succinctly
the effect of basic shear on the critical wavenumber or the critical wavespeed of the
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1.4

FIGURE 3. An expanded view of Figure 2. Curves labeled according to uw = 0.95 (curve 1),
um = 0.925 (curve 2) and uw = 0.9 (curve 3).

flow. Figure 2a indicates that there is a threshold value of the shear uw beyond which
the typical single neutral curve (with a well defined left and right hand branch as is
exhibited by the uw = 0 case) which occurs for stratified Poiseuille flow splits into two
distinct neutral curves. Figure 3 presents an expanded view of Figure 2 from which
we can readily see the effect of increasing uw. At a value of uw = 0.9 (the curve
labelled 3) a single neutral curve exists with a secondary node or loop appearing at a
higher value of the Reynolds number. For larger uw these two nodes of neutral curves
approach and ultimately exchange identities at a critical value of the shear uw. As uw

is further increased the, now distinct, neutral curves move progressively further apart
(see curve 2 for which uw = 0.925 and curve 1 for which uw = 0.95). In Figure 4 we
present plots of the eigenfunctions corresponding to those points marked with symbols
on curve 1 of Figure 3 (with parameter values uw = 0.95 and a = 1.0). From this
figure we note that there is no obvious way in which to uniquely classify these modes
(for example as mode 1 or mode 2 depending on the number of turning points that the
eigenfunction possesses). For definiteness we will designate those eigen-modes lying
along the right branch of curve 1 in Figure 3a as first modes and those lying along the
left branch of curve 1 as second modes.

Returning to Figure 2 we note that, as we increase the level of shear uw, the neutral
curves split (through the interaction between the two modal solutions; see Figure 3)
with the critical Reynolds number being associated with the first mode. As we further
increase uw the second mode is significantly stabilized (corresponding to a dramatic
increase in the critical Reynolds number) whereas the critical Reynolds number for
the first mode, which resides along the right-hand lobe of the neutral curves, changes
slowly. Thus, for example, the two uppermost neutral curves in Figure 2 (which
correspond to a value of uw = 1.2) have local minima of Re « 34.85 and Re ^ 111.2
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FIGURE 4. The eigenfunctions of the system (2M5) corresponding to those points labelled with
symbols in Figure 3.

at wavenumbers of a « 2.4 and a « 0.342 respectively.
In consequence, we deduce that for increasing shear uw the critical Reynolds number

and the critical wavenumber are shifted to progressively higher levels and it is the first
mode of instability which dominates the flow. At these higher values of Reynolds and
wave-numbers the numerical solution of 2-5 becomes increasingly difficult. Hence,
in order to explore the ultimate re-stabilization of the flow as uw is increased we must
focus our attention on the large Reynolds number and large wave-number asymptotic
regimes. In Section 3 we will consider the asymptotic limit Re —> oo with a = 0(1),
corresponding to inviscid wave motions, and in Section 4 examine the further limit of
a -*• oo. This will then allow us to describe the eventual restabilization of the flow at
high levels of wall shear.
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3. Inviscid Wave Motions

[8]

The equation governing inviscid disturbances to the basic flow 1 is obtained by
formally taking the limit Re —> oo in the governing equations 2-5 whilst holding the
wave number a and wave speed c as 0(1) quantities. Upon eliminating the pressure,
temperature and streamwise velocity component from the resulting equations we
obtain the classical Taylor-Goldstein form

(u-c)2 ( —- - a2 j v - [(« - c)uyy - RiTy] v = 0,

which must be solved subject to the boundary conditions

v = 0 on v = - 1 , 1.

