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Abstract. We define a class 2 of entire functions whose covering properties are
similar to those of rational maps. The set £ is closed under composition of functions,
and we show that when regarded as dynamical systems of the plane, the elements
of 3 share many properties with rational maps. In particular, they have finite
dimensional spaces of quasiconformal deformations, and they contain no wandering
domains in their stable sets.

0: Introduction
Motivated by recent activity in the theory of dynamics of rational maps, we consider
the problem of iterating a transcendental entire map of the plane.

Early in the 1900s Fatou and Julia independently developed a theory of rational
maps as dynamical systems. Under iteration of a rational map R, the Riemann
sphere decomposes into two completely invariant sets: a stable region, on which
the behaviour of R is either dissipative or elliptic; and an unstable region, on which
R is chaotic. ‘

In 1926, Fatou [7] observed that this decomposition has an analogue for transcen-
dental entire maps. He then showed that, while the unstable set of an entire map
shares many of the qualitative features of the unstable set of a rational map, the
stable properties can be quite different.

In [13] Sullivan proved a ‘no wandering domain’ theorem for rational maps that,
combined with the work of Fatou and Julia, gives a complete classification of the
behaviour of R on its stable set. This classification depends heavily on the covering
properties of R, namely:

(1) There is a strong relationship between the stable phenomena and the
asymptotic behaviour of the values at which R fails to be a covering map.

(2) The only values at which R fails to be a covering map are the critical values.
Since the covering properties of a transcendental entire map E are more complicated
than those of R, the classification theorem does not carry over.

In this article, we define a class 3 of entire maps of finite type [see § 1] whose
covering properties are close to the covering properties of a rational map. For this
class we prove an essential finiteness theorem:

THEOREM 3.1. If E:C—C has finite type, then E has a finite dimensional space of
quasiconformal deformations.
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This theorem, together with the good covering properties of E € X allows us to study
stable behaviour of finite type entire maps, and in § 4 we prove:

THEOREM 4.2. If E:C > C has finite type, then E has no wandering domains.

It can further be shown that the classification of stable regions for rational maps
can be modified to give a classification of stable behaviour for finite type entire
maps [9].

The paper is arranged as follows. In § 1, we define our class 3, and determine
some of its basic properties. § 2 contains technical definitions and standard theorems
needed in the proof of theorem 3.1, which constitutes § 3. § 4 is devoted to dynamical
applications of theorem 3.1.

The authors wish to thank Dennis Sullivan for introducing this subject to them
and for his encouragement in this project. They also wish to thank Michael Shub,
Focurt Tangerman and Bob Devaney for general mathematical discussions of the
material. We further wish to thank the referee for his general comments and his
simplification of the proof of theorem 4.2. Finally, we wish to acknowledge A.
Eremenko and M. Ljubic who have announced an independent proof of similar
results.

Section 1
Throughout this paper, C will denote the complex plane, € the Riemann sphere
and E: C- C a transcendental entire map.

Definition. A point w € € is an asymptotic value for E if there is a path «:[0,1)>C
such that lim,_,, a(t) =c0 and lim,_,, E ¢ a(t) = w. The path « is a critical path for w.

Definitions. Let AV(E) be the set of asymptotic values of E; let CV(E) be the set
of critical values of E (images of critical points); let SV(E)=CV(E)uUAV(E) be
the set of singular values of E (note that o€ SV(E) for any E); let My = ¢ -SV(E)
(Mg is a manifold, it is possible that Mg = Q); let Mg = E~"{(Mg).

LeMMaA 1.1. The map E: 1\715 -> Mg is a covering.

Proof. Let we Mg, and choose a simply connected neighbourhood U of w. Define
¢: E"Y(w)x U~ E"Y(U) as follows. Let ze E"*(w), ue U, and choose a simple
path y in U connecting w to u. Since w is not a critical value of E, we can define
a local inverse E;' for E on a neighbourhood of w, which is uniquely determined
by the condition E;'(w)=z UnSV(E)= so we can analytically continue E’
along vy to u, and we define ¢(z, u) = E;'(u). ¢ is well defined by the monodromy
theorem and since it is the inverse of a function, it is injective. It is easy to check
that ¢ is also surjective. It follows that ¢ is a homeomorphism and that E IME is
a covering. O
Let V¥*=V—E Yw). By lemma 1.1, E| V*: V*> U —{w} is a covering, therefore
V* is homeomorphic to either an annulus, a punctured disk or a disk.

