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Abstract

Evaluating exoskeleton actuation methods and designing an effective controller for these exoskeletons are both
challenging and time-consuming tasks. This is largely due to the complicated human–robot interactions, the selection
of sensors and actuators, electrical/command connection issues, and communication delays. In this research, a test
framework for evaluating a new active–passive shoulder exoskeletonwas developed, and a surface electromyography
(sEMG)-based human-robot cooperative control method was created to execute the wearer’s movement intentions.
The hierarchical control used sEMG-based intention estimation, mid-level strength regulation, and low-level actuator
control. It was then applied to shoulder joint elevation experiments to verify the exoskeleton controller’s effective-
ness. The active–passive assistance was compared with fully passive and fully active exoskeleton control using the
following criteria: (1) post-test survey, (2) load tolerance duration, and (3) computed human torque, power, and
metabolic energy expenditure using sEMG signals and inverse dynamic simulation. The experimental outcomes
showed that active–passive exoskeletons required less muscular activation torque (50%) from the user and reduced
fatigue duration indicators by a factor of 3, compared to fully passive ones.

1. Introduction

A wearable exoskeleton interacts with the human body’s structure (Nasr et al., 2021c). Its potential
applications include rehabilitating patients, developing motor skills, boosting human performance, and
decreasing muscle fatigue (Nasr et al., 2021c; Gillette et al., 2022; Nasr et al., 2022a). However, safe and
effective exoskeleton control is a challenging problem (Nasr et al., 2021c). Challenges include human–
robot interaction (HRI), human-in-the-loop (HITL) control, physiological signal interpretation, actuation
type, and real-time application. So far, most issues, except real-time tests, have been studied in offline
analysis (Fritzsche et al., 2021). The challenges of real-time application may require special tools,
methods, and parameters.

Modern exoskeleton, prosthetic, assistive, and rehabilitation robot controls follow a hierarchical
structure with control laws at the high, middle, and low levels (Young and Ferris, 2017; du Plessis
et al., 2021; Nasr et al., 2022b). The high-level controller deciphers the user’smotion intent or userwrench
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(torque/force). The most popular technique for testing and managing wearable exoskeleton robots and
bionic prostheses is the interpretation of biological signals (Nasr et al., 2021a). The brain produces
biological signals and sends them to muscles as action potentials, so that the body is moved and
controlled. The most frequently applied physiological signals that are utilized to analyze human
movement and rehabilitation are surface electromyography (sEMG; Yun et al., 2020; Nasr et al.,
2021a) signals. Biological signal interpretation or classification was successfully achieved using
machine-learning methods (Nasr et al., 2021a), primarily using offline analysis. However, as a result
of safety concerns, real-time sEMG-based machine-learning-driven robots have not been widely utilized.

The mid-level controller converts the high-level controller’s intended motion or wrench into the low-
level controller’s desired trajectory of motion or wrench. The assist-as-needed (AAN)-computed-torque
method (CTM approach for the mid-level controller, which relies on augmenting rather than substituting
motor effort, has shown encouraging outcomes (Gull et al., 2020; Yihun et al., 2020; Asl et al., 2021;
Wang et al., 2021; Nasr et al., 2022b). So far, this mid-level controller has been tested in simulation
studies. Although a comprehensive and verified model may be used for controller design (Nasr et al.,
2022b), it is essential to test the controller in HITL experiments.

The low-level unit is in charge of instructing the robotic actuators to follow the desired states
(commanded by the mid-level unit), while taking into account the measured states (from the sensors)
(Young and Ferris, 2017; du Plessis et al., 2021). Designing and tuning gains of a low-level controller does
not happen within a simulation and requires understanding and evaluating the actuator, physical system,
power transmission system, control delays, and computational challenges. We aim to adjust the low-level
controller gain by means of verbal feedback from the participants interacting with the exoskeleton.

The exoskeleton design is divided into three actuation categories: fully passive, fully active, and
active–passive. A fully passive mechanism usually stores potential energy from humanmotion (de Looze
et al., 2016; Nasr et al., 2022a). Compared to other categories, it is less sophisticated in terms of sensing
and control, and it is portable, safe, economical, and requires fewer maintenance (de Looze et al., 2016; de
Vries and de Looze, 2019; Nasr et al., 2022a). Instead of supplying an assistive torque as a fixed function
of joint angle (fully passive), active (powered) exoskeletons supply torque as a variable function of time or
states using actuators such as an electric motor, a hydraulic cylinder, or a pneumatic artificial muscle
(de Looze et al., 2016; Gopura et al., 2016). Since the entire torque source of the exoskeleton depends on
an active component, the energy source, and the used actuator must be powerful. As a result, active
(powered) exoskeletons are big, heavy, fixed in place, expensive, and have a low power-to-weight ratio
(Bogue, 2018).

