GROUPS WITH A CERTAIN CONDITION ON CONJUGATES

FRANKLIN HAIMO

- 1. Introduction. In this paper, we shall show that if \mathfrak{G} is a nilpotent [5] group and if M, a positive integer, is a uniform bound on the number of conjugates that any element of \mathfrak{G} may have, then there exist "large" integers n for which $x \to x^n$ is a central endomorphism of \mathfrak{G} . If \mathfrak{G} is not necessarily nilpotent, if the above condition on the conjugates is retained, and if we can find a member of the lower central series [1], every element of which lies in some member of the ascending central series, then we shall show that every non-unity element of the "high" derivatives has finite order.
- **2. Commutator relations.** In a group \mathfrak{G} , let $(x, y) = xyx^{-1}y^{-1}$. In general, commutator notation is to be that of [5]. Let $\{x, y\}$ be that subgroup of \mathfrak{G} which has generators x and y. By $\mathfrak{T} = \mathfrak{T}(x, y)$ we mean the smallest normal subgroup of $\{x, y\}$ which contains both ((x, y), x) and ((x, y), y). If (x, y) commutes with both x and y, then

$$(x, y)^n = (x^n, y) = (x, y^n),$$

for every positive integer n, as an induction will show. Similarly

$$(xy)^n = x^n y^n (y, x)^{\theta}$$
 $(\theta = \frac{1}{2}n(n-1)).$

In $\{x, y\}/\mathfrak{T}$, $(x, y)\mathfrak{T}$ commutes with $x\mathfrak{T}$ and $y\mathfrak{T}$. Hence the above commutator formulae can be modified to $(x, y)^n \equiv (x^n, y) \equiv (x, y^n) \mod \mathfrak{T}(x, y)$ and to $(xy)^n \equiv x^n y^n (y, x)^{\theta} \mod \mathfrak{T}(x, y)$ for every $x, y \in \mathfrak{G}$.

3. The uniform bound. In this section, we assume that \mathfrak{G} is a non-trivial group and that M is a positive integer such that the number of conjugates for any element $x \in \mathfrak{G}$ cannot exceed M. We shall call such a group a u.b. group, or say that the group is u.b.; M will be called the u.b. of \mathfrak{G} . Let $\mathfrak{Z}^{(1)}$ be the centre of \mathfrak{G} . Suppose that $\mathfrak{Z}^{(4)}$ is defined. Then $\mathfrak{Z}^{(4+1)}$ is to be that subgroup of \mathfrak{G} for which $\mathfrak{Z}^{(4+1)}/\mathfrak{Z}^{(4)}$ is the centre of $\mathfrak{G}/\mathfrak{Z}^{(4)}$, and we have described the ascending central series [1] of \mathfrak{G} . We say that a group is a torsion group if every nonunity element thereof has finite order. If every element of a group \mathfrak{G} has infinite order, we say that the group is torsion-free.

The group \mathfrak{G} is said to have *uniform torsion* and is called u.t. if there exists a positive integer a such that $x^a = 1$ for all $x \in \mathfrak{G}$; a might be called the *exponent*

Received April 3, 1951; in revised form October 11, 1951. Presented to the American Mathematical Society, November 25, 1950.

¹The proof of the principal result has been simplified as suggested by the referee, whereby properties of the $\mathfrak{G}/\mathfrak{T}$ are used.

of \mathfrak{G} . If \mathfrak{G} is u.b. with bound M then $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. with exponent \mathfrak{a} dividing M! For, if $g, h \in \mathfrak{G}$, the set

$$\{h^{-i}gh^i\}$$
 $(i=0,1,2,\ldots,M)$

cannot have M+1 distinct elements. Equating a suitable pair of these, we find an integer $m, 1 \le m \le M$, such that $h^m g = gh^m$. Now $m \mid M! = \mu$ so that $h^\mu g = gh^\mu$. The result is well known. For later use, we recall the fact that, for any group \mathfrak{G} and positive integer i,

$$(\mathfrak{G},\mathfrak{Z}^{(i+1)})\subset\mathfrak{Z}^{(i)}.$$

Suppose that $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. with exponent \mathfrak{a} and that \mathfrak{N} is any normal subgroup of \mathfrak{G} . For $x \in \mathfrak{G}$, $y \in N$, $\mathfrak{T}(x,y) \subset (\mathfrak{G}, (\mathfrak{G},\mathfrak{N}))$ so that

