GROUPS WITH A CERTAIN CONDITION
ON CONJUGATES

FRANKLIN HAIMO

1. Introduction. In this paper, we shall show that if @ is a nilpotent [5]
group and if M, a positive integer, is a uniform bound on the number of con-
jugates that any element of @ may have, then there exist ‘“large’ integers n for
which x — x" is a central endomorphism of @. If @ is not necessarily nilpotent, if
the above condition on the conjugates is retained, and if we can find a member
of the lower central series [1], every element of which lies in some member of
the ascending central series, then we shall show that every non-unity element
of the “high’ derivatives has finite order.

2. Commutator relations. In a group ®, let (x,y) = xyx~y~L In general,
commutator notation is to be that of [5]. Let {x,y} be that subgroup of &
which has generators x and y. By € = T(x, y) we mean! the smallest normal
subgroup of {x,y} which contains both ((x,y),x) and ((x,%),y). If (x,9)
commutes with both x and v, then

(x’ y)" = (xn’ y) = (x, yn)’
for every positive integer 7, as an induction will show. Similarly
(xy)* = x"y"(y, )’ 6= 3nn—1)).

In {x, y}/T, (x,y)T commutes with T and y<T. Hence the above commutator
formulae can be modified to (x, y)" = (x*, ¥) = (x,»") mod T(x,y) and to
(xy)* = x*y"(y, x)’ mod T(x, y) for every x,y € ©.

3. The uniform bound. In this section, we assume that & is a non-trivial
group and that M is a positive integer such that the number of conjugates for
any element x € & cannot exceed M. We shall call such a group a u.b. group,
or say that the group is u.b.; M will be called the u.b. of &. Let 8% be the
centre of &. Suppose that 3(? is defined. Then 3¢V is to be that subgroup of &
for which B¢*+1 /3 i the centre of ®/3(, and we have described the ascen-
ding central series [1] of ®. We say that a group is a forsion group if every non-
unity element thereof has finite order. If every element of a group ® has infinite
order, we say that the group is forsion-free.

The group ® is said to have uniform torsion and is called u.t. if there exists a
positive integer a such that x* = 1 for all x € ©; a might be called the exponent
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properties of the /% are used.
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of @. If ® is u.b. with bound M then &/3® is u.t. with exponent a dividing M!
For, if g, b € ©, the set

{h'gh') (G=0,1,2...,M

cannot have M + 1 distinct elements. Equating a suitable pair of these, we
find an integer m, 1 < m < M, such that h™g = gh™. Now m | M! = p so that
h'g = gh". The result is well known. For later use, we recall the fact that, for
any group ® and positive integer 7,

(@, 3(i+1)) C (8“)'

Suppose that @/8® is u.t. with exponent a and that 9N is any normal sub-
group of ®. For x € ®, y € N, (x,y) C (@, (&,N)) so that

*y)' =&y =1 mod (©, (§, N)),

by the first of the commutator relations above. Let © be the set of all s € (&, N)
for which s* € (@, (@, N)). Then the members of & form a set of generators
for (&, M), and & contains the inverse of each of its elements. Now let s and ¢
be elements of &. Then

s,8) € ((G,M), (B,N) C (6, (©,N)).

By the second of the commutator relations, (sf)* =1 mod (&, (&, N)), and
& = (O, N). We have the proof of the first part of the following

Lemma. (G, N)/(®, (G, N)) is u.t. with exponent dividing a whenever &/3D
1s u.t. with exponent o and N is a normal subgroup of ®; (&, 3UtDY) is u.t. with
exponent a.(1), where a(i)[a‘ and where a(i)’a(i + 1).

That a(i)la(i + 1) is obvious. To show that a(i)lai, we note that the result
holds if 2 = 0; and if it holds for < = & — 1, take N above to be 3%+, Then
(©,N) C 83®, and

©, 3*)/1(®, 3%) N (©, 3%7)]
is u.t. with exponent dividing a. Hence (@, 3%+D) is u.t. with exponent a (%)

where a(k)]a . a(k — 1). The induction assumption includes a(k — 1)|a<’°‘1), )
that a(k)!a".

THeEOREM. If &/B3® 45 u.t. and if v(4) = a.a(t — 1) (where a(z — 1) is
the exponent of (&, B™)), then the mapping x — x¥D on ®& induces an endomor-
phism of 3 into 3D,

Proof. If x,y € B39, (xy)* = x*y* 2, where
z € (8(1) 3(0) N 3(1) C (@ 3(0) N :8(1)'

Hence (xy)"® = x7® 97, For, z € (3P, 3) by the second of the com-
mutator relations, using the fact that T%, y) C (8®, 3™®); and z € 3D, since
w* € 3D for every w € ®. Since (@, 3®) is u.t. with exponent a(z — 1),
v(2) has the indicated property.
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4. The consequences of the theorem.

CoROLLARY 1. Let /3™ be u.t., and let & be nilpotent of class c. Then the
mapping x — x7° is a central endomorphism of ©.

Proof. Take ¢ = ¢ in the theorem.

COROLLARY 2. If &/BW s u.t. and if any member of the ascending ceniral
series is torsion-free, then the ascending central series collapses and contains only
the centre.

Proof. If 8™ is torsion-free and if g € 3™V, n > 1, then
gxg—lx—l e (@5, 8(n+1)) C 8('1)

for every x € &, and the u.t. property of (@, 3®+D) shows that gxg~1x1 =1,
the unity of ®. Then gx = xg for every x € &, and 3™+ C 3O,

COROLLARY 3. A non-Abelian nilpotent group & with torsion-free centre cannot
be u.b.

For a given group ® let 83 = 3(®) be the set sum of the 3» (7 = 1,2, 3,...).
3 is a normal subgroup of &; and € = 3 if @ is nilpotent. The converse of the
latter statement need not hold. If @ = 3 we call & weakly nilpotent. From the
principal theorem, if &/3® is u.t., then (®, B) is a torsion subgroup of @.
Similarly, we have the following results:

LEMMA. If &/8D is u.t.2 and if © is weakly nilpotent, then (&, ®) is a torsion
subgroup of ®.

LemMA. If /3D is u.t. and if 3D ‘O, a member of the lower central series
of ©, then (a) the **®, k > 0, are torsion subgroups; and (b) for “large” j, the
O, members of the derived series are torsion subgroups.

Proof. (See [5] and [1] for definitions.) (a) 8 D *® implies
(©®,8) D (6, '®) = ' D *E k> 2).

(b) It is known [1] that & C*® (k = 2?7 — 1). Choose j 2> log:(i + 2) for
the desired result.

It is well known [3] that the integers % for -hich x — x" is a central endomor-
phism form an ideal. It would be of interest to extend the work of Levi and van
der Waerden and of Bruck [2], concerning central endomorphisms of the form
x — x3, to the general central power endomorphism. But the methods, as in [2],
seem to depend on the fact that 3 is “‘small.”

For a related result when © is u.b. see [4].
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