If V* is an annulus, then the bounded component of the complement either is
mapped by E to o, which can’t happen since E is locally injective, or contains a
pole, which cannot happen since E is entire.
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If V* is a punctured disk, then E | V*: V*» U —{w} is a finite to one cover, which
can’t happen since V* is unbounded while U has compact closure.

Therefore, V*=V is homeomorphic to a disk, E|V: V> U —{w} is a covering
and o is logarithmic as claimed. O

ProrosiTiON 1.3. If E, Fe X, SV(E o F)=SV(E)u E(SV(F)).

CoROLLARY 1.4. 3 is closed under composition of functions.

Proof of 1.3. 1.3 clearly holds for critical values, (i.e. CV(Ee° F)=CV(E)u
E(CV(F))). It is also evident that E(AV(F))< AV(E » F). Suppose that w € AV(E).
By lemma 1.2, w is logarithmic, so we can find a simply connected open neighbour-
hood U of @ and a maximal, connected, unbounded component V of E~'(U) such
that E|V: V> U —{w} is a covering. In particular, VA E (0)=.

Definition . E has finite type if SV(E) is a finite set. Let 3 denote the collection of
entire transcendental maps of finite type.

Examples. z - sin z, z- p(z) e” where p is a polynomial, z- e, z~> [, e dt, n=2,
belong to =.

It is our first goal to prove that X is closed under composition. In order to do this,
we need a technical result concerning the asymptotic values of E € 3.

Definition. w € AV(E) is logarithmic if there is a simply connected neighbourhood
U, we U, and a simply connected unbounded open set V< E~'(U) such that
E|V:V-> U-{w}is a covering.

For examples and a more general discussion of asymptotic values see [10, pp. 282-
289].

LEmMMA 1.2. If E€3, and w € AV(E), then w is logarithmic.

Proof. Since SV(E) is finite, we can find a simply connected neighbourhood U of
o such that U —{w}nSV(E)=. Let «:[0, 1) > C, be a critical path for w and let
V be the maximal connected component of E"'(U) containing a(t) for sufficiently

large ¢
[e o}
[ ]
E
v _——
a
(Q E ) *

Choose any component D of F~'(V):

© )
©
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D is an unbounded open set, and D~ (E o F) '(w) = . As in the proof of Iverson’s
theorem, [10], given any w,#we U, and any ze(E o F) '(w), there is a path
a:[0, 1) > D such that «(0) =z, and lim,,, @(z) =o0 (i.e. E o F o « is a path connect-
ing w; and o which is completely contained in U). Therefore, w is an asymptotic
value of E o F, and we have shown SV(E)u E(SV(F))cSV(E o F).

To show the opposite inclusion, let 8 =C —[SV(E)u E(SV(F))]. Since E, Fe X,
we can find we 9B and a simply connected neighbourhood U of w, U € 94 such that
E'(U)=UV, VinV,=@, i#j, and E|V;: V;> U is a covering for each i by
lemma 1.1. Now fix i and consider F~'(V;). If V; contained points of SV(F), U
would contain points of E(SV(F)) and would not be entirely in 9. Again by lemma
1.1 FY(V;)=\UJ Wi such that F|Wj: Wi~ V, is a covering for each k and Win

=, k# L It follows that E F is a covering onto & hence B contains no

points of SV(E < F). a
Section 2
In this section, we give definitions and technical constructions which will be used
in §§ 3, 4.