$$(x, y)^{\mathfrak{a}} \equiv (x^{\mathfrak{a}}, y) \equiv 1 \mod (\emptyset, (\emptyset, \mathfrak{N})),$$

by the first of the commutator relations above. Let \mathfrak{S} be the set of all $s \in (\mathfrak{G}, \mathfrak{N})$ for which $s^a \in (\mathfrak{G}, (\mathfrak{G}, \mathfrak{N}))$. Then the members of \mathfrak{S} form a set of generators for $(\mathfrak{G}, \mathfrak{N})$, and \mathfrak{S} contains the inverse of each of its elements. Now let s and t be elements of \mathfrak{S} . Then

$$(s,t) \in ((\mathfrak{G},\mathfrak{N}),(\mathfrak{G},\mathfrak{N})) \subset (\mathfrak{G},(\mathfrak{G},\mathfrak{N})).$$

By the second of the commutator relations, $(st)^{\alpha} \equiv 1 \mod (\emptyset, (\emptyset, \mathfrak{N}))$, and $\mathfrak{S} = (\emptyset, \mathfrak{N})$. We have the proof of the first part of the following

LEMMA. $(\mathfrak{G}, \mathfrak{N})/(\mathfrak{G}, (\mathfrak{G}, \mathfrak{N}))$ is u.t. with exponent dividing a whenever $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. with exponent a and \mathfrak{N} is a normal subgroup of \mathfrak{G} ; $(\mathfrak{G}, \mathfrak{Z}^{(i+1)})$ is u.t. with exponent $\mathfrak{a}(i)$, where $\mathfrak{a}(i)|\mathfrak{a}^i$ and where $\mathfrak{a}(i)|\mathfrak{a}(i+1)$.

That a(i)|a(i+1) is obvious. To show that $a(i)|a^i$, we note that the result holds if i=0; and if it holds for i=k-1, take \Re above to be $\Im^{(k+1)}$. Then $(\mathfrak{G}, \mathfrak{R}) \subset \Im^{(k)}$, and

$$(\mathfrak{G},\mathfrak{Z}^{^{(k+1)}})/[(\mathfrak{G},\mathfrak{Z}^{^{(k)}})\cap(\mathfrak{G},\mathfrak{Z}^{^{(k+1)}})]$$

is u.t. with exponent dividing a. Hence $(\mathfrak{G}, \mathfrak{Z}^{(k+1)})$ is u.t. with exponent a(k) where $a(k)|a \cdot a(k-1)$. The induction assumption includes $a(k-1)|a^{(k-1)}$, so that $a(k)|a^k$.

THEOREM. If $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. and if $\gamma(i) = \mathfrak{a} \cdot \mathfrak{a}(i-1)$ (where $\mathfrak{a}(i-1)$ is the exponent of $(\mathfrak{G},\mathfrak{Z}^{(i)})$), then the mapping $x \to x^{\gamma(i)}$ on \mathfrak{G} induces an endomorphism of $\mathfrak{Z}^{(i)}$ into $\mathfrak{Z}^{(1)}$.

Proof. If $x, y \in \mathcal{Z}^{(i)}$, $(xy)^{\alpha} = x^{\alpha} y^{\alpha} z$, where

$$z \in (\mathfrak{Z}^{(i)}, \mathfrak{Z}^{(i)}) \cap \mathfrak{Z}^{(1)} \subset (\mathfrak{G}, \mathfrak{Z}^{(i)}) \cap \mathfrak{Z}^{(1)}.$$

Hence $(xy)^{\gamma(i)} = x^{\gamma(i)} y^{\gamma(i)}$. For, $z \in (\mathcal{B}^{(i)}, \mathcal{B}^{(i)})$ by the second of the commutator relations, using the fact that $\mathfrak{T}(x, y) \subset (\mathcal{B}^{(i)}, \mathcal{B}^{(i)})$; and $z \in \mathcal{B}^{(1)}$, since $w^a \in \mathcal{B}^{(1)}$ for every $w \in \mathfrak{G}$. Since $(\mathfrak{G}, \mathcal{B}^{(i)})$ is u.t. with exponent a(i-1), $\gamma(i)$ has the indicated property.

