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TOPOLOGICAL EXTENSION PROPERTIES AND
PROJECTIVE COVERS

HARUTO OHTA

Introduction. All spaces considered in this paper are assumed to be
(Hausdorff) completely regular, and all maps are continuous. Let & be
a topological property of spaces. We shall identify & with the class of
spaces having £°. A space having £ is called a #-space, and a subspace
of a P-space is called a P-regular space. The class of Z-regular spaces is
denoted by R(Z). Following [37], we call a closed hereditary, productive,
topological property & such that each &-regular space has a &-regular
compactification a topological extension property, or simply, an extension
property. In this paper, we restrict our attention to extension properties &
satisfying the following axioms:

(A,) The two-point discrete space has .

(A;) If each &-regular space of nonmeasurable cardinal has &, then

P = R(Z).
The existence of an extension property which fails to satisfy (A,) is
equivalent to the existence of measurable cardinal (see 5.4). If & is an
extension property, then each &’-regular space X is a dense subspace of
a P-space X such that every map from X to a &-space admits a
continuous extension over X (cf. [14]). The space #X is called the
maximal P-extension of X. For example, if & is compactness or real-
compactness, then & is an extension property and ZX is the Stone-Cech
compactification or the Hewitt realcompactification, respectively. A space
is called extremally disconnected if the closure of every open set is open. It is
known ([17], [32]) that for each space X there exist an extremally discon-
nected space EX and a perfect irreducible map (i.e., a perfect map which
takes proper closed subsets onto proper subsets) ky from EX onto X.
The space EX is unique up to homeomorphism, and is called the pro-
Jective cover (or the absolute) of X.

In this paper, we consider the problem under what conditions, both
on ? and on X, #(EX) = E(ZX). This problem was raised by Woods
in [38], and the special case when & is realcompactness has been settled
by Hardy and Woods in [12]. We obtain, for all extension properties &
contained in the class &% of almost realcompact spaces, several common
necessary and sufficient conditions on X for the equality to hold, and also
prove that the equality holds for every &-regular space X if and only if
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either every P-space is compact or & is hereditary. Here, an almost
realcompact space is a space which is the image of a realcompact space
under a perfect map (cf. [10]). Some of our results are generalizations of
Hardy and Woods's one.

In Section 1, we review known results and define some symbols. Section
2 is devoted to a study of extension properties contained in .27 Z%. Main
theorems are proved in Section 3. In particular, we give ten conditions
on a P-regular space X each of which is equivalent to the equality
P(EX) = E(PX) provided that ¥y = P C AR, where €4 is the
class of Z-regular compact spaces. It is also shown that, conversely, if
those conditions and the equality are equivalent to each other, then either
Cyp #P CAR or P = R(Z). Our theory is closely related to various
interesting problems about extension properties; for example, the preser-
vation of properties of the maximal &?-extension under maps, the problem
of when (X X V) = PX X PV for P-regular spaces X and V, and
a classification of extension properties. These applications are discussed
in Section 4. Section 5 contains a sequence of examples to which preceding
sections refer. For details and examples of extension properties see [37],
(13] and [14], and for projective covers see [38], [17] and [32]. The ter-
minology and notation will be used as in [8].

1. Preliminaries. Let & be an extension property such that -
regularity is complete regularity and & an extension property. Then

O » denotes the class of Z-regular @ -space,

P denotes the class of P-regular spaces that are the images under a
perfect map of some Z-space,

&P denotes the class of extremally disconnected &-spaces,

P*denotestheclassof #-regularspaces X forwhich Z(EX) = E(ZX).
Both @4 and .% are known ([37]) to be extension properties. We
always use % and # to denote compactness and realcompactness,
respectively. Following [11] and [37], we use 8X, 82X and vX for ¥ X,
@ X and #X, respectively. A subspace Y of a space X is said to be
P-embedded in X if each map from ¥ to a P-space admits a continuous
extension over X. The maximal Z-extension ZX of a #-regular space X
is the unique &-space in which X is dense and #-embedded ([14]), and
the continuous extension over X of a map f: X — ¥V with ¥ € £ is
denoted by Zf: X — V.Incase P = € (P = € »), we use Bf (Baf)
for 22f. We list basic facts about extension properties; (a) and (b) are
simple generalizations of results in [14] and appear in [37].