Some technologies combine active and passive power transmissions to reduce the drawbacks of fully
active and fully passive exoskeletons (Naito et al., 2007; Matthew et al., 2015; Otten et al., 2018;
Al-Hayali et al., 2021a, 2021b; Miakovic et al., 2022). Passive mechanisms serve to minimize the size,
weight, and necessary active torque, which in turn improves portability (Smith et al., 2013; Blanchet et al.,
2020; Miakovic et al., 2022). Recently, the semi-active, semi-passive, and quasi-passive nature of this
combined transmission system has been conceptually investigated on lower limbs (Lambrecht and
Kazerooni, 2009; Hassan and Sadik, 2018; Di Natali et al., 2020; Pillai et al., 2020; Al-Hayali et al.,
2021a, 2021b; Ren et al., 2021; Wang et al., 2021), upper limbs (Naito et al., 2007; Smith et al., 2013;
Zahedi et al., 2021; Bai et al., 2022;Winter et al., 2022), and spines (Jamsek et al., 2020). However, from a
practical point of view, it is necessary to consider theHRI, as well as control delays in regulating the active
component of this integrated system. Our goal is to assess and contrast a fully passive, fully active, and
active–passive shoulder exoskeleton in an experimental study for the first time.

Exoskeleton power transmission sources must be assessed using various criteria that consider both
human and robot systems. To the best of our knowledge, the literature has not offered specific instructions
for evaluating active–passive systems in the HRI experiment. The primary goal of this project is to
develop a practical test for hierarchical control of an upper-limb exoskeleton designed for a particular
worker or patient. The secondary goal of this project is to reduce user effort by tuning the control gains and
selecting the correct strength level of the passive mechanism. Participants who were engaged with the
robot provided the data for evaluation.
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The following is a list of the research contributions:

I. Implementing a hierarchical scheme for real-time sEMG-based control of a shoulder exoskeleton.
II. Evaluating active–passive in HITL experiments assistance and comparing it with fully passive and

fully active exoskeletons using the following criteria: (1) post-test survey, (2) load tolerance
duration, (3) mean power frequency, (4) motion fatigue, and (5–8) computed human active torque,
joint torque, power, and metabolic energy expenditure using an experimentally validated and
scalable neuromusculoskeletal (NMSK) model.

III. Suggesting current real-time implementation challenges to address in future offline studies and
analysis.

First, the required equipment, calibration steps, and data preparation are introduced in Section 2.
Second, hierarchical schemes are introduced, modeled, and implemented (Section 3). Third, test protocol
and phases, as well as the exoskeleton evaluation criteria, are introduced in Sections 4 and 5. Finally, the
results for different criteria are presented, compared, and discussed in Section 6.

2. Equipment

Here, the wearable passive device, the augmented active component, the sensors, and the connection
protocols/methods used to assess the performance of the active–passive exoskeleton robot, are introduced.

2.1. Shoulder exoskeleton

Wehave added amotor to an EVO (Ekso Bionics Holdings Inc, California, USA) upper-limb exoskeleton
with built-in passive assistance (Figure 1(a)). The method of combining active and passive components
can be applied to any upper-limb exoskeleton. The EVO upper-limb exoskeleton has 1-degree of freedom
(DoF) for each side (left and right) of the shoulder elevation joint that rotates with a passive mechanism.
Level 1, 2, and 3 springs provide a maximum torque of 4:578, 7:693, and 9:798Nm, respectively.
The exoskeleton passive joint is attached to a hip belt using passive accordion-like joints and links
that allow movement in the horizontal plane. The exoskeleton armrest attaches to the user’s upper arm.
The exoskeleton was modeled, including its passive torque-angle function, and validated in Nasr et al.
(2023a).

2.2. Motor and encoder

An AK80–9 KV100 brushless direct current (BLDC) motor (Cubemars, Jiangxi Xintuo Enterprise Co.,
China) with the properties in Table 1 has been used for the active component. The built-in motor driver
communicates with controllers through a controller area network (CAN-bus) and calibrates through serial
communication.

The actuators driver board utilizes a field-oriented control (FOC) unit and is supplied with an active
disturbance rejection control loop to control the speed and angle, according to Figure 2. This low-level
controller is responsible for rejecting disturbances and applying the desired kinematics and kinetics that
are commanded by the mid-level controller. This low-level controller consists of proportional-
derivative feedback and a torque feed-forward controller. In total, five variables should be commanded
to the built-in controller via CAN-bus fromMATLAB. These five variables are desired angular position
(ϕref ), desired angular velocity ( _ϕref ), feed-forward desired torque (Tr), proportional gain (Kp), and
derivative gain (Kd).

We have designed an intermediary adaptor to connect MATLAB to the motor using an Arduino Uno
and a CAN-bus Shield V2.0 (Seeed Technology Inc., Shenzhen, China). MATLAB connects to the
Arduino with a serial communication port (115200 bits

s ). The Arduino converts the received string to an
integer for commanding the motor. To increase the robustness of the conveyed data, the data that consists

Wearable Technologies e13-3

https://doi.org/10.1017/wtc.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2023.9


of specific start and end frames, as well as fixed length, is given a special pattern. The Arduino connects to
the CAN-bus board through a serial peripheral interface (SPI). TheCAN-bus board includes anMCP2515
CAN-bus controller and an MCP2551 CAN-bus transceiver.

