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Abstract

A train travels from one station to the next along a level track. The journey must be
completed within a given time and it is desirable to minimise the energy required to
drive the train. It has been shown with an appropriate formulation of the problem
that an optimal strategy exists and that this strategy must satisfy a Pontryagin type
criterion. In this paper the Pontryagin principle will be used to find the nature of
the optimal strategy and this information will then be used to determine the precise
optimal strategy.

1. Introduction

In 1977-78 Milroy [6] considered the problem of driving a train from one
station to the next along a level track within a given allowable time in such
a way that energy consumption is minimised. He formulated the problem as
follows: Minimise the energy consumption

I(u,v)= / u+(t)v(t)dt
Jo

subject to the differential equation

v'(t) = u(t) - r[v(t)]

with boundary conditions v(0) = v(T) = 0 and subject to the equality con-
straint

TI v{t)dt =
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[2] An optimal strategy for the control of a train 455

and the inequality constraint \u(t)\ < 1. In this formulation T is the given
time allowed for the journel and L is the distance between the two stations,
u(t) is the acceleration applied to the train, v(t) is the velocity and r[v(t)] is
the frictional resistance. It is assumed that a maximum applied acceleration
is specified and that only positive acceleration consumes energy. Thus the
cost functional contains the term

u+(t) = [u(t) + \u(t)\}/2

which is the positive part of u(t). By applying the Pontryagin maximum
principle Milroy obtained a basic velocity profile which he has suggested as
an optimal strategy. This conjecture has been supported by more recent work
of Tyler [7] and Kautsky et al [4] and by subsequent practical tests. However
because he did not specify vector spaces for the various functions involved
it was not possible for Milroy to justify his solution. In two previous papers
Howlett [2] and [3] it was shown that when the problem is formulated in an
appropriate function space an optimal strategy exists and the strategy does
indeed satisfy a Pontryagin type criterion. The books by Yosida [8] and Lu-
enberger [5] are suggested as useful references for the underlying functional
analysis in these two papers and the methods of Craven [1] form a basis for
the derivation of necessary conditions on an optimal strategy. In this paper
the Pontryagin principle will be used to find the nature of the optimal strat-
egy and this information will then be used to determine the precise optimal
strategy. The problem will then be reformulated using only control strategies
of optimal type and the simplified problem will be solved to show that each
possible strategy is determined by a single real number parameter. A precise
optimal strategy can now be found. In his original paper Milroy did not
obtain a complete determination of the solution. Finally it should be noted
that the cost functional used in this paper is more general than the cost func-
tional used in the original formulation and consequently the optimal strategy
is more complex.

2. Formulation of the train control problem

Let 38 denote the set of all real valued Borel measurable functions on
the interval [0, T]. We consider two basic subsets of 38 and the associated
Banach spaces. % is the subset of all essentially bounded functions. If we
define a norm on this subset by the formula

Hloo = ess.sup|M(r)|
t€[0,T]
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then U = (&, || • ||oo) = L°°([0, T\) is a Banach space. "V is the subset of
all essentially Lipschitz functions and for these functions a suitable norm is
given by ||v|| = |M|oo + ||w'||oo. In this case V = {3T,\\ • ||) = ^'([O.T]) is
also a Banach space. It is convenient to introduce the subset

% = {v\v e V with v(0) = v(T) = 0}

and the subspace VQ = (^o, || • ||) which is again a Banach space. We will
define a real valued cost functional J on ̂  x 'V by the formula

J(u,v)= f p[u(t)]q[v(t)]dt
Jo

where p : R - » R and q: R —> R are functions with the following properties.
The function p is convex and piecewise linear and such that p{u) = 0 when
u < 0 and p(u) > 0 when u > 0. More precisely we will assume that there
exist points 0 = «i <Ui < • • • < « „ = 1 such that