1.1. THEOREM. Let & be an extension property and X € R(P).

(a) X is the intersection of all subspaces of BsX that contain X and
have P, s0 X C PX C BsX ([37,1.3]).

(b) If f is a perfect map from X onto a P-space Y, then X has P ([37,
1.2]).
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(c) Each O-dimensional space is P-regular ([37,1.4]).

(d) Either & s contained in the class of countably compact spaces or the
countable discrete space has P ([37,2.9]).

() AP = &P ([37, 3.4)).

(f) The discrete space of cardinality m has P if and only if every topo-
logical sum of m many P-spaces has P ([13,7.18)).

It is known that 0-dimensionality is an extension property (cf. [2]). By
(a) and (c), 0-dimensional compactness is the smallest extension property.
If X is an extremally disconnected space, then so is X, and hence it
follows from (c) that BX = B»X for each extension property &. There-
fore we use B(EX) for B (EX), omitting &; a similar remark applies to
Baf. By an extension of a space X we mean a space that contains X as a
dense subspace. The following properties of projective covers and per-
fect maps are well known.

1.2. THEOREM. Let & be an extension property and X € R(P).

(a) B(EX) = E(BsX) and Bkx = kspx (cf. [38, p. 328]).

(b) EX C Z(EX) C E(?X) C B(EX) and E(PX) = (Bkx) '[P X]
(cf. [38, p. 346]).

(c) If f: X — Y s a perfect onto map, then there exists a perfect map h
from EY onto a closed subspace of X such that ky = f o h (cf. [32, p. 309]).

(d) 4 map f: X — Y 1is perfect if and only if, whenever S and T are
extensions of X and Y, respectively, and F: S — T is a continuous extension
of fythen F[S — X1 C T — Y (cf. [8, 3.7.16]).

(e) If the composition f o g of maps f: X — Y and g: ¥ — Z 1is perfect,
then g|f[X ] and f are perfect (cf. (8, 3.7.10]).

Recall from [37] that two extension properties & and £ are coregular
if R(?) = R(2). For such extension properties & and 2, let ## @ £
denote the class of all Z-regular spaces X such that X = 2X.

1.3. THEOREM. Let & and 2 be coregular extension properties.
(@) AP = A Difand only if §P = & D.
O IfP C 2and AP =A D, thenP* = Q*N\ (P @ 2).

Proof. (a) Assume that &P = & 2. If X € AP, then it follows from
1.1(b), 1.1(e) and our assumption that EX ¢ AP = &P = &2,
so X € 2. The proof that /2 C P is quite similar, and hence
AP = 2. Conversely,if ¥P =/ D, thenbyl.l(e), P =EAP =
EAD = &2.

(b) Let X € #*. By (a), P = &2, s0 P(EX) = 2(EX). Since
P C 2, 2X C X by 1.1(a). These facts and 1.2(b) imply that
P(EX) = 2(EX) C E(2X) C E(?X) = #(EX),s0o X € 2* and
E(?X) = E(2X), and hence it follows from 1.2(b) that X = 2X.
Conversely,if X € 2*N\ (# @ 2),then P (EX) = 2(EX) = E(2X)
= E(£X) by our assumption, and hence X € ZP*,
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1.4. COROLLARY. For an extension property P,
P* = (APN (P QAP) and P =AP N P*

Proof. Since # C AP and X P = LA P, the first equality follows
from 1.3(b). Taking intersections of /% with both sides of the first
equality, we have

AP NP* =AP N\ (AP)*N (P @ AP)
=APN (P QRAP) =P.

The inclusion Z C £ does not imply 2* C 2* in general. In fact,
% C A and €* = R(¥) by 1.2(a), but R(¥) = R(Z) T R#* (cf.
{38, p. 344]). The second equality of 1.4 tells us that if f is a perfect map

from a &-space X onto a &-regular space ¥, then ¥ has & if and only if
P(EY) = E(PY).