(a) Human-robot system

#5

#6

(b) Anterior view

#1

#2

#3

#4

(c) Posterior view

Figure 1. (a) Depiction of a healthy subject wearing an actual EVO passive system with an augmented
BLDCmotor on the elevation joint. (c& d) The depiction of the sEMGelectrode and IMU placements using
Delsys Trigno wireless sEMG system (Delsys Inc, Natick, MA, USA), over the area of #1 UTRA, #2MTRA,
#3 MDEL, #4 PDEL, #5 ADEL, and #6 BRD of the right forearm, shoulder, and upper trunk muscles.

Table 1. The properties of the AK80–9 KV100 BLDC motor (Cubemars, Jiangxi Xintuo Enterprise Co., China)
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2.3. Surface electromyography and inertial measurement unit

For the connection and streaming of real-time data between a computer and a Delsys Trigno wireless
sEMG system (Delsys Inc, Natick, MA, USA), the TRIGNO software development toolkit (SDK) has
been used. Delsys’s wireless system base should be connected to the computer using a USB cable. The
transmission control protocol (TCP), a standardized protocol for transmitting information over a
network, receives the data from the base and provides the data over a virtual TCP/IP server with the
trigno control utility (TCU). The Trigno SDK utilizes five TCP ports to communicate with client
applications (Table 2). The TCU application listens for incoming connections andmanages data routing
to any applications that connect. All sEMG channels stream through the 50043 port, and all additional
data channels stream through the 50044 port. Additionally, any sensors with 4 or fewer data channels, or
an inertial measurement unit (IMU), will have data duplicated on the 50041 and 50042 ports. A
“START” command to the command port or a start trigger to the Trigno base station initiates data
acquisition.

As illustrated in Figure 1, sEMG signals were measured from 6 sites over muscles of the right limb and
trunk, similar to those suggested by Hislop et al. (2013). The locations are #1 upper trapezius (UTRA), #2
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Hierarchical Control
Computer (MATLAB)
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Motor
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Figure 2. Block diagram of main control system components and connection protocols. The high, mid,
and low-level controllers are described in Section 3. The connection protocols/methods are highlighted as

blue arrows.

Table 2. The TCP/IP server 5 port names, numbers, and functions

Function Sampling

Name Number Receives Sends Channels Rate (Hz) Period (s)

Command 50040 Commands Replies to control commands 1
sEMG Data 50043 N/A sEMG and primary non-sEMG data from all

sensor types
16 1111.111 0.0135/15

AUX Data 50044 N/A Auxiliary non-sEMG data from all sensor types 144 148.148 0.0135/2
Legacy sEMG Data 50041 N/A sEMG and primary non-sEMG data from select

sensor types
16 1925.925 0.0135/26

Legacy AUX Data 50042 N/A Auxiliary non-sEMG data from select sensor
types

48 148.148 0.0135/2
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middle trapezius (MTRA), #3 middle deltoid (MDEL), #4 posterior deltoid (PDEL), #5 anterior deltoid
(ADEL), and #6 brachioradialis (BRD). No sensors were attached to the upper arm area since the
exoskeleton armrest covered the area.

2.4. Calibration

The motor command and feedback signals are defined as unsigned integer data, but we have converted
them to real numbers using linear regression. The motor angle (ϕref ), the motor speed ( _ϕref ), the FOC
proportional gain (Kp), the FOC derivative gain (Kd), and the motor torque (Tref ) were defined between
0 and 65535, 4095, 4095, 4095, 4095 bits, respectively. We have mapped the motor torque to the input
code using Figure 3(a). According to the manufacturer’s manual, the motor absolute position sensor is
calibrated for 4 full revolutions (Figure 3(b)). Additionally, the motor speed is calibrated for �50rad

s
(Figure 3(c)).

2.5. Data preparation

The machine-learning model inputs to the high-level controller are the filtered sEMG signals, the Euler
angle data from a built-in IMU in the sEMG sensors, and the motor kinematic data. These data are filtered
or rectified in the preparation stage, as described below, before feeding to the high-level controller.
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Figure 3. The motor (a) torque function of code (measured and fitted), (b) the motor angle function of
code, (c) the motor velocity function of code.

Figure 4. Raw and filtered sEMG signal samples in the time and frequency domains.
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• sEMG data: The raw signals were filtered using the methods described below. A sample of sEMG
signals that were filtered is shown in Figure 4. In contrast to a mathematical muscle model, which
requires more filtering steps and analysis, these steps are provided for machine-learning mapping
electromyography to kinematic and dynamic biomechanical variables (MuscleNET), a machine-
learning mapping method.
Step #1 A band-pass filter with a cutoff frequency of 20�500Hzwas applied (Hermens et al., 2000;

Drake and Callaghan, 2006) (signals with less than 20Hz frequency were cleaned to remove
the motion artifacts, and sEMG signals with frequency more than 500Hz were removed as
they had insignificant power spectral density (Reaz et al., 2006)).