{ 0 (M < 0)

aj(u-Uj) + bj (Uj<u<uJ+i)

an(u-l) + bH ( M > 1 )
where 0 < a\ < a-i < • •• < an, b\ = 0 and bj+\ = aj{ui+\ - Uj) + bj for
j = 1,2,..., n -1. The function q is continuously differentiable with #(0) = 0
and q(v) strictly increasing when v > 0. We will need some additional
assumptions on p and q and these will be introduced in the next section. For
the moment we observe that we wish to minimise J(u, v) over all u € % and
v e 2*6 subject to certain constraints. The first has the form

/ v{t)dt = L
Jo

and the second has the form

v'(t) = u(t)-r[v(t)]

where the resistance function r: R —• R is a function with r(0) = 0, r(v)
strictly increasing for v > 0 and with r(v) [ TQ > 0 when v I 0. We will also
assume that there is a continuously differentiable function r : R - » H with
r(v) = r(v) when v > 0. There are also two inequality constraints which
must be observed. Firstly we need |w(0| < 1 and secondly v(t) > 0. It is now
possible to specify the problem precisely. Minimise the cost functional

J(u,v)= fp[u{t)]q[v{t)]dt
Jo
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over all («, v) € ^ x 2*6 subject to the equality constraints v'(t) = u{t) -r[v(t)]
and f*v(t)dt = L and the inequality constraints |w(0| < 1 and v(t) > 0.

3. The nature of the optimal strategy

We mentioned earlier that additional assumptions on p and q would be
introduced. To this purpose we define functions Pj: R —> R for each j =
1,2,...,/! by setting Pj(v) = aj[r(v) - u}] + bj and if we use the notation
(Pjq)(v) to denote the product Pj(v)q(v) then we will assume that (piq)(v)
and {pnq){v) are strictly convex. It is now easy to establish that (j)jq)(v) is
strictly convex for each j = 1,2,...,«. With these additional assumptions
we can now show that the adjoint differential equation

£'(0 - r/[w0(0K(0 = *P[uo(t)]q'[vo(t)] + o- w'(t) (1)

and the Hamiltonian function

h(u, t) = rp(u)q[vo(t)] + avo(t) + £ ( W N ( 0 ] - "} (2)

can be used to determine the nature of the optimal journey. In this context
T E R and a E R are adjoint variables and w: R -* R and £: R ->• R are func-
tions used for the representation of adjoint variables by appropriate integrals.
The function vo(t) is the optimal velocity of the train and the function MO(O
is the optimal applied acceleration.

From the previous paper [3] we know that the optimal acceleration UQ can
be obtained by minimising h(u, t) over all u e I = [-1,1]. We must therefore
obtain one of the following basic situations.
(TO: Taj-iq[vo(t)] - £(t) < 0 and Tajq[vo(t)] - $(t) > 0, in which case

h{Uj,t) = minh{u,t).

(T2): xajq[vo{t)] - £(t) = 0, in which case

h(u*,t) = minh(u,t),

for all u*e[Uj,Uj+i],
(T3): i(t) = 0, in which case

h{u*,t) = minh{u,t),

forallw*e[-l,0].
(T4): £(t) < 0, in which case

h(-\,t) = vcanh{u,t).

We will now state several results which allow us to develop the overall
structure of the optimal journey. For convenience we will state them as a
sequence of lemmas with only brief notes about the method of proof.
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LEMMA 3.1. Ifvo(t) > Qforallt e {t\,t2) thenw{t) is constant in this interval.

PROOF. From the Fritz-John conditions (FJ) in [3] we know that V*{VQ) = 0,
i.e. /[0 r ) vo(t)w(dt) = 0 where w(t) is increasing and where the integral is a
Radon integral (see Howlett [3] and Yosida [8]). This condition derives from
the requirement VQ(1) > 0. Now it follows that

= / vo(t)w(dt)
J[0,T]

> I vo(t)w(dt)
J[tl+6,t2-S]

>e[w(t2-6)-w(ti+d))

(some e > 0). Since w(t) is increasing it must be constant.

LEMMA 3.2. If xaj-\q[vQ{t)] - £(t) < 0 and Tajq[vo(t)] - £(t) > 0 for all
t e (ti,t2) and ifuQ{t\) = Uj > r[vQ(ti)] then uo(t) = uj > r[vo(t)] for all
te[tut2].