Let n=3, let {,, {5, ..., {, be distinct points in @, and let S=é—{§,,...,{,,}.
Define To={f": ¢-¢ |f is a quasiconformal homeomorphism}, and let T(S) = To/~,
where f~g in T, if there is an analytic homeomorphism h :€>C such that
g 'ohof:€->C is homotopic to the identity map rel {{,, ..., {u}-

7|
S

(‘7’4—— (@]

T(S) is the Teichmiiller space of S. A standard theorem is the following [1]:
THEOREM 2.1. T(S) is canonically isomorphic to a domain in a complex vector space
of dimension n -3,
The main object we consider in this paper is the space of entire functions quasiconfor-
mally conjugate to a given transcendental entire map E; namely, let
J(E)={F:C~>C|F is entire, F=fo E o f ! where f is quasiconformal}.
For technical reasons, we need to consider covering spaces of J(E). Define
To(E)={f:C~>C|f is quasiconformal, f E o f' is entire},

and let T(E)= T,(E)/~ where f~ g in Ty(E) if:

(1) f(p)=2g(p) for all pe SV(E);

(2) feEof '=goEcg™

(3) fo g '=identity rel SV(E).

Remark 2.2. The quasiconformal maps f such that fo E o f~' is entire are precisely
the maps which are compatible with E. To be specific, let u,=f,/f., where the
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derivatives are taken in the sense of distributions. u; is the Beltrami Coefficient of
/, and satisfies the equation:

usr(E(z)) - E'(2)/ E'(2) = us(z) ae.
There is a projection 7: T(E)~> J(E) defined by #((f))=fc Eof .

LEMMA 2.3. The fibre of the projection m, = '(F), is discrete.

CoroLLARY. dimension J(E) =dimension T(E).

Proof. An element (f) € T(Mg) induces an automorphism of the fundamental group
¢ :m(Mg)-> 7 (Mg) which is defined up to inner automorphism. # = {the group
of automorphisms of 7,(Mg) defined up to inner automorphisms} =the mapping
class group of Mg, is known to act properly discontinuously on T(Mjy) (see [5],
[8]). Consequently, the fibre of the projection T(Mg)-> T(Mg)/ M is discrete.
Since the elements (f) € T(E) are compatible with E, not every element of / is
induced by such an (f). Let M,={p e M|¢ is induced by (f)e T(E)}. M, is a
subgroup of # and so acts properly discontinuously on T(E) for the same reasons
M acts properly discontinuously on T(E). It follows that the fibre of the projection

T(E)-> T(E)/ M, is discrete. O
Section 3

THEOREM 3.1. If E has finite type, E € X, then T(E) and 9 (E) are finite dimensional
spaces.

Proof. Case 1: SV(E) contains at least three points.
Asin § 1, let Mg =C—SV(E). Mg is a sphere with n=3 punctures and T(Mg) is
the Teichmiiller space defined above. Define ®,: To( E) > T(Mg) by
®o(fe To(E))=[f: Mg > f(Mg)]e T(Mg).
®, projects to a map ®: T(E)—»> T(Mg),
®((f) e T(E))=[fle T(Mg),

and we will show that the fibre of ® has dimension at most four.

T,(E)
|
Fibre ____>(¢) T(E) ————>¢ T(Mg)
I(E)

Suppose (f)e T(E) and ®((f)) =[id). Let F=fo Eof ', Mr=f(Mg). Then there
is an analytic homeomorphism h:C-»C and a homotopy H:C X I - C rel SV(E)
such that H(-,0)=f and H(-,1)=h.
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/
\

ﬂ><———-— »

Recall 1\7!5 =E"'(Mg), A7IE = F™'(Mp). H restricts to a homotopy H : Mg X I > Mg,
and we consider the commutative diagram:

Since F: My~ MF is a covering by lemma 1.1, the homotopy H ¢ E xid lifts to a
homotopy J: ME xI>M I as drawn.

Let j=J(-,1): ME > MF Jj satisfies the functional equation:

hoE=Foj, (%)
and is therefore analytic. We will show that j extends to an analytic homeomorphism
of C (i.e. an affine map) which satisfies (*). It then follows immediately that
O N([[d) = {()e T(E)|n((f))=F=hoE-j ', hj affine}~=""(F)xC> Since
7 '(F) is discrete by lemma 2.3, the theorem will be proved.

Let ae E"Y(SV(E))=C — M;. Since SV(E) is a finite set, E"'(SV(E)) is discrete,
and we can find a simple closed curve y contained in Mgt such that n(y,a)=1,
n(7, b)=0 for all be E"'(SV(E)), b# a, where 7(¥, a) is the winding number of
v with respect to a. Assume, without loss of generality, that f is orientation preserving.
Then n{j(y), f(a))=1 and n(j(y), f(b))=0. It follows that j is bounded in the
component of the complement of y containing a, and that a is a removable
singularity. Therefore, j(a)=(1/2mi) _fy (j(s)/(s—a)) ds=f(a) is an analytic
extension of j to a and j extends to an entire map which satisfies (*).