Step #2A band-stop filter, known as a notch filter, with a cutoff frequency of 55�65Hz was used
(to clear the 60Hz noise from the measurement unit).

Step #3 An absolute function (commonly known as the rectification process of sEMG signals) was
used to make the signal positive. This step alters the power spectral density of the recorded
signal as shown in Figure 3 (Neto and Christou, 2010; Nasr et al., 2021b).

Step #4 A low-pass filter with a cutoff frequency of 7Hz (Hermens et al., 2000) was used to smooth
the sEMG signal (Nasr et al., 2021b).

Step #5A normalization function to the subject’s maximum signal amplitude was used.
Step #6A re-sampling function using the 1D data cubic interpolationmethod to a 20Hz rate was used

(only for the data preparation phase of MuscleNET, not for real-time control).
• Euler angle data: A low-pass filter with 30Hz cutoff frequency was used to clear the high-
frequency noise of Euler angles measured by IMU components.

• Motor kinematic data: To remove the high-frequency noise of the motor velocity _ϕf calculated as
the numerical derivative of the joint angle, a low-pass filter with 20Hz cutoff frequency was used.
The joint angle of the motor ϕf was used without any data adjustment.

3. Hierarchical controllers

As shown in Figure 5, thewearable device controller adopts a hierarchical control architecture (Nasr et al.,
2021c), which consists of (I) high, (II) mid, and (III) low-level units. [label = .]

I. The high-level unit estimates the user’s state and predicts the user’s motion or wrench intent
(Nasr et al., 2020, 2021a). Researchers are working on developing automated estimation and
prediction systems that use machine-learning models and information from IMUs and sEMG
wearable sensors. This is in contrast to commercial devices, which use direct manual commands
from the user for decision-making tasks (Nasr et al., 2021c). Here, we are using a machine-
learning model from Nasr et al. (Nasr et al., 2021a) to estimate the user intent from the IMU and
sEMG sensors.

II. The mid-level unit transforms the high-level estimation and prediction into mode-specific refer-
ence trajectories, or the desired wrench, using the biomechatronic system’s dynamic equations. In
the past, this level of control was achieved using a conventional control method: finite state
machines/prerecorded motion (Long et al., 2017), master–slave (Lee et al., 2012), proportional
(Tang et al., 2014), CTM (Nasr et al., 2022b), fuzzy-logic (Han et al., 2021; Nasr et al., 2022b),
impedance control (Brahmi et al., 2021), haptic/admittance control (Menga and Ghirardi, 2019),
or adaptive control (Nasiri et al., 2021). Recently, positive results for the mid-level controller have
been demonstrated using the AAN-CTM approach, which augments rather than replaces muscular
activity (Nasr et al., 2022b).

III. The low-level agent computes the error between the measured states (from the kinematic and
kinetic sensors) and the desired device states (from the mid-level controller) and uses common
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Figure 5. Block diagram of the hierarchical control architecture of the active–passive exoskeleton robot,
including high, mid, and low-level controllers. The high-level unit estimates the future values of the
control-oriented joint angle, angular velocity, and assistive torque (Nasr et al., 2023b). The mid-level
controller defines the potential driving torque using the human and exoskeleton model. The low-level

controller ensures the commanded data matches the motor states.
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control algorithms like proportional-integral-derivative (PID) control. It then instructs the robotic
actuators to use reference tracking and closed-loop feedback control to minimize the error (Nasr
et al., 2021c).

The controllers for each level are described in the following sections.

3.1. High-level controller

The machine-learning model used here as the high-level controller is called MuscleNET, and its
configuration is optimized for mapping IMU and sEMG to kinematic and kinetic biomechanical signals
(Nasr et al., 2021a). The fact that muscle dynamics and joint motions rely on motion history is the reason
why a recurrent neural network (RNN) is used instead of other feed-forward methods (Barron et al., 2020;
Nasr et al., 2021a). Here, the configuration, input, and output data, and training method are described.

The input of the RNN is a fusion of three types of signals: muscle activation from filtered sEMG, Euler
angles from IMU, and the exoskeleton joint angle (and its derivative to define joint angular velocity) by
built-in angle position sensors. The output of the RNN consists of future control-oriented data that is
required for the mid and low-level units.

AnRNN (shown on top of Figure 5) has a 34�1 dimensional input (8 filtered sEMG, 24 Euler angle α,
1 motor angle ϕf , and 1motor velocity _ϕf data), a 3�1 dimensional output (1 future control-oriented joint
angle ϕref tþ1ð Þ, 1 future control-oriented joint angular velocity _ϕref tþ1ð Þ, and 1 future control-oriented
assistive torque Th tþ1ð Þ). The RNN configuration consists of 3 input signal former values and 7 output
signal former values. The RNN has 2 hidden layers with 50 nodes having hyperbolic tangent sigmoid
activation functions, and the output layer has one neuron with a hyperbolic tangent sigmoid activation
function. More information on the data dimensionalities and structures is provided at the top of Figure 5.