(6)

(7)

The literature on the Taylor-Goldstein equation is vast and the reader is referred to [7]
for an in-depth discussion of the properties of its solutions. Of predominant concern
here is with the structure of the unstable modal solutions of 6. In Figure 5 we present
a plot of the growth rates of the first mode as a function of the wavenumber for
various values of the wall shear uw; the Richardson number has been set to Ri = — 1.
(The effect of varying the Richardson number can be summarised succinctly as (i):
increasing the magnitude of the negative Richardson number increases the magnitude
of the growth rate and (if): unstable modes can only exist for Ri < 0.)
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FIGURE 5. Plot of the growth rate and wavespeed of the first eigen-mode of equation (6) as a function
of wavenumber a for various values of uw = 0.0,0.25 2.25.

Several features are readily discerned from Figure 5. First, the flow is unstable to
modes of O (1) wavelength and the magnitude of the growth rate decreases as the value
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of the wall shear uw is increased (for a fixed value of the Richardson number). The
second noticeable feature is that as uw is increased it is the relatively long wavelength
motions which are first rendered stable. This is in perfect agreement with our results
of section 2 where, from Figure 2 we note that the neutral curve for mode 1 moves to
progressively higher values of the Reynolds and wave-numbers as the level of shear
uw is increased.

In the case of neutral wave modes, with wavespeed cr, equation 6 is singular at the
critical point yc where u(yc) = cr. Thus in order to determine the values of the neutral
wavenumber and wavespeed equation 6 must be integrated along a suitably indented
contour in the complex plane. Standard critical layer theory (see the references below)
shows that as long as our chosen contour passes from y = — 1 to y = 1 in the complex
y-plane such that it lies above y = yc then straightforward numerical techniques will
recover the desired neutral wavespeed. The advantage of using a deformed contour
which passes well away from the critical point is that on the contour 6 is nowhere
singular and hence can be solved subject to 7 without the need to appeal to elegant
numerical procedures. In the usual way we first took advantage of the linearity of
this equation and normalized v such that vy = 1 on y = — 1. Equation 6 with
boundary conditions v = 0 and vy = 1 on y = — 1 was integrated 6 in the complex
plane along the indented contour y + i(l — y2) (where y e [—1,1]) using a fourth
order Runge-Kutta scheme. Finally Newton iteration was applied to the estimates of
neutral wavenumber and wavespeed until the boundary condition v = 0 on y = 1 was
satisfied to within some desired tolerance.

5 -

0 -

2.0 2.2 2.4 2.6 2.0 2.2 2.4 2.6

FIGURE 6. Plot of the neutral wavenumber and wave speed versus um for the first three eigen-modes
of equation (6).

A plot in Figure 6 of the neutral wavenumber and wavespeed for the first three modal
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solutions of 6 indicates that as uw is increased so the neutral wavenumbers grow and
there is a value of shear beyond which the flow is stable to inviscid disturbances
(that is, the neutral wavenumber becomes unbounded at a finite value of uw). In
order to complete the description of the neutrally stable inviscid wave modes we
must, of course, consider the behaviour in the critical layer located at the position yc

where u(yc) = cr. The critical layer serves to smooth, through the re-introduction
of viscosity at the critical level, the singularity encountered in the inviscid equation.
However as this analysis is now standard, and the results well known, we refer the
interested reader to Miles [15] or Drazin & Reid [7] for a comprehensive discussion
of the behaviour of the critical layer of the Taylor-Goldstein equation in a stratified
fluid. Further, a recent paper by Blackaby & Choudhari [2] provides an interesting
account of the Taylor-Goldstein equation, its numerical solution and its importance to
the stability of weakly three-dimensional boundary layer flows. Thus by increasing
the level of wall shear uw the instability is driven to progressively shorter wavelengths
and in order to describe accurately the eventual restabilization of the flow we must
focus our attention on the combined large Reynolds number-wave number asymptotic
regime.