To show that j is affine, note the foi.. ving two points:

(1) j has no critical points; differentiating (*), we see CV(j)c CV(E)c
E™'(SV(E)), but j is unramified at each ae E~'(SV(E)).

(2) There are at least two values for which j has only one pre-image; since
#SV(E) =3, some w € SV(E) has infinitely many distinct pre-images {b;}, but j~'(b;)
contains only one point for all i
(1) implies j is either affine or transcendental, and (2) together with Picard’s theorem
implies j cannot be transcendental.

Case 2. SV(E) contains 2 points.
Choose an arbitrary point w£SV(E) and let SV(E)*=SV(E)u{w}, M%=
C —SV(E)*, and repeat case 1.

a
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Section 4
In this section we consider some dynamical properties of our class £ of functions
and prove a ‘no wandering domain’ theorem.

First, we recall some basic definitions.

Definition. A point z e € is stable for E if is a neighbourhood U of z such that the
iterates {E"| U} form a normal family. Qg ={z|z is stable for E} is an open and
completely invariant set. Jz = ¢- Qg is the unstable set or Julia set of E. It is closed,
completely invariant, and non-empty. If it is not all of @, it is perfect and nowhere
dense.

The stable region breaks up into a disjoint union of components which can be of
two types:
Definition. A component D < Qg is eventually periodic if there exist integers m, n =0
such that E™""(D) < E"(D). Otherwise, D" n D™ = for all n# m =0, where D"
is the component containing E"(D), and D is said to be wandering. D is unramified
if SV(E)n D" = for all n=0.
Remark 4.1. (i) If D is unramified, D" = E"(D) for all n=0.

(ii) If D is a wandering domain, and SV(E) is finite, we can find N =0 such that
DY is an unramified wandering domain.

As an application of theorem 3.1 we prove:

THeEOREM 4.2. If E € 3., then Qg contains no wandering domains.

We will show that, if SV(E) is finite, the existence of an unramified wandering
domain D implies that J(E) is an infinite dimensional space. This contradicts
theorem 3.1. Our proof is based on an argument due to Sullivan {13] which shows
that the stable set of a rational map contains no wandering domains. Bers [6] gives
a modified proof of Sullivan’s result and our proof is modelled on the Bers version.

Suppose D < Qg is an unramified wandering domain. D is covered by the unit
disk U, and according to lemma 1.1, E: D" > D"" is a covering for all n. Therefore
we have a commutative diagram:

U

(+*)

D=D°-—i—->D‘—E—>D2——>---——>D"—>~--

where 7,: U—> D" is a holomorphic universal covering map. Let I'" denote the
fundamental group of D" then I'°cT'c<- - - is an increasing sequence of discrete
groups.

ProposiTiON 4.3. If I'" is trivial for all n then J(E) has infinite dimension.

ProrosiTION 4.4. If EcX and D is an unramified wandering domain, then I'" is
trivial for all n.

These two propositions, together with remark 4.1 and theorem 3.1, imply theorem 4.2.
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We will now prove a technical result (lemma 4.9) which is the basis of the proof
of proposition 4.3. Let D < C be an open set.
Definition. A Beltrami Coefficient in D is an element u € L(D) such that ||u[.<1.
Suppose 3D contains at least 3 points. Then D admits a metric of constant curvature
—1, which we denote by pp(z)|dz|.
Definition. A Beltrami coefficient x in D is harmonic if u(z) = pp(z) *¢¥(z) where
¢ is holomorphic.
Let #(D) denote the space of harmonic Beltrami coefficients in D.

THEOREM 4.5. Let D<€ be open. Suppose either (i) aD has non-empty interior or
(ii) m,(D) is not finitely generated. Then #(D) is an infinite dimensional space.
Proof. This is a special case of [6, lemma 4.1].

Remark 4.6.If D<C is a wandering component of the stable region of a rational
of entire map, than D satisfies (i) above.