A time-shifting technique and dynamic model-based optimization loops were used to prepare the
output training data. The motor joint angle and velocity are time-shifted in order to find two of the output
training data (ϕref tþ1ð Þ and _ϕref tþ1ð Þ). In addition, the last output training data (Th tþ1ð Þ) was
calculated using a validated exoskeleton and human musculoskeletal (MSK) model (Nasr et al.,
2023a) and an optimization loop. The optimization loop tries to find the actuator’s assistive torque
(Th) to decrease the human joint torque (τh) (Nasr et al., 2022a; 2023a).

Once the data is gathered from the participant and processed as mentioned, it is then used to train the
RNN. Levenberg–Marquardt backpropagation was used as the training method and 2000 was chosen as
the maximum epoch. Six hours was set to be the most time that could pass. When doing regression tasks,
the half mean squared normalized error (MSE) operation in Equation (1), which calculates the half MSE
loss between network predictions and target values, was used to calculate the loss in the model gradient
function:

loss=
1
2N

ΣM
i= 1 Yi�Tið Þ2 (1)

where

3.2. Mid-level controller

Here, we consider the complete AAN-CTM strategy intended to deliver the necessary assistance torque.
This novelmethod determines the desired actuator torque (Tr) bymagnifying the human active torque (τh)
using the desired strength variable (Ω), and integrating the powered actuator model for the robot in

Y i is the neural network prediction output,
Ti is the output target value,
M is the total number of responses across all

observations, and
N is the total number of observations in Y .
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Equation (2). In the presence of low human joint torque, the hyperbolic Equation (3) eliminates the
controller chattering effect. The exoskeleton dynamic model of actuator torque (Qr) is presented in
Equation (4), and sums with the desired torque to cancel the dynamics of the robot structure and the
actuator:

Tr = ΩQγ Th� bQh

� �
þ bQr (2)

Qγ =
1

1þ e�
4

γ�δ Th�γþδ
2ð Þ �

1

1þ e
4

γ�δ Thþγþδ
2ð Þ

�����
����� (3)

bQr = N2bIm €ϕf þN2bbm _ϕf þ bmrgbdcom sin ϕf
� �

(4)

where

3.3. Low-level controller

Here we used proportional-derivative (PD)-based and feed-forward controllers adopted from (Katz et al.,
2019), and provided in Equation (5). The maximum motor nominal torque limits the desired assistive
output torque in Equation (6). A motor’s torque-producing ability relevant to its current is usually
expressed as Equation (7).

T = Kp ϕref �ϕf
� �

þKd
_ϕref � _ϕf

� �
þTr (5)

T = min max T ,�Tmaxð Þ,Tmaxð Þ (6)

ia =
T

NKm
(7)

Tr is desired/feedforward assistive torque,
Th is control-oriented assistive elevation torque by the high-level controller,bQh is human limb estimated model,
Ω is robot’s desired strength variable, which is positive for assistive and negative for resistive

control between 0 and∞,

Qγ is smooth curve of the human elevation torque between the dead zone and the threshold torque,bQr is wearable robot actuator model, the result of the rotor inertia and the viscous damping,
γ is the positive threshold torque,
δ is the positive dead zone torque,
ϕf is actuator joint angle,
_ϕf is actuator joint angular velocity that is calculated with the derivative of the joint angle,
€ϕf is actuator joint angular acceleration that is calculated with the derivative of the joint angular

velocity,
N is the gear ratio,
Im is moment of inertia of the motor rotor around the elevation joint,
bm is rotator viscous friction coefficient,bmr is combined mass of the exoskeleton elevation mechanism, housing, and fixture of the motor,
g is gravitational acceleration, andbdcom is distance of mass center from the rotational joint.
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where

Since the angular velocity is calculated using the first numerical derivative of the joint angle and it has
no filter in the FOC, the controller is consequently noisy. Thus, it is reasonable to have a small Kd for a
robust controller, but it should nonetheless be more than zero to inhibit any small speed errors. As the
proportional gain Kp increases, the robot controller acts as a motion controller, and as it decreases, it acts
as a torque controller.

4. Participants and test protocol

• Participants: 21 participants (12male and 9 female; 25�3:2years; 64�12:9kgmass; 1:75�0:09m
height; 2:5�1:9workout session perweek; 15 right-handed and 5 left-handed) free of upper extremity
injury gave informed consent and performed the following tasks (Figure 6) in different phases. The test
protocol has been given ethics clearance by the Research Ethics Board of the University of Waterloo
(REB: #43980).