Turning our attention back to Figure 5 we remark that in the small wavelength
limit both the growth rate ac, and the wavespeed cr tend to constant limiting values
whose magnitudes decrease, in the case of ac,, and increase, in the case of cr, as uw

is increased. This phenomena is precisely that described by Mureithi et al. [16] who
were concerned with the stability of mixed free-forced convection boundary layers.
As such we can anticipate from the results of [16] that in the limit a —> oo the
wave modes become increasingly localized about the position where the streamwise
velocity attains its maximum value. Owing to this spatial localization of the wave
mode viscous effects serve to render the flow stable at some sufficiently large value of
the streamwise wavenumber. In terms of the wall shear uw the position of maximum
streamwise velocity is given by ymax = uw/2 and as such the position of maximum
velocity is attained at the upper boundary when uw = 2. (Note also that the maximum
velocity is attained at the lower boundary if uw = —2; as only minor modifications are
required to the analysis to be presented for the case uw > 0 in order to consider the
case of uw < 0 we will restrict our attention to the regime um > 0.) Thus as the level
of wall shear approaches a value at which the maximum streamwise velocity occurs
at the upper boundary the results of [16] must be modified in order to account for the
presence of the rigid boundary.

We now turn our attention to the combined asymptotic limits of large Reynolds
number and large wave number in order to determine the level of wall shear at which
the flow becomes stabilized.
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4. The Right-Hand Branch of the Neutral Curve

Our examination of the right-hand branch behaviour begins with the case for which
the shear 0 < uw < 2 so that the maximum streamwise velocity occurs away from
the bounding plates. The analysis is then similar to that of Mureithi etal. [16] but
is necessary in order to anticipate the important details of the flow structure relevant
to uw > 2 when the maximum flow speed is located on the upper plate - a problem
which is considered in Sections 4.2 and 4.3.

4.1. The case 0 < uw < 2. To determine the dominant spatial and temporal scales
we first note that in order to achieve a balance between streamwise diffusion, as
represented by the term — a2v in the vertical momentum equation 3, and thermal
buoyancy, corresponding to the term —ARiReG in 3, in the combined large Reynolds
number-wave number limit we must choose a = O(Re1/2) and v = 0(6). Secondly
from Figure 5 we note that in the large wavenumber limit the inviscid wavespeed cr

tends to a constant thus suggesting that in the combined limit of Re —> oo and a —*• oo
we must choose c = 0(1). (As we are concerned with neutral wave modes c will be
taken to be real throughout this and subsequent sections.)

In anticipation of the result that the neutral wave modes travel at the maximum
speed of the flow we may determine the appropriate normal length-scale of the right-
hand branch modes by writing z = Re" (y — y0) where y0 is the position at which the
basic flow attains its maximum velocity. On expanding

(u-c) = (u(yo) - c0) + ^u'i

we obtain a balance between normal diffusion and streamwise advection when

oz

which, recalling that a = O(Rel/2), gives the result that n = 3/8. Thus the neutral
right-hand branch wave modes will be confined within a viscous layer of thickness
O(Re~vs) centred on the location y0.

To proceed we define z = /?^3/8(v — ^0) and expand

a = R e 1 ' 2 ( a 0 + R e ' 1 ' 4 ^ + • • • ) , c = c o + R e ~ ^ c v + ••• ,

where we anticipate the result that c0 = u(yo) (so that the neutral wave-modes
propagate downstream with a speed equal to the maximum value of the streamwise
velocity). Furthermore, we expand the velocity, temperature and pressure fields as

, v, 0, p) = (Re-i/sU0, Vo, 0 o , Re-5/sP0)

+ Re~1/A (Re-l/sUu V,, 0 , , Re'^Px) + ••• . (8)
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Note that with the magnitude of the vertical velocity component chosen to be 0(1)
the temperature disturbance 6 must, in light of our discussion above, also be an 0(1)
quantity. The relative scalings for u and p in 8 then follow from a dominant balance
in the continuity and streamwise momentum equations.