2. Extension properties contained in &/ %. Recall from [9] that,
for a given space E, a space X is E-compact if X is homeomorphic to a
closed subspace of E™ for some cardinal m. The class of E-compact spaces
is denoted by (E). The following theorem was proved by Mréwka in
[25, 4.10].

2.1. THEOREM. Let E be a space. An (E)-regular space X is E-compact
if and only if, given an (E)-regular extension T of X and a pointp € T — X,
there exists a map f: X — E that cannot be continuously extended to X \J {p}.

Let I and N denote the closed unit interval of the real line and the space
of non-negative integers, respectively.

2.2. Definition. A space X is ultrarealcompact if it is (I X N)-compact.

Some properties of (I X N)-compact spaces have been studied by
Broverman in [3] and [4]. Let % denote the class of ultrarealcompact
spaces. Then % is an extension property such that the %-regularity is
just complete regularity, and clearly ¥ C % C #. We assume famili-
arity with the theory of z-filters (cf. [11]).

2.3. THEOREM. Let P be an extension property and X € R(ZP). Then the
following conditions are equivalent:

(a) X is ultrarealcompact.

(b) Every free z-ultrafilter on X contains a countable decreasing sequence
of open-and-closed sets with empty intersection.

(c) For each p € BsX — X, there is a countable disjoint open cover U
of X such that p ¢ clggx U for each U € U.

(d) X is homeomorphic to a closed subspace of the product of a P-regular
compact space with an N-compact space.
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Proof. (a) — (b). Let § be a free z-ultrafilter on X, and let (I X N) U
{00} be the one-point compactification of I X N. Thereis p € X — X
such that {p} = N {clgxF|F € F}. Since X € % and X is % -regular, it
follows from 2.1 that there exists a map f: X — I X N such that (8f) (p)
= o0, Foreach n € N, let

G = f7HI X {klk = n}].

Then G, is open-and-closed in X, G, € § and NG, = 0.

(b) — (c). Let p € BsX — X; then there is a z-ultrafilter § on X
such that {p} = N{clgyxF|F € §}. By (b), T contains a decreasing
sequence {G,|n € N} of open-and-closed sets with empty intersection.
Setting Uy = X — Goand U,41 = G, — G,41 for each n € N, we have the
desired open cover {U,} of X.

(¢) — (d). Let K = BsX, and note that R((K X N)) = R(%).
To show that X is (K X N)-compact, let T be a &-regular extension of
X and p € T — X. The embedding f of X in T extends to a map Bsf:
BsX — BsT. Pick

g € (Bsf)71(p).

Then by (c) there is a countable disjoint open cover {U,n € N} of X
such that ¢ ¢ clgpxU, for each n € N. Define a map ¢ from X into
K X N by setting for eachx € X, g(x) = (x, n) if x € U,. Assume that
g extends to a map G: X U {p} — K X N; then G(p) € K X {n} for
some # € N. Set

V = k'K X {n}] — clgpx U,,
where b = G o ((82f)|(X U {q})). Then, since
(go)7IK X {n}] = U,

V is a neighborhood of ¢ in X \U {g} with V" X = @, which is impossible.
Thus g admits no continuous extension over X U {p}, so it follows from
2.1 that X is (K X N)-compact. Since (K X N)™ = K™ X N™and K™
is #-regular compact, we have (d).

(d) — (a). This follows from Tychonoff’'s embedding theorem. Hence
the proof is complete.

We denote the class of spaces each of whose countably compact sub-
spaces has compact closure by .#. It follows from (7, 1.2] and (8, 3.11.1]
that A C . We are interested in ultrarealcompactness because,
roughly speaking, it is the smallest non-compact extension property
contained in .%:

2.4. THEOREM. If P is an extension property contained in &, then either

P =FporUs CP.
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Proof. Assume that % » ¢ &, and choose X € U4 not in . Then
by 2.3, X is homeomorphic to a closed subspace of the product of a
ZP-regular compact space K with an N-compact space. Since K € &,
if N € 2, then X must have £, a contradiction. Thus N ¢ . It follows
from 1.1(d) that £ is contained in the class of countably compact spaces.