• Phases: Participants did tasks during the phases detailed in Table 3. In the first phase, the participant
freely moved their upper arm from the natural pose to overhead, as well as contracted the muscles
individually. This data was used for motor home angle calibration and calculating the maximum
sEMG signal amplitude. In the second phase, participants made the free motion. The data in this
phase was used to optimally calculate the assistive torque (Nasr et al., 2023a) and provide training
data for theMuscleNETmodel (Nasr et al., 2021a). The subject would repeat the task for phases 3–6

Tmax is the maximum nominal motor torque,
T is the actual motor torque,
km is the motor torque constant, and
ia is the armature commanded current.

Figure 6. The participant is wearing the active exoskeleton and sensors while doing a weight-lifting task
in the sagittal plane.

Table 3. The six phases of exoskeleton calibration, data-gathering, and test protocol

Exoskeleton Assistance source Tasks

Phase Name Structure Passive Active Weight lifting Free motion

1 Sensor calibration √ √
2 Data-gathering √ √ √
3 Inactive exoskeleton √ √
4 Fully passive √ √ √
5 Active–passive √ √ √ √
6 Fully active √ √ √
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to assess the different sources of assistance (inactive/none, fully passive, fully active, and active–
passive assistance).

• Tasks: Participants performed two tasks of weight lifting and free motion in the sagittal plane:
(1) while wearing the exoskeleton and (2) not wearing the exoskeleton. For the weight lifting task,
participants lifted a 2:26kg dumbbell off a stool to about a 90o elevation angle for the shoulder joint.
The participants kept theweight at the shoulder height level until they became fatigued. The duration
for tolerating the weight was recorded for each phase. Moreover, in phase one, at which data was
gathered for training MuscleNET, participants were requested to keep the elbow angle at 0o or 90o.

5. Evaluation criteria

The main goal of this study was to compare the performance of the active–passive exoskeleton with the
traditional passive or active exoskeleton. To this end, we applied the following three methods: survey
questionnaire, experimental data, and computed data. For the computational criteria, we used the
MapleSim Biomechanics (scalable MSK) model, which was developed and validated using experimental
dynamometer data (Nasr et al., 2023c).

• Post-test survey: This survey aims to determine the user’s experience with different actuation
situations. Each participant completed a survey relevant to muscle fatigue for each phase once the
test had been finished. The user reported the level of fatigue, location of fatigue, and comfort level
with the exoskeleton. The results were qualitatively compared.

• Load tolerance duration:The participants were required to lift dumbbells as frequently as possible.
The duration of this weight tolerance was recorded for phases, and then quantitatively compared.

• Mean power frequency of initial raw sEMG: The purpose of the sEMG frequency domain
analysis is to detect the variation characteristics via short-fast Fourier transform decomposition of
the sEMG signal into signal components at various frequencies. Initial sEMG mean power
frequency is used to compare muscles in different phases.

• Average fatigue of motion using sEMG signals: Muscle fatigue accumulated during motion is
given by

P
m

R
Tσ

2
mdt, where the square of muscle activations σ is a fatigue measure widely used in

neuromechanical models (Ackermann and van den Bogert, 2010; Gillette et al., 2022). Here, sEMG
signals are assumed to be the muscle activations.

• Average computed fatigue of motion using inverse dynamic simulation and static optimization:
Muscle activation can be calculated using the static optimization, the dynamic model’s inputs of
recorded joint kinematics and external force/weight.

• Average computed human active torque and absolute power using sEMG signals andMuscle-
NET: The amplitude and pattern of sEMG channels differed for each phase and each participant. In
addition to mentioning their pattern difference for each phase, we used the trained machine-learning
model, MuscleNET, to estimate the current shoulder elevation torque. In addition to active joint
torque, the absolute joint power was calculated and compared.

• Average computed human joint torque and power using inverse dynamic simulation:Another
method of calculating joint torque and power is using a dynamic model. The joint torque and power
can be computed using the recorded joint kinematics and external force/weight as inputs to the
dynamic model.

• Average computed metabolic energy expenditure using muscle torque generators: The last
evaluation benchmark is computed muscles metabolic energy expenditure (MMEE). The MMEE
model verified byKim andRoberts (2015) helps in the performancemeasurement of humanmotion.
Kim and Roberts (2015) developed a joint-space numerical model of metabolic energy expenditure
by merging thermodynamic laws with principles of multibody system dynamics.
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6. Results and discussion

6.1. High-level controller accuracy

We found that the accuracy of the high-level machine-learning model was higher when we used a subject-
based model instead of a general model since there were differences between the NMSK of each
participant, as highlighted in Nasr et al. (2021a). The accuracy of subject-based MuscleNET for all
subjects was more than 99.5%, 99.2%, and 98.9% MSE regression accuracy for training, testing, and
validation using randomly separated 70, 15, and 15%of data, respectively (Figure 7(a–d)). Using a variety
object weights in the data-gathering phase helps increase the high-level controller’s accuracy. However,
the testswere limited by themaximum1-hour battery lifetime of the sEMGsensors and the users exhibited
fatigue before the actual exoskeleton test. The bestMuscleNET performance occurredwith epoch #14 and
too much training results in over-fitting (Figure 7(e)).