Substitution of 8 into the governing equations 2-5 and equating coefficients of
inverse powers of Rel/4 to zero gives, at leading order

alU0 + iaoPo = 0, ia0U0 + VOz = 0, (9)

a*V0 - 4RiS0 = 0, c^0o + PrV0 = 0. (10)

Equations 9 and 10 are compatible (that is, yield a non-trivial solution) if

* (11)

so that the neutrally stable wave modes to be described here can only exist for
Richardson numbers Ri < 0 with the neutral wavenumber given by 11. At next
order in our expansion we obtain an inhomogeneous version of equations 9-10 for the
quantities U\, V\ etc which are compatible provided

3 ^ + {i«b(l +Pr)(z2 + c.) - 4a0a,} VQ = 0, (12)

which must be solved subject to the constraint that Vo -*• 0 as \z\ -> oo (in order
to ensure the wave mode is confined to the viscous layer centred on y0). Thus,
equation 12 defines an eigenvalue problem for the first order correction to the neutral
wavenumber ĉ  and wave speed c\. This equation can be solved in terms of Parabolic
Cylinder functions (see [1]) from which we can deduce readily that in order to satisfy
the required far field boundary conditions we require

Thus the neutral curve corresponding to the most unstable mode (i.e. n = 0) is given

where oto is given by the positive root of equation 11.

4.2. The case uw = 2 + O(Re~ys). The structure described in the previous section
is only valid provided the position of maximum streamwise velocity y0 is not located
at the upper rigid boundary. Thus, as y0 -> 1, corresponding to uw -> 2, a new
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structure must emerge. We now consider the modifications required to our previous
analysis in order to describe the neutral wave modes.

It is a simple matter to show that the structure described in Section 4.1 is first
significantly modified when uw = 2 + O(Re~3/s). Thus, let us write

uw = 2 + Re-3/*u*w (14)

where u*w is an 0(1) quantity (which can be positive or negative). We again define a
new stretched variable z = Re3/S(y — 1) and, in light of our result from Section 4.1
that c0 = u(yo), expand the wavenumber and wavespeed as

a = Re1'2 ( a 0 + Re~l/4a10 + • • • ) , c = 2 + Re'^u*w + K < r 3 ' 4 c I 0 + • • • .

Expanding the dependent variables as power series in inverse powers of Rei/4 we
again find that the leading order neutral wavenumber a0 is given by 11. At next
order a solvability condition on the first order correction to the temperature and
vertical velocity components gives that Vo (the leading order component of the vertical
velocity) satisfies:

^ + Pr)(u*wz -z2- c,o) + 4ao«io} Vo = 0; (15)

this must be solved subject to the constraint that Vo —> 0 as z —> —oo and the usual
inviscid boundary condition Vo = 0 on z = 0.

Equation 15 can be scaled to a canonical form

^ 0 = 0 (16)

with boundary conditions

Vo = 0 <t> = 0 , oo ,

by defining z = —^(j> and

1 4 1
£2 = - - i«o ( l + Pr)n2cl0 + -aoawfj}, A = -« 0 ( l + Pr)n3u*w, (17)

where ^i4 = 6/[ao(l + Pr)]. Although this equation can be solved in terms of
Parabolic Cylinder functions the resulting eigenrelation, which determines the leading
order correction to the wavenumber ai0 and wavespeed cl0 as functions of u*w, is not
in a form which is suitable for computational purposes. We chose instead to pose
16 as a two point boundary value problem and solve for £2 as a function of A; this
was done using a second order finite difference discretization of 16 coupled with a
Newton iteration procedure to determine Q. We present the results of our calculation
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10 10

FIGURE 7. Plot of the first four eigenvalues of equation (16). The large A asymptotes (19) are marked
for the first three modes.

on(

in Figure 7. As a simple check on the accuracy of our numerical scheme, we note that
when M* = 0 (and so A = 0 in Figure 7) exact values for £2 may be obtained from
analytic solution of 16; these are Q = —(2n + 1)(1 — i), (n = 0, 1,2,...) which are
in perfect agreement with our numerical results in Figure 7.