4. The consequences of the theorem.

COROLLARY 1. Let $\mathfrak{G}/\mathfrak{Z}^{(1)}$ be u.t., and let \mathfrak{G} be nilpotent of class c. Then the mapping $x \to x^{\gamma(c)}$ is a central endomorphism of \mathfrak{G} .

Proof. Take i = c in the theorem.

COROLLARY 2. If $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. and if any member of the ascending central series is torsion-free, then the ascending central series collapses and contains only the centre.

Proof. If $\mathfrak{Z}^{(n)}$ is torsion-free and if $g \in \mathfrak{Z}^{(n+1)}$, $n \geqslant 1$, then

$$gxg^{-1}x^{-1} \in (\mathfrak{G}, \mathfrak{Z}^{(n+1)}) \subset \mathfrak{Z}^{(n)}$$

for every $x \in \mathfrak{G}$, and the u.t. property of $(\mathfrak{G}, \mathfrak{Z}^{(n+1)})$ shows that $gxg^{-1}x^{-1} = 1$, the unity of \mathfrak{G} . Then gx = xg for every $x \in \mathfrak{G}$, and $\mathfrak{Z}^{(n+1)} \subset \mathfrak{Z}^{(1)}$.

COROLLARY 3. A non-Abelian nilpotent group & with torsion-free centre cannot be u.b.

For a given group \mathfrak{G} let $\mathfrak{Z}=\mathfrak{Z}(\mathfrak{G})$ be the set sum of the $\mathfrak{Z}^{(i)}$ $(i=1,2,3,\ldots)$. \mathfrak{Z} is a normal subgroup of \mathfrak{G} ; and $\mathfrak{C}=\mathfrak{Z}$ if \mathfrak{G} is nilpotent. The converse of the latter statement need not hold. If $\mathfrak{G}=\mathfrak{Z}$ we call \mathfrak{G} weakly nilpotent. From the principal theorem, if $\mathfrak{G}/\mathfrak{Z}^{(i)}$ is u.t., then $(\mathfrak{G},\mathfrak{Z})$ is a torsion subgroup of \mathfrak{G} . Similarly, we have the following results:

LEMMA. If $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t.² and if \mathfrak{G} is weakly nilpotent, then $(\mathfrak{G},\mathfrak{G})$ is a torsion subgroup of \mathfrak{G} .

LEMMA. If $\mathfrak{G}/\mathfrak{Z}^{(1)}$ is u.t. and if $\mathfrak{Z} \supset {}^4\mathfrak{G}$, a member of the lower central series of \mathfrak{G} , then (a) the ${}^{t+k}\mathfrak{G}$, k>0, are torsion subgroups; and (b) for "large" j, the $\mathfrak{G}^{(j)}$, members of the derived series are torsion subgroups.

Proof. (See [5] and [1] for definitions.) (a) $3 \supset {}^{4}$ % implies

$$(\mathfrak{G},\mathfrak{Z})\supset (\mathfrak{G},{}^{\mathfrak{t}}\mathfrak{G})={}^{\mathfrak{t}+1}\mathfrak{G}\supset {}^{\mathfrak{t}+k}\mathfrak{G} \qquad \qquad (k\geqslant 2).$$

(b) It is known [1] that $\mathfrak{G}^{(j)} \subset {}^k\mathfrak{G}$ $(k=2^j-1)$. Choose $j \geqslant \log_2(i+2)$ for the desired result.

It is well known [3] that the integers n for which $x \to x^n$ is a central endomorphism form an ideal. It would be of interest to extend the work of Levi and van der Waerden and of Bruck [2], concerning central endomorphisms of the form $x \to x^3$, to the general central power endomorphism. But the methods, as in [2], seem to depend on the fact that 3 is "small."

²For a related result when ⁽¹⁾ is u.b. see [4].

REFERENCES

- 1. R. Baer, The higher commutator subgroups of a group, Bull. Amer. Math. Soc., vol. 50 (1944), 143-160.
- R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc., vol. 60 (1946), 245-354.
- 3. F. W. Levi, Notes on group theory VII, J. Indian Math. Soc. (N.S.), vol. 9 (1945), 37-42 (as available in Math. Rev., vol. 8 (1947), 13).
- 4. B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3), vol. 1 (1951), 178-187.
- 5. H. Zassenhaus, Lehrbuch der Gruppentheorie (Leipzig and Berlin, 1937).

Washington University in Saint Louis