PROOF. Suppose there is some value t^ € (tu t2] with Uj = r[vo(ti)]. For each
t € (*i,*3) we have

rMt)

•/«o('i)

But from the mean value theorem we can find cv with v < cv < vo(<3) such
that r[vo(t})] - r(v) = r1{cv)[v0(t3) - v] and hence

rva(t)

{l/[vo(t3)-v}dv,
rva(t

JvoU,)
where e > 0 is a lower bound for l/r'iv) on the interval [vo(ti),vo(ti)].
Clearly the RHS approaches infinity as / T 3̂- Thus ^ cannot be finite.

LEMMA 3.3. IfTajq[vo(t)] - £(t) = Ofor all t e {t{, t2) then vo(t) = vo(t{) and
Uo(t) = r[vo(ti)]for all such t. This situation can only arise ifuj < r[vo(ti)] <

PROOF. Since Tajq[vo(t)] - £(t) = 0 it follows that

™,<?>o(OK(')-<r(O = O.

Using the adjoint equation and Lemma 3.1 this condition becomes

and since (j>jq)(v) is strictly convex there is at most one value (say V) such
that r{pjq)'(V) + a = 0. Thus vo(t) = V for all t e (tu t2).
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LEMMA 3.4. Ifraj-iq[vo(t)] - £(t) < 0 and tajq[vo(t)] - £(t) > 0 for all t e
(tuh) and ifuo(t) = Uj > r[vo(ti)] then it is not possible to have Tajq[vo(t)] -

= Oforallte(t2)t3).

PROOF. Suppose the contrary. From Lemma 3.2 we have Uj > r[vo(t2)] and
from Lemma 3.3 we have u, < r[vo(t2)] which is a contradiction.

LEMMA 3.5. If xaj-\q[vo(t)] - £(t) < 0 and Tajq[vo(t)] - £(t) > 0 for all
t e (ti, t2) and ifuo(t) = Uj > r[vo(t\)] on this interval then it is not possible
to have Tajq[vo(t)] - £(t) < 0 and TaJ+lq[v0(t)] - £(t) > Ofor all t e {t2, h).

PROOF. Suppose the contrary. From Lemma 3.2 it is clear that Uj >
and since Uj+i > Uj > r[«o('2)] it is also clear that Uj+i > r[vo(h)]. Thus
vo(t) increases on (t\,t3). We also know that Tajq[vo(t)] -£(t) is positive on
(ti,t2) and negative on (t2, h). Thus for all t € [t2, h) we have

Tajq'[vo(t)]v'o(t) -$'(t) < (-l){T(Pjq)'[vo(t)} + a)

= Tajq'[vo(t2)M(t2)-Z'(t2),

since rajq[vo(t2)]-Z(t2) = 0. Now we know that tajq[vo{t)]-£(t) is decreas-
ing at t = t2 and hence

Tajq'[vo(t2)]v'0(t2)-Z'(t2)<0.

Thus we have shown that Tajq[vo(t)] - £(t) is negative and decreasing
throughout the interval (̂ 2.̂ 3)- Let us suppose that the optimal strategy
changes at / = t$. From Lemma 3.4 we can see that it is not possible to
have raj+iq[vo(t)] - £(t) = 0 for all / € (hyU) and so the only possible
change would require xaj+\q[vo{t)] - £(/) < 0 on (hJ*). A continuation of
this argument will show that such a journey can never terminate.

Although the above results do not constitute a complete determination of
the overall structure of the optimal journey they do indicate the methods that
must be used. For example Lemma 3.2 shows us that when condition (Tl)
is valid on a time interval [ti,t2] and if the optimal acceleration uo(t) = Uj
exceeds the frictional resistance r[vo(t)] at the beginning of the time interval
then it exceeds the frictional resistance at the end of the time interval as well.
Lemma 3.4 shows us that such a situation can only terminate (at t = t2) with
the condition TOj-iq[vo(t2)] -£(t2) = 0. Thus on a subsequent time interval
(h, ti) we must have either TOj-\q[vo(t)] - £(t) = 0 or else we have both
Taj-\q[vo(t)]-^{t) < 0 and ia'jq[vQ(t)]-l;(t) > 0 throughout the interval. In
the former case condition (T2) holds and we can apply Lemma 3.2 (with j

https://doi.org/10.1017/S0334270000006780 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006780