We observe from Figure 7 that in the limit u*w -> —oo we have Re(J2) —>• constant.
The permissible values of this limiting constant are —1, —3, —5, • • • and, on appeal
to 17, we deduce that

{In

2an
as —oo;

these are the values of a\ predicted from the analysis in Section 4.1 (see equation
13). The eigenfunctions corresponding to the first two modes are shown in Figure 8.
Here we see that the large negative A = -10.0 eigenfunctions (the dashed curves in
Figure 8) are concentrated away from the boundary and so in the limit M* -» -oo the
solutions of 15 match directly to the solutions of Section 4.1.

In Figure 9a we present a plot of the third eigen-mode solution of 16. From this
figure we observe that there is an additional asymptotic solution in the limit A —• — oo
for which Re(fi) and Im(J2) both tend to —oo. The corresponding eigenfunctions
for this secondary mode are presented in Figure 9b from which we see that in the
limit A - • —oo the eigen-modes become localized at the upper boundary. Writing
A = - r , where T » 1, and defining <j> = r~l/3r, Q = T2/3n we obtain from 16, at
leading order,

32Vb ,.

8r2
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FIGURE 8. Plot of the first two eigenfunctions of equation (16). Shown are results for A = —10.0
(dashed curve), A = 0 (dotted curve) and A = 10.0 (solidus). (a)-(b) Mode 1, (c)-(d) Mode 2.

which has the bounded solution

V = Ai - iQ)\,

where Ai is the usual Airy function (see Abramowitz & Stegun [1]). In order for this

solution to vanish at r = 0 we require Ai e~in/3Q = 0. The first zero of the Airy

function is given by S2 = — 2.3381e"r/3 and so for f » 1 we have

Re(fi) « - 1 . 1 6 9 r 2 / 3 + - - , Im(fi) = -1.169V3r2/3 (18)

The asymptotes 18 are in excellent agreement with the numerical solutions given
in Figure 9 and the difference between the asymptotic and numerical solutions for
A < —5 is graphically almost undetectable. There are, of course, an infinite number
of wall bounded modes - one corresponding to each zero of the Airy function Ai - but
it becomes increasingly difficult to determine numerically these higher modes. This
is not a serious deficiency since the dominant mode in the flow is the viscous one
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FIGURE 9. Plot of the third eigen-mode of equation (16). Shown are (a) Re (£2) (solidus), Im (£2)
(dashed) versus A and the asymptotic limit given by (18) (dotted) and (b) |V0| versus 0 for A =
- 1 5 , - 2 0 , - 2 5 , - 3 0 .

localized about the position of maximum streamwise velocity. The secondary mode
is thus relegated to a position of mere academic interest with regards to the overall
stability characteristics of the flow in the limit A -> — oo.

The second asymptotic limit which arises from Figure 7 is «* -> oo. Here we
note that aio -> - c o and cl0 ->• —oo as u*w ->• oo and Figure 8 demonstrates that the
modes become increasingly localized to the vicinity of the upper boundary z = 0.

In order to examine the case A -> oo in 16 (corresponding to M* -» oo) let us
first define <p = A~l/3q and write £2 = 60A2/3 + £lt A~2/3 H . At leading order
equation 16 becomes

d2v0 + (iq - = 0,

which has the solution
Vo = Ai

which automatically satisfies the requirement that Vo ->• 0 as q -> oo. In order to
vanish at q = 0 we require

Ai (V^fio) = 0,

and therefore
" 0 — e J0i

where 50 corresponds to the zero(s) of the Airy function; the first four are given by

s0 = (-2.3381, -4.0879, -5.5206, -6.7867, • • •).

At next order we obtain an inhomogeneous version of the Airy equation, which when
solved subject to the conditions that its solution vanishes at q = 0 and as q -> oo
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yields
. _ 16 2 _in/6

Thus

ft W A2/350e-1Ir/3 - | | ^ A -2 /3 e - ,> /6 + . . . ( 1 9 )

For comparison the first three asymptotes ft = ft0A
2/3 + S^ A~2/3 + . . . as A —»• oo

are shown in Figure 7. Excellent agreement with the numerical results is evident even
at moderate values of the parameter A.