6.2. Low-level controller gains

Since the participant lifted a weight during their motion, the low-level controller should be more concerned
about the assistive torque than the position. In other words, the task was more interested in providing the
assistive torque instead of having an accurate tracking error. In addition, the accuracy of the high-level
controller is better for future control-oriented assistive torque in comparison to the joint angle and angular
velocity. Thus, by trial and error with one of the participants, we determined that the proportional gain (Kp)
should be set as small as 5% of themaximumvalue. Setting the derivative gain (Kd) to a value of 20% of the
maximum value helped decrease the actuator’s vibration because of the angle tracking error. In total, these
gains changed the low-level controller to a direct torque plus a vibration cancellation controller.

6.3. Exoskeleton evaluation

• Quantitative: The results of quantitative evaluation criteria are shown in Figures 8 and 9. The
criteria for the average of all subjects are shown in the solid bar, as well as the maximum and
minimum (Δ and ∇) with the STD (blue line) on the bar charts. According to Figure 8, the most
efficient exoskeleton types from weak to powerful are: inactive, fully passive, fully active, and
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Figure 7. The regression accuracy of MuscleNET in MSE for (a) training, (b) validation, (c) test, and
(d) all data. (e) The training performance of MuscleNET versus epoch number.
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active–passive. According to Figures 9(b), 9(c), 8(a), and 8(d), using the active–passive exoskeleton
can decrease the fatigue level compared to using the fully passive exoskeleton.

As seen in Figure 8(h), participants could lift the object for more time until they became fatigued by
using the active–passive exoskeleton. The active–passive exoskeleton can be helpful for almost 2 times
longer than the fully passive exoskeleton. In fact, the active–passive exoskeleton is adaptive to the task
and can provide variable assistive torque instantly, as compared to the fully passive torque that can only
provide fixed assistive torque at one specific angle, as mentioned in Nasr et al. (2022a). The participants
scored the active–passive exoskeleton to be more effective than other exoskeletons (Figure 8(j)).

For themajority of muscles, according to Figures 9(a, b, and d), themuscles were activated, themedian
frequency was decreased, and the median power was increased from low to high for the following
exoskeletons: active–passive, fully active, fully passive, and inactive. This means that the muscles
became less fatigued with the active–passive exoskeleton. However, a couple of muscles showed not
to have similar trends with most of the other muscles. For example, the sEMG signals from the BRD
location showed no signs of fatigue. Obviously, BRD is for elbow flexion/extension (EFE), and the
exoskeleton had no effect on these muscles and joints.
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Figure 8. The quantitative evaluation values for the four exoskeleton actuation types (inactive, fully
passive, fully active, and active–passive). Note that the maximum (Δ), minimum (∇), median (�), and
STD (blue line) are shown on the average of all subjects (bar charts). (a–c) are calculated from sEMG
signals; (d–g) are calculated using the inverse dynamic MapleSim Biomechanics model and measured
kinematic data. (a & d) shows average fatigue; (b & e) are showing average human flexion active torque;
(c & f) shows average absolute power; (g) displays the average muscle energy expenditure; (h) shows the
maximum duration time of load tolerance; and (j) displays the result of the post-test personal survey on

the effectiveness of the exoskeletons.
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• Qualitative: All participants ranked the active–passive exoskeleton double that of the fully passive
exoskeleton and 1.5 times that of the fully active exoskeleton. They stated the following sentences
for the active–passive ones in the post-test survey: “I feel my arm was on a table and became less
fatigued.” “The active–passive was much more helpful than other kinds.” “I feel it was holding my
arm and had no shoulder pain and fatigue with active–passive and finished the experiment because
of my elbow fatigue.” “The active–passive phase was significantly effective, and I finished due to
wrist fatigue.” “I feel I was completely at rest and could hold the object longer.” “Felt good and no
interference. Overall it was pretty smooth.”

6.4. sEMG-based control

A sample of the active–passive exoskeleton test is shown in Figure 10. The raw measured and filtered
sEMG signals are shown at Figure 10(a–f). The predicted joint angle, angular velocity, and the human
joint torque contribution to themotion byMuscleNET, aswell as themeasured and post-calculated values,
are shown in Figure 10(m–o). The exoskeleton’s passive torque, the commanded torque, and total torque
are shown in Figure 10(p–r). The mid-level AAN-CTM controller defined the active torque according to
the human contribution.

As observed in Figure 10, the volitional control of the active component was successful. However, one
minor challenge was the time delay when the participants wanted to lower their arm at the end of each
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all subjects (bar charts).
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phase, which is discussed in Section 8. In addition, there was a minor error in the calculation of the joint
angle, angular velocity, and human joint torque. Nonetheless, the minor human joint torque error was
deemed feasible and was considered in designing the mid-level controller with the positive dead zone
torque (δ). The hyperbolic Equation (3) successfully ignored minor differences from the estimated human
torque and expected human upper-limb dynamic without the external wrench. Basically, Equation (2)
strengthens the estimated human joint torque that is higher than the positive threshold torque (γ), and tries
to ignore the lower human joint torque than the positive dead zone torque (δ).