460 Phil Howlett [7]

replaced by j-1) to see that a constant acceleration «0(0 = r[vo{t)] = r(V) <
Uj is applied throughout the interval. In the latter case condition (Tl) again
applies (but with j replaced by j - 1 and) with acceleration MO(/) = M;-i
throughout the interval. Lemma 3.5 shows that it is not possible for the level
of acceleration to be given by UQ(1) = Uj on a particular time interval and then
to be given by Uo(t) = Uj+i on an immediately subsequent time interval. In
summary the level of optimal acceleration must progressively decrease with
the passage of time.

Thus the optimal journey must consist of an acceleration phase (during
which time ito(t) = 1 —> «o(O = "n-i -+ "o(O = "n-2 - • • • • - > uo(t) =
un-k+\) followed by a speed holding phase (when UQ{1) = r[vo(t)]) and a sub-
sequent coasting phase (during which time uo(t) = un_k —• «o(O = wn-;t-i —»
•••->• «o(O = 0 and the velocity decreases "gradually"). Finally there is a
braking phase (with uo(t) = -1) . It is possible to have an optimal journey in
which certain stages are omitted.

4. The complete solution

We will consider an optimal journey with the acceleration phase defined
by

uo(t) = un-i for t €
/ i i+i \

\r=0 r=0 J
and each / = 0 ,1 ,2 , . . . , k - 1. We will define the velocities 0 = Vo < V\ <
•• • < Vk by the formulae

= v (
kr=0

for each i = 0,1,2,. . . , k. We will take c*o = 0 with ar > 0 for the remaining
values of r. The speedholding phase will be given by

uO(t) = r(Vk) fortG
/ k k \

\r=0 r=0 J
where fi > 0. The coasting phase is specified by

( k j k j+l \

53 a i > + 0+E^>H a ' -+P+IZ^)
r=0 j=0 r=0 s=0 /

and each ./ = 0 ,1 ,2 , . . . , n - k - 1. We define the velocities Vk > Vk+l > • •• >
*n > 0 by the formulae

Vk+j

f k j \
= V0 ]>>r + 0 + I >

\r=0 5=0 /
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for each j = 0 , 1 , 2 , . . . , « - k. We will assume yo = 0 with ys > 0 for the
remaining values of s. Finally the braking phase is defined by

( it n-k k

r=0 s=0 r=Q
where the final velocity Vn+\ = 0 is defined by

( k n-k

E a '+^ + E'>- .
r=0 5=0 /

The actual functions used in the synthesis of vo(t) are defined in the fol-
lowing way. For each / = 0 ,1 ,2 , . . . , k - 1 we define tj: [0, V*) -> [0, oo) by
the formula *i(v)= fV{l/[un-i-r(w)]}dw,

Jo
where V* is the unique point with r{V*) = «„_,. We can choose a constant
r, such that «„_, - r(w) < n(Vf - w) for all w e [0, Vf). Thus tj(v) >
(l/r,)ln[l - (v/Vf)] and hence f,(v) T oo as v T Vt*. Now if we define
[v*]: [0,oo) -• [0, V*) as the inverse function of /, then it is easy to see that
[v*]'{t) = un~i - r{[vf](t)}. Furthermore it is clear that [v,*](0 T V* as 11 oo.
Since 0 < Vt\ < V* we can define the acceleration phase of the optimal journey
by the formulae

= [̂ *] I ' - ? otr + tt[Vi] for t € > ar, V a r
\ r=0 / \r=0 r=0 /

and each i = 0 ,1,2, . . . , k - 1. Incidentally it is clear that Vi+X = [v*](ai+i +
U[Vi\)- For the speedholding phase of the optimal journal it is clear that