The solutions described above do not satisfy the full no-slip boundary conditions
which must be imposed at the upper rigid boundary y = 1. This deficiency is remedied
by the re-introduction of viscosity into the problem in the form of a viscous layer of
thickness O(Re~l/2). However as this viscous layer is passive we do not present
details of it here; the interested reader is referred to the paper by Hall [12] where a
similar layer is encountered in the study of short wavelength Taylor vortices in the
flow between rotating concentric cylinders.

4.3. The case uw = 2 + 0(1). The previous sections demonstrate how the neutral
wave structure is first modified as uw ->• 2. As uw is increased past 2 the position
at which the neutral wave mode is localized occurs on the rigid boundary y = 1.
However, the leading order neutral wavenumber remains unaffected whilst uw =
2 + o(l). We now turn our attention to the final distinguished limit at which the
leading order wavenumber is modified by the large level of wall shear.

Ifwewriteu* = 0(Re"), see 14, sothatum = 2 + O(Ren~3/s), we have, asaresult
of the large A analysis presented above,

~. D-l/2 /«# _i_ /"WD-,2/i/3—1/4\\
CK — ite UXQ •+" uyKe >) >

and the wave mode is restricted to an O(Re~n/3~3/i) depth viscous layer situated at the
boundary y = 1. This wavenumber expansion becomes disordered when n = 3/8 in
which case uw = 2 + 0(1) and the wave mode is confined to an O(Re~l/2) viscous
layer located at y = 1. On this basis we write

uw = 2 + uw0, a = Re1/2ctoo H , c = 2 + uw0 + Re~l/2cu -\

and define a new scaled normal variable z = Rel/2(y — 1). Furthermore we expand
the velocity, temperature and pressure fields as

( H , v , 6, p ) = ( U o , Vo, 0 O , R e ~ l / 2 P 0 ) + •••
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and substitute these in the governing equations to yield, at leading order in powers of
Re~l'\

— - (4, - iaooPr(uw0i - cn) 1 ©o = PrV0, (20)
dz2 J

Uo = iocooPo + «u,oVo, (21)

V0=
d^-4Ri®0, (22)
dz

dV0- p 2 = 0, (23)
dz

which must be solved subject to the full no-slip boundary conditions

Uo = Vo = 0O = 0 I = 0, -+ -oo.

Eliminating Uo and Po gives

d2

I d2 2 - 1
1 ~7Z^ ~ a 0 0 — 'aOo(MiuOZ — C n ) \

[dz2 J
{dp"""0"''

\~[=2~alo~ iaoo(uw0z - cu)j [j=i - a\A Vo = 4ao\)7?/0o, (24)

( d ¥ ~ a°° ~ iaooPr^UwQ~z " c>') J @o = PrV0. (25)

For computational purposes we define <p = —«ooZ so 24 and 25 can be rewritten as

(^-2 - 1 + 4 - (««**> + "ooci,)) ( ^ - l ) Vo = 4 ^ , (26)

( 7-2 - 1 + l-f (»>»o<P + amen)) 0o = - ^ , (27)

together with the boundary conditions

Vo = ^ ° = 0 O = 0 <p = 0,oo.
d(p

This system was solved using a numerical scheme developed by Otto & Bassom
[17] to solve the eigenvalue problem for the most unstable Gortler vortex mode in a
weakly three-dimensional boundary layer. It relies on a fourth order finite difference
discretization of the governing equations, with the boundary condition 0O = 0 on
<p = 0 replaced by ©o,, = 1 on <p = 0, and employs a coupled Davis scheme to invert
efficiently the resulting coupled tri- and penta-diagonal matrix equations. Newton
iteration is carried out on the unknowns, namely aoo and c n , until the remaining
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FIGURE 10. Plot of the neutral wave speed and wavenumber of the system (26)-(27) versus u^. The
results are for Prandtl number unity and Richardson number Ri = -1.0. Note there is a maximum value
of Uao beyond which the wall layer equations can no longer support neutral wave modes.

boundary condition, @0 = 0 on <p = 0, is satisfied (to within some desired tolerance).
The reader is referred to [17] for full details.