Since ? C ¥, P = bs.

2.5. COROLLARY. 4 space X is N-compact if and only if X is O-dimen-
stonal ultrarealcompact.

Proof. If we denote the class of N-compact spaces by./#/, then the class
of 0-dimensional ultrarealcompact spaces is %, because 4 -regularity is
0-dimensionality. Since € 4 # A C.%, it follows from 2.4 that % ,, C.N'.
Since &/ C Uy N =U,.

2.6. Remarks. (1) Herrlich and Kim-Peu Chew proved essentially the
same results as 2.5 in [13, 6.2] and [5, Theorem C], respectively.

(i1) In [23], Terada defined a space X to be P,(X;)-compact if for each
p € BX — X there exists a countable disjoint cover 3 of X, consisting of
zero-sets, such that p ¢ clgxZ for each Z € X, and he showed that
P,(X,)-compactness is an extension property contained in #. By 2.3
(or 2.4), every ultrarealcompact space is P,(X;)-compact, but the con-
verse is false (see 5.1). The relationship of these extension properties to
more familiar ones is summarized as follows:

0-dimensional compact — compact

1 1

N-compact — ultrarealcompact
! l

0-dimensional P,(X;)-compact — P,(X;)-compact

1
0-dimensional realcompact — realcompact

l

almost realcompact

The next lemma follows from [24, (iv,), p. 598] and [7, 1.2].

2.7. LEMMA. An extremally discomnected, almost realcompact space 1is
N-compact, and hence 1t is ultrarealcompact.

Following [36], we denote the maximal ./ - (resp. (% R#) 4-) extension
of X by aX (resp. azX).

2.8. THEOREM. Let & be an extension property for which € 5 # P C
AR and X € R(P). Then:

(@) AP = (A R)p, and hence, if P = AP, then P = (AR)y.

(b) (EX) = E(?X) if andonlyif PX = apX andas(EX) = E(asX).
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Proof. Note that & and # , are coregular. By 2.4, %5 C 2, so it
follows from 2.7 that &P = & (Rg). If V € (XR)», then by 1.1(b)
and 2.7EY € Rp,50 YV € A (R ). Since (X R)p D (R ), this shows
that (¥ X)p = A (% 5). Thus both (a) and (b) follow from 1.3.

3. Main theorems. Recall from [20], [30] and [31] thatamapf: X —» ¥V
is (countably) bi-quotient if, whenever y € ¥ and U is a (countable) cover
of f~1(y) by open sets in X, then finitely many f(U), with U € U, cover
a neighborhood of ¥ in Y. All open and all perfect maps are bi-quotient,
and all countably bi-quotient maps are quotient maps. A space X is
called bi-sequential if it is the bi-quotient image of a metric space (cf. [21]),
and X is called strongly 0-dimensional if X is 0-dimensional (cf. [8]). In
this section, we consider the following conditions (1) through (10) on a
P-regular space ¥, where & is an extension property.

(1) P(EY) = E(ZY).

(2) Pky: P(EY) — PV is perfect onto.

(3) For each perfect irreducible map f from a &-regular space X onto
YV, Pf: PX — PY is perfect onto.

(4) For each perfect map f from a &-regular space X onto Y, there
exists a closed subset X, of X such that (Zf)|Xy: X, — PV is perfect
onto.

(5) Phy: P(EY) — PY is bi-quotient onto.

(6) Pky: P(EY) — PY is countably bi-quotient onto.

(7) Every locally finite family, of nonmeasurable cardinal, of open
sets in Y is locally finite in 2 Y.

(8) Every countable, locally finite family of open sets in Y is locally
finite in 2 Y.

(9) ¥ X Tis P-embedded in PV X T for each bi-sequential space T".

(10) Y X M is P-embedded in YV X M for each strongly 0-dimen-
sional 1netric space M.