/ k k \

for re Ea^' E a ' + ^ •
\r=0 r=0 /

Now for each j = 0 , 1 , 2 , . . . , « - A: - 2 we define k + > : (Vj*+J, Vk] -> [0, oo] by
the formula

tk+J(v) = /
Jv

where Vk*+j is the unique point with r(V^+j) = un-k-j- (It is necessary to
assume at this stage that «2 > fQ i-e. the lowest non zero level of acceleration
is assumed sufficient to overcome the initial resistance to motion.) We can
choose a constant rk so that r(iw)-«n_fc_y < rk{w-Vk*+j) for all w e (Vk*+j, Vk]
and so

tk+J(v) > (l/rk)\n[(Vk - V;+j)/(v - Vk'+J)],
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and hence tk+j(v) | oo as v J, Vk*+j. Now we define [vk+j]: [0, oo) -+ {Vk*+j, Vk]
as the inverse function of tk+j and it is easy to see that

Furthermore it is clear that [vk+j](t) J. Vk*+j as t T oo. Since Vk > Vk+J > Vk*+j

we can define all stages except the final stage for the coasting phase of the
optima! journey by the formulae

[Vk+j] (t- [2<*r + P + iZ7s\ + tk+j[Vk+J]\
V Lr=O s=Q i J

k j

r=0 s=0
( k j+\

s=0 r=0 s=0
for each j = 0,1,2, ...,n-k- 2. For the final stage of the coasting phase we
begin by defining tn-\: [0, Vk] —»• [0, ^_i(0)] by the formula

n.x{v)= f \l/r(w)}dw.
Jv

Since r(w) > ro > 0 it follows that tn-\{v) < (Vk - v)/ro. Now the inverse
function [v*_t]: [0, fn_i(0)] -* [0, Vk] satisfies the differential equation

and since Vk > Vn_\ > 0 we can define the final stage of the coasting phase
by the formula

( k

r=0

Lr=O s=Q J

n-k-\ k n-k(
Y^r P
r=0 5=0 r=0 J=0

Incidentally we can now see that for all j = 0 ,1,2, . . . , n - k - 1 we have
Vk+J+i = [vl+j](yj+\ + tk+j[Vk+j]). For the braking phase of the optimal
journey we can begin by defining /„: [0, Vk] -+ [0, tn(0)] by the formula

tn(v)= fVk{\/[r(w)+l]dw.
Jv

Since r(w) + 1 > r0 + 1 > 0 it follows that tn(v) < (Vk - v)/{r0 + 1). Now the
inverse function [«•]: [0, tn(0)] -* [0, Vk] satisfies the differential equation

MHO = (-1)-'{MI

https://doi.org/10.1017/S0334270000006780 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006780


[10] An optimal strategy for the control of a train 463

and since Vk > Vn > 0 we can define the braking phase of the optimal journey
by the formula

voit) = K i u -1E<*r+0 + E y*] + l»wj
\ Lr=O s=0 i J

( k n-k k n-k \

r=0 s=0 r=0 s=0 )
where 8 is chosen so that Vn+l = [v*](d+tn[Vn]) = 0. Hence S = tn(O)-tn{Vn)
depends on a, 0 and y.

Now that we can describe the basic format of the optimal journey it is
possible to formulate the problem in a more amenable form. The cost of the
optimal journal is given by

Jo(a,fi,y)=

n-k-l

E
;=0 ' °

and the distance travelled during the optimal journal is given by

d(a, P, y) = y^ I [v*](x + ti[Vi\) dx + VkP

/
7=0 J°
r

Jo

E
=0
tn(0)-U(Vn)

/o
Therefore we can now consider the original problem in the following form.

Minimise Jo(a, /?, y) subject to the (equality) constraint d(a, P,y) = L and
the (inequality) constraints a>0, P>0, y>0 and X)f=i <*r + P + T,"=o V* +
tn(0)-tn(Vn)<T.