We present the results of our calculation in Figures 10 and 11. Figure 10 shows a
plot of the neutral wavenumber and wavespeed versus the wall shear correction uwQ.
To interpret this figure we note that modes lying in the region below the uw0 versus
a curve the flow are unstable. The dominant feature of this figure is that there is a
maximum value of UWQ % 0.943164 beyond which the flow may no longer support
unstable modes. The corresponding eigenfunctions are shown in Figure 11.

In the limit M̂ O -*• 0 there are two distinguished limits corresponding to the left-
and right-hand branch of the neutral curve in Figure 10. Our analysis demonstrates that
the right-hand branch modes match onto the viscous solutions described in Section 4.
In the small uw0 limit the left-hand branch modes will match directly onto the inviscid
neutral solutions of Section 3 (see Figure 6). In this limit these neutral wave modes
develop a critical layer structure; the reader is referred to Miles [15] or Drazin & Reid
[7] for an in-depth discussion of the critical layer behaviour. It is this development
of a critical layer that makes the numerical solution of 26-27 increasingly difficult for
small values of uw0.

5. Conclusions

We have considered the instability of thermally stratified Poiseuille-Couette flow
to two-dimensional travelling wave motions. Particular emphasis has been placed
on describing the stability characteristics of the flow as the level of shear, arising
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FIGURE 11. Eigenfunctions of the system (26H27) for wavenumbers aroo = 0.2 (dashed curve) and
o = 0.1 (solidus).

from the Couette component of the flow, is increased. We have demonstrated that as
this element grows the flow is stabilised to two-dimensional wave modes and these
neutrally stable wave modes are driven to progressively shorter wavelengths. As such
it is those modes relevant to the large Reynolds number-large wavenumber limits that
are the last to be stabilised.

The modifications to the localized structure of the right-hand branch wave modes,
first described by Mureithi etal. [16], as the level of shear is increased have been
described. Thus as the wall shear is increased from its value for pure Poiseuille
flow the neutral wave modes move from the centre of the channel to the upper
boundary. A modified viscous wall bounded flow then emerges and the flow is finally
rendered completely stable when the wall shear uw > 2.9432. This scenario of a
re-stabilization of the flow by forcing the neutral wave-modes to within the vicinity
of the rigid boundary is not unlike that which occurs in the problem of the stability of
(unstratified) Poiseuille-Couette flow; see Cowley & Smith [3] for details.
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This modified structure, described in Section 4.2 and Section 4.3, has implications
for the nonlinear development of the right-hand-branch neutral wave modes. Indeed,
in the regime 0 < uw < 2 the results of Denier & Mureithi [6] are directly applicable
to the current problem of stratified Poiseuille-Couette flow. Denier & Mureithi [6]
demonstrated that the nonlinear development of a single monochromatic wave in a
strongly stratified boundary layer flow is governed by a wave/mean flow interaction in
which the wave amplitude and the wave induced mean flow are of comparable sizes.
In addition this nonlinear travelling wave bifurcates subcritically from the linear right-
hand-branch modes and is, as in the the case of linear wave mode considered in
Mureithi etal. [16] and in the present paper, localized about the position of maximum
streamwise velocity. Thus with only minor modifications the results of Denier &
Mureithi [6] can be applied to the current problem provided 0 < uw < 1 (so that
the dominant wave motion is confined to a viscous layer located at the position of
maximum streamwise velocity). However, as the level of wall shear is increased past
the critical level of uw = 2 + O(Re~3/s) and the linear wave mode becomes localized
at the upper boundary the results of [6] must be modified to account for the presence
of the boundary. The modifications to the analysis of Denier & Mureithi [6] which
are required to fully understand the nonlinear evolution of these wall bounded wave
modes is the subject of ongoing work, see [5].
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