Conditions (7) and (8) are formal generalizations of the necessary and
sufficient condition, due to Hardy and Woods [12], for v(EY) = E(Y)
to hold. Let (A3) denote the following axiom: There exist a &-space E
and a fixed pair of distinct points e; and e; such that for every Z-regular
space X, every closed subset F of X and every x € X — F, there is a map
f: X — Esuch that f(x) = epand f(F) = {e,}. If P-regularity is complete
regularity or O-dimensionality, then & satisfies (A;). We begin by
dividing conditions (1)-(10) into two groups.

3.1. THEOREM. Conditions (1)—(10) are related as follows: (1) =2 (2) =
B) =2 @) — (5) = (6) and (7) 2 (8) — (9) = (10). Moreover, if P
satisfies (Asz), then (9) — (8) ¢s valid.

To prove 3.1 and subsequent results, we need the following lemmas.
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3.2 is due to Michael [20], and the proof of 3.3 is left to the reader, since
it is proved quite similarly to [28, 2.2].

3.2. LeMMA. If f: X — Y and g: S — T are bi-quotient onto maps, then
the product map f X gisbi-quotient.

3.3. LEMMA. Let Fi: Xy — YV, (1 = 1, 2) be onto maps such that F, X F,
is a quotient map, and let S; (resp. T; = Fi(S,)) be a dense P-embedded
subspace of X (resp. Y.). If S; X Sy is P-embedded in X, X X, then
T1 X TyisP-embedded in V1 X V.

Proof of Theorem 3.1. (1) — (2). f P (EY) = E(?Y), then Pky =
ksy by 1.2(b), so Pky: P (EY) — PV is perfect onto.

(2) — (3). Let f: X — Y be the map hypothesized in (3). Since f o ky
is perfect irreducible, EX = EY by the uniqueness of EY. Thus ky =
f o kx, s0 Pky = Pf o Pkyx. We show that Pky: P (EX) — PX is
onto. If there is

p € PX — (Phe) [P (EX)],

thenp = (Bkyx)(q) for some q € B(EX) — P (EX). Since ky = Baf 0 Bkx
and (B2)|PX = P,

Bky) (@) = (PN (p) € PV,

which contradicts (2) because of 1.2 (d). Hence it follows from (2) and
1.2(e) that Z2f: X — PY is perfect onto.

(3) — (4). Let f be a perfect map from a & -regular space X onto V.
By 1.2(c), there is a map & from EY onto a closed subset X; of X such
that by = fo h. Let Xy = clpxX ;. Since X, € &, h extends continuously
to Ph: P(EY) — X,. The same argument as used in (2) — (3) to show
that Pky is onto shows that (#h)[P (EY)] = X. Since Pky = Pfo Ph
and Pky is perfect onto by (3), it follows from 1.2(e) that (Zf)|X.: X,
— PV is perfect onto.

(4) — (1). By (4), there is a closed subset X, of Z(EY) such that
(?}’ky)lXo: Xo — PY is perfect onto. Since ky is irreducible, EY is con-
tained in X, so Xy = Z(EY), and hence Pky is perfect onto. Thus
P(EY) = E(PY) by 1.2(b).

(4) — (5) — (6) and (7) — (8). These are obvious.

8) — (7). Let ® = {G.Ja € A} be a locally finite family, of non-
measurable cardinal, of open sets in Y. Suppose that there is y, € YV —
Y at which ® is not locally finite. Then by (8) v¢ ¢ clgyG, for all but
finitely many « € 4. Let

B = {a E Alyo Q Clg)yGa},
and let U be a neighborhood system of vy, in Z Y. For each U € 1, let
By = {B € B|UmGﬂ7£0}?
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then {By|U € U} is a filter base with M By, = @, so it is contained in some
ultrafilter § on B. To show that {§ has the countable intersection property,
let {F,|n € N} be a decreasing sequence of members of §, and set