Thus we form a Langrangean function

a, p, rXit, v, t], £) = J0(a, P,y) + X[L-d(a,P,y)]
k n-k 1

Lr=l s=\
f k n-k

Lr=l 5=1
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The necessary conditions for optimality are now the Kuhn-Tucker equa-
tions viz.

j<xr = u, o^so/i) p = u, oJ^Q/oys = U,

with A[L - rf(a, ^, y)] = 0, /irar = 0,ufi = 0, rjsys = 0, and

[ A: n-k "I

53ar + yS + 5 3 ^ + ^(O)-rn(Fn)-r =o
r=l s=l J

with //r > 0, v > 0, ?/j > 0 and ^ > 0.
In order to calculate the above derivatives efficiently we must first establish

some convenient formulae. When m < r + 1 we have

dam da,m vi*rn

trWAVriVr)^-
acLm

_ un-r - r(Vr+l) dVr

un-r-r{Vr) dam'

while we also have

dam dam
U m-ii^am+ m~a

= un-m+1 -r(Vm).

Hence by induction we obtain the general formula

un.r-r(Vr)
 ll*"-'+1

whenever m < i. We can extend this result by noting that

= un-k.s - r(Vk+s+i) dVk+s

un_k.s - r{Vk+s) dam '
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[12] An optimal strategy for the control of a train 465

from which it follows by induction that

jfr un_k.s - r(Vk+s+l) dVk

dam 11 un^s-r(Vk+s) dam

for each j = 1 ,2 , . . . , « - fc. Now the previous result can be used to give

Un-k-s - '

r=m un.r-r(Vr) [""-k-J+i - r

In similar fashion when / < s + 1 we can see that

_ un.k.s-r{Vk+s+i)dVk+s

un_k_s - r{Vk+s) dy,

Since it is also clear that

= Wy~l
{[V*k+'-i]{Y'

we can again use induction to obtain the general formula

j _ JT un-k-s+\-r(Vk+s)

whenever / < j . By applying these formulae in the calculation of the ap-
propriate partial derivatives we obtain a suitable form for the Kuhn-Tucker
equations.
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In fact we have

71 =P(»r
k-l

ay.

*V(r + tWMUVA^X[vn'(T + f,[K-!)^(K

•{p'[r{Vk)]r'(Vk)q{Vk)+p[r(Vk)]q'(Vk)}%%-fi
aam

n-k-l ryj+l

jr*Q Jo "~k~J k+J k+J k+J

' dx

ay.

c)v r 8v l

This equation can now be rewritten in the simplified form (isi) below

p(un.m+l)q(Vm)
i=m

i. I

iPn-kQ)'{Vk) n
 U"-r+i~r{^[un_k+1 - r{Vk)]p

k— I

for each m with 1 < m < k. A much less complicated calculation now gives

-— n< r(Vt.}\o(Vt^ 2LVL — if ~l~ <? *— Q

dp
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from which we obtain the equation (£2) in the form

Finally we calculate
d So

dy, -p{u"-k-<
n-k-l

[vk\j]'(r + tk+J[Vk+j])t'k+j{Vk+j)^±dz

and note that this equation can be rewritten in the form (£3) given below:
n-k-l

p(un-k-i+i)q(Vk+i) + Yl p(un-k-j)[q{Vk+j+l) - q(Vk+J)]

x TT Un-k-s+l ~~ r\Yk+s)
l un_k.s-r(Vk+s)
1

u"-k-s+i -rJVk+s) I

'JJJ un.k.s-r(Vk+s)

,, 1J1 ff »-*-+•-'(M o,

for each / with 1 < / < n — k. For convenience in the above formulae we
have used the notation UQ = - 1 wherever necessary. In order to solve the
equations given by the Kuhn-Tucker conditions we assume to begin with that
a, P and y are positive. Thus we must have n = 0, v = 0 and r\ = 0. If we
take (£3) with / = n - k it follows that £ = XVn.

Thus { = 0 only if A = 0 or Vn = 0 and from (£2) it is clear that A = 0 is
not possible. If we put / = n-k - 1 in (£3) we obtain

https://doi.org/10.1017/S0334270000006780 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006780


468 Phil Howlett [15]

and if we subsequently use an inductive argument on (£3), then it follows
that

for each j = 1,2,..., n — k - 1. From equation (£"2) we get

(j>n-kQ){Vk)-X[Vk-Vn\ = O.