7. Practical challenges and future directions

We found the following challenges in the experimental test. Researchers in wearable robotics should
address these challenges in the future.

Figure 10.A sample of raw, filtered, estimated, and computed data for active–passive exoskeleton control
test. (a–f) the raw and filtered sEMG signals: #1UTRA, #2MTRA, #3MDEL, #4 PDEL, #5 ADEL, and #6
BRD; (g–l) the raw Euler angles measured by IMUs; (m) predicted and measured exoskeleton elevation
angle; (n) predicted and measured exoskeleton elevation angular speed; (o) the estimated and calculated
human contribution torque for the elevation motion, (p) the passive robot torque, (q) the commanded

active robot torque, and (r) the total assisted torque.
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• Measurement and command delay: The delay is the main challenge in the HITL experiment.
The delay for fetching sEMG and IMU data was 190ms, since the Delsys Trigno wireless is not
real-time equipment and is primarily used for recording and offline analysis. The second primary
source of delay was BLDC motor communication with the amount of 185ms. The reason is
because there are three connection protocols between MATLAB and BLDC motor, as shown in
Figure 2. Actually, serial connection, which is responsible for delivering a string or character, is
not efficient and fast. This is because once the data is sent fromMATLAB to Arduino, it should be
converted to a number and then be commanded to the motor. The last delay source is the
computation delay with the amount of 90ms. Filtering sEMG signal, using the machine-learning
model, using the CTM, calculating the motor communication instruction, and displaying data in
MATLAB, are altogether time-consuming tasks and should be optimized or downgraded to a low-
level or embedded controller.

• Sensor fusion: Although using these different sensors (sEMG, IMU, and joint angle) is helpful for
the estimation of humanmotion andmuscle contribution, this process requires synchronization. Any
delay in one sensor should be considered in the model, and the sensor fusion scheme should
compensate for synchronization problems.

• Kinematic sensor inaccuracy: Currently, an incremental-type sensor measures the motor joint
angle. The absolute joint angle measurement requires knowing a global value. We asked the
participant to hold the arm downward to calibrate the joint angle sensor. As a result, using an
accurate absolute joint angle sensor helped cancel the initial home address setting.

• sEMG probe and motor built-in sensor disconnection: Sometimes, the sEMG sensors become
disconnected due to detachment or power loss due to a weak battery. The onboard motor sensors
sometimes disconnected due to differences in the connection band rate. The HITL controller should
be robust and safe regarding any sensor disconnections.

8. Conclusion

Exoskeleton robots have become a valuable tool for supporting industrial workers and stroke rehabili-
tation therapy. The movements of these robots can range from being entirely passive to being fully active-
assisted. Due to the complex HRIs, realistic sensor and actuator selection, and connection challenges,
evaluating exoskeleton actuation designs and building an efficient controller are different and time-
consuming. To execute the wearer’s movement goals, this research presented an sEMG-based human-
robot cooperative control method. It also established a test framework for evaluating a new active–passive
shoulder exoskeleton. A mid-level strength regulation, low-level actuator control, and control-oriented
sEMG-based intention estimate were all utilized in the hierarchical control. It was then used to test the
controller’s efficiency during shoulder joint elevation movement studies with the exoskeleton.

According to the results, the active–passive exoskeleton was more efficient in comparison to the fully
passive and fully active exoskeleton with the following evaluation criteria: (1) post-test personal survey,
(2) load tolerance duration, and (3) computed human active torque, power, computed metabolic energy
expenditure using both sEMG signals and inverse dynamic simulation. The results showed that the active–
passive exoskeleton was better than the fully passive and fully active exoskeleton, since the participants
could hold the weighted object for about two times longer in duration until they became fatigued.

Future improvements should focus on decreasing the communication delay, and proposing more
robust and safe controllers.

Glossary

AAN assist-as-needed.
ADEL anterior deltoid.
BLDC brushless direct current.
BRD brachioradialis.
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CAN-bus controller area network.
CTM computed-torque method.
DoF degree of freedom.
EFE elbow flexion/extension.
FOC field-oriented control.
HITL human-in-the-loop.
HRI human–robot interaction.
IMU inertial measurement unit.
MDEL middle deltoid.
MMEE muscles metabolic energy expenditure.
MSE mean squared normalized error.
MSK musculoskeletal.
MTRA middle trapezius.
MuscleNET machine-learning mapping electromyography to kinematic and dynamic biomechanical

variables.
NMSK neuromusculoskeletal.
PD proportional-derivative.
PDEL posterior deltoid.
PID proportional-integral-derivative.
RNN recurrent neural network.
SDK software development toolkit.
sEMG surface electromyography.
SPI serial peripheral interface.
STD Standard deviation.
TCP transmission control protocol.
TCU trigno control utility.
UTRA upper trapezius.
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