Then {V,|n € N} is a decreasing sequence of open sets in ¥, and y, €
N clgyV,. For, if yo ¢ clgyV,, then there is U € U withU MV, =@; but
then By M F, = @, a contradiction. Thus { V,} is not locally finite in 27,
and hence it follows from (8) that MclyV, # @. Pick ¥y € NclyV,. For
each n € N, since O is locally finite, we can find 8, € F, with y € clyGs,.
Again using local finiteness of &, we have that {8,|n € N} is a finite set.
As {F,} is decreasing, this shows that MNF, = @, and hence § has the
countable intersection property. Since § is free (i.e., \F = @), by [11,
12.2], this contradicts the fact that the cardinality of B is nonmeasurable.

(8) — (10). Let M be a strongly 0-dimensional metric space, and let
X = 2Y X M. Note that M is P-regular by 1.1(c). Since ¥ X M is
P-embedded in (¥ X M), it suffices to prove that X C (¥ X M).
First, to show that X C 8,(Y X M),letf: ¥ X M — K be a map with
K € € pandlet E;(+ = 1, 2) be disjoint closed sets in K. We show that

Clel N Cle2 = ﬂ,

where F; = f~[E;]. Let (3o, ty) € X — (¥ X M). Then there is a map
g: Y — K such that

g() = f((y, %)) foreachy € V.

Since E; and E, are disjoint, we may assume that g(y,) ¢ E.. Choose an
open set U in K such that

EU {g(yo)} C U CcgU CK — E,,

and let {V,|n € N} be a neighborhood base of ¢y in M with V, D V1.
For each n € N, set

H, = \U{H|H is an open set in Y such that H X V, C f~}{U}}.
Then (clyH, X V,) M Fy = P and g {U] N Y = \UH,. Setting
G, = (g'[UINY) — clyH,

for each n € N, we have a decreasing sequence {G,} of open sets in ¥ with
NclyG, = @. Since {G,} is locally finite in Y, it is locally finite in £ ¥ by
(8),50 ¥o ¢ clepyG,, for some m. Let

W = g_l[U] - Clgme.

Then W X V, is a neighborhood of (¥, t,) in X such that (W X V,) N
Fys = 0, because WM Y C clyH,. Thus (yo, t0) € clxFs; thus g(y0) ¢ E.
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implies (yo, to) ¢ clxFs, and hence
ClXF1 f\ CleQ = ﬂ

If follows from (8, 3.2.1] that f admits a continuous extension over X,
which implies that

X C BaX = Bp(Y X M).

Next, suppose that X ¢ Z(Y X M); then there is (yi, t;) € X —
P(Y X M). If we set

Vi={y€ePY|(y,th) € XNP(Y X M)},

then ¥V C V'V & 2V and V' € &, because it is homeomorphic to
P(Y X M) N\ (PY X {t:i}). This contradicts 1.1(a), and hence
X CP(Y X M).

(10) — (9). Let T be a bi-sequential space; then, by the proof of
{21, 3.D.2], there exist a strongly 0-dimensional, metric space M and a
bi-quotient onto map f: M — 7. By 3.2, idzy X fis a bi-quotient map
from YV X M onto Y X T, where idpy is the identity of ZY.
Since ¥ X M is P-embedded in YV X M, it follows from 3.3 that
V X Tis?-embedded in Y X T.

(9) — (10). This is clear.

Finally, assuming (Aj3) we prove that (9) — (8). Let E, ¢, and e; be
a P-space and its points as described in (A;), and let {G,]n € N} be
a countable, locally finite family of open sets in Y. Suppose on the
contrary that {G,} is not locally finiteat yo € YV — V.SetT" = (¥ X N)
U {oo} and define a topology on T as follows: Each point of ¥ X N is
isolated and { W,|n € N}, where

W, = (Y X {ili > n})\U {0}

is a neighborhood base of c0. Then 7' is a metric space. For each n € N
and eachy € G, there isa map f,,: ¥ — E such that

fuw(@) = e and f,[Y — G,] = {e}.
Define a function f: ¥V X T — E by
’ _ fny(y’) ift = (y’ n) € G, X {n}v
o, 0) = {61 otherwise.