If these results are used in conjunction with equation (E\) in the case
m = k then it can be seen that

iPn-kQ)'{Vk)=L (3)

With m = k - 1 in equation (£1) we find that

(Pn-k+\Q)(Vk-i) - Wk-x - Vn] = 0,

and once again an inductive argument, applied this time to equation {E\),
can be used to deduce that

U>n-k+i<l)(Vk-,) - A[F*_, - VH] = 0,

for each i = 1,2,..., k — 1. These results can be written collectively in the
form

(Pj-iq){Vn-J+l)-(Pj9){Vn-j) _ , ,dv
V ~, V • ~ ^ '
yn-j+\ — vn-j

foreach7= 1,2,...,« —1. In this form (4) compares in nature with (3). If we
have either am = 0 (for some m) or y/ = 0 (for some /) then the corresponding
stages are simply omitted. The fundamental nature of the results is however
the same and the same formulae apply. The notation must be adjusted to
allow for a re-numbering of the appropriate stages but if we imagine that the
whole problem is simply reworked with the null stages omitted it is easy to
see that the same analysis will again apply. Similar comments can be made
when fl = 0 and the speedholding phase is omitted. This time however the
results are changed to the extent that equation (3) will be deleted.

In the case of a journey that contains a speedholding phase it can now
be seen that the maximum velocity V* achieved (during the speedholding
phase) on the journey is sufficient to determine the parameter k and the
velocities V\, V2,...,Vn. For each such type of optimal journey (i.e. for
each selected configuration of null stages) and a given maximum velocity V*
the time allowed for the speedholding phase can be adjusted to achieve the
appropriate value of d{ V*, 0) viz. d{V*,fi*) = L. Of course this may not be
possible for all types of optimal journey and in cases where it is possible there
may be a violation of the time constraint. When both the distance and time
constraints can be satisfied the optimal type journey is feasible and the cost
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V* = V,

a + p +6 T t

FIGURE 1. A simple trajectory involving maximum acceleration, with speedholding and
maximum braking. The length of the speedholding phase is not specified.

V=V.

a + y+6

FIGURE 2. A simple trajectory involving maximum acceleration, zero acceleration (coasting)
and maximum braking but with no speedholding. The velocity at which braking begins is not
specified.

can be calculated. The first diagram shows an optimal type velocity pro-
file and shows how the distance travelled, represented by the area under
the curve, can be adjusted by varying the time allowed for the speedhold-
ing phase. In the case of a journey that contains no speedholding phase the
value of the parameter X is no longer specified by the value V* of the maxi-
mum velocity. For each such optimal journey the value of the parameter X
determines the velocities Vi,V2,...,Vn from V* and consequently determines
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the distance travelled. Thus we must now choose k so that d{V*,k) = L. Al-
ternatively we can see that determination of any one value Vt (other than
the value Vk = V*) will determine X and hence determine all other values
Vj. Provided that the time constraint is satisfied, this journey will be feasible
and can then be costed. The second diagram shows an optimal type velocity
profile with no speed holding phase and shows that selection of the velocity
at which braking begins will determine the compleie journey.

We can now calculate the cost of each feasible type of optimal journey and
so determine the minimum cost journey.

5. Conclusions

This paper provides a clear answer to the type of strategy that must be
adopted to achieve a minimum cost journey. The optimal strategy involves
successive levels of constant applied acceleration with each subsequent level
less than the preceding one and with the allowable levels restricted to the
points at which the slope of the piecewise linear function p(u) changes. If
the maximum velocity of the optimal journey is given, then this paper shows
that a single real number parameter determines the complete journey. The
appropriate value of this parameter can be determined by satisfying the dis-
tance requirement and the journey will then be regarded as feasible if the time
constraint is not violated. No specific method is suggested for the parame-
ter determination and further work could be done to develop an efficient
numerical procedure. In the case of the more general problem where the
function p(u) is not piecewise linear it seems reasonable to assume that an
approximate optimal journey could be obtained by using a piecewise linear
approximation to p(u).
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