Definition. A Beltrami coefficient x in C is eventually harmonic for E:C- C if:
(1) u(z)=u(E(2)) - E'(z)/ E'(z) [see remark 2.2];
(2) for each component D < Qp, there is an N >0 such that, for all n= N, u| D"
is harmonic.

Let #:(C) denote the space of eventually harmonic Beltrami coefficients in C for
E. From the measurable Reimann mapping theorem [2] we obtain a holomorphic
map 6:Xg(C)-> T(E) as follows:

To each u € #(C), there is a unique normalized quasiconformal homeomorphism
f*:C->C, fixing 0 and 1 such that f* o Eo(f*)"' is entire. We define 8(n)=
froEo(f*) e I(E).

LeEMMA 4.7. The fibre of 0 over any point F € J(E) is a discrete set.

Proof. The proof of lemma 4.7 is identical to the proof of lemma 7.1 in [6], choosing
d +1 eventually harmonic differentials, where d = dimension J(E), and replacing
everywhere, the rational map ‘R’ with the entire map ‘E’. O

The following is immediate.

CoroLLARY 4.8. dimension #¢(C) =dimension J(E) <oo.

LeMMA 4.9. Suppose D is an unramified wandering domain for a rational or entire
map E, and there is an N such that E: D" > D"*' is injective for all n=N. Then
He(C) is infinite dimensional.

Proof. To simplify notation, set D= D". Since D is unramified, E is a bijection,
and we can define G"=(E"|D)™", n=0,1,.... By theorem 4.5 and remark 4.6
there are infinitely many linearly independent harmonic Beltrami coeflicients
M1, M2, ... 10 D. For ze D", n=0, set

(G")'(2)

lzj(z) = IJ'](G"(Z)) (Gn)/(z) ’
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and if E™(z)e E"(D), m=0, n=0, set )
R weme o (ET)(2)
Ai(z) = p;(E (Z))(E—mm-
For all other z, set fi;(z) =0. &, fi2, ... are well defined, and form an infinite set
of linearly independent Beltrami coefficients compatible with, and eventually
harmonic with respect to E. O
Proof of proposition 4.3. By assumption, each D" is homeomorphic to a disk.
Furthermore, E : D" > D"*" is an unramified covering for all n, and so is a bijection.
Proposition 4.3 is therefore a direct consequence of lemma 4.9. (|

In order to prove proposition 4.4, we will need two facts about entire maps.

LEMMA 4.11 (Tangerman [14]). Suppose E € X, and let A>SV(E) be a set which is
homeomorphic to a closed disk. Then every connected component of E™'(C—A4) is
unbounded and homeomorphic to a disk.

Proof. Let V be a component of E~'(C—A). Then E|V:V->C—Ais a covering by
lemma 1.1. Hence, (E|V),: 7 (V)~> 7,(C—A)=Z is injective, so that m,(V)=Z or
(V) is trivial. In the former case, V is homeomorphic to either a punctured disk
or an annulus. If V is homeomorphic to a punctured disk, then E must have a pole
at the puncture, which cannot happen since E is entire. If V is homeomorphic to
an annulus, E must map the inner boundary of V to o, which does not make sense
since E is entire. Consequently, 7,(V) is trivial, and V is homeomorphic to a disk.

O

THEOREM 4.11 [4, theorem 3.1]. (1) A multiply connected component D of the stable
set of a transcendental entire function E is wandering.

(2) On D, every sequence {E™} of iterates E contains a subsequence that converges
uniformly to o on every compact subset of D.

(3) For large n, E"(D) contains a smooth closed curve y", whose winding number
about the origin is non-zero, and whose distance from the origin increases to < as n
goes to oo,

(4) Moreover, every component of the stable region is bounded.

Proof. See [4, theorem 3.1].

Proof of proposition 4.4. Suppose for some N, I'" is non-trivial for all n = N. Without
loss of generality, assume N = 0. Let y, be a smooth representative for a generator
of T'°, v, = E"(v,), and let B" denote the bounded component of the complement
of ¥". By theorem 4.11, we can choose n so large that SV(E) < B". By lemma 4.10,
each connected component of E™'(y") is unbounded (and a closed submanifold
of C). Since D" is bounded by theorem 4.11, and contains one of these pre-images,
we have a contradiction. O
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