To show that f is continuous, let po = (y,¢) € ¥ X T. If t # oo, then
there is nothing to prove since {t} is open. If { = oo, then f(py) = e;.
Since {G,} is locally finite, there exist j € N and a neighborhood U of vy
in Y such that UM G, = @ for each n > j. Foreachn € N,

(U X W;) N (Gy X (Gu X {n})) = 0,

https://doi.org/10.4153/CJM-1982-088-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-088-4

TOPOLOGICAL EXTENSION PROPERTIES 1265

so flU X W,] = {ei}, and hence f is continuous. It remains to prove that
f admits no continuous extension over ¥ X T. To do this, let V X W,
be a basic neighborhood of (yg, ) in 2 Y X T. Since V meets infinitely
many G,, wecan findm > kandy € VN G,,. Then both p; = (v, (y,m))
and p, = (y, ©) belong to V X Wy and f(p1) = fuy(y) = e, while
f(p2) = er. This shows that f does not extend continuously to (y,, ).
Hence the proof is complete.

3.4. THEOREM. Condition (5) ((6)) s true if and only if for each perfect
map f from a P-regular space X onto V, Pf: PX — PV is (countably)
bi-quotient onto.

Proof. The “if"’ part is obvious. To prove the converse, let f: X — ¥V
be a perfect onto map with X € R(Z). It is easily checked that if the
composition g o & of two maps is (countably) bi-quotient onto, then so is g
(even if his notonto). By 1.2 (c), thereisa map k from EY to X such that
ky = fo h. Since Pky = Pf o Ph and Pky is (countably) bi-quotient
onto by (5) ((6)), it follows that Zf: X — PV is (countably) bi-
quotient onto.

3.5. Remarks. (i) The author does not know if in 3.1 the implications
(6) — (56) — (4) are true or not, in general, and if (9) — (8) can be
proved without assuming axiom (Aj).

(i1) Let (2') denote the following condition: For each perfect map f
from a P-regular space X onto YV, Zf: XX — PV is perfect onto. In
contrast to 3.4, the reader might ask if (2) implies (2’). In 5.2, we give
a negative answer to this question.

Next, we connect conditions (4) and (6) with (7).

3.6. THEOREM. For an extension property P, the following conditions are
equivalent:

(a) For each P-regular space Y, (6) implies (7).

(b) & is not contained in the class of countably compact spaces (or
equivalently, N € &P).

) Uy, C 2.

d) &R C &2.

Proof. (a) — (b). It suffices to show that N € £. By (a) and (c) of
1.1, N is P-regular and 84N = BN, so PN is extremally disconnected.
Since #(EN) = #N = E(ZN), N satisfies (7) by (a), and thus
{{n}|n € N} is locally finite at any point of ZN. This implies that
N=%Nc¢c .

(b) = (c). Let X € % 4. By 2.3, X is embedded as a closed subspace
of the product of a &-regular compact space K with an N-compact
space. Since K € P and N € #, X € &, and thus %, C 2.
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(¢) — (d). This follows from 2.7 and 1.1 (c).

(d) — (a). Let Y be a P-regular space satisfying (6). To show that
Y satisfies (8), let {G,|n € N} be a countable, locally finite family of open
setsin Yand y € Y — Y. We may assume that G, = Y. For each
n € N, set

H, = clgyky 'G,] and

D, = H, — \U{Hi > n}.
Then {D,} is a countable disjoint open cover of EY. By (d), N € £,
and hence it follows from 1.1(f) that

P(EY) = @ {#D,n € N},

where ® means the topological sum. Since Zky is now countably bi-
quotient onto, there exist a neighborhood U of y in Y and m € N
such that

U C U{(Ph)[PD,)lj < m).
Since
B = (UPD,j = m}) N (I{H{|i > m})
D (ULPDylj = m}) N (Phy) UG i > mi],

UN (J{Gi > m}) = 0. Thus {G,} is locally finite in £ Y. Since (8)
always implies (7), the proof is complete.

3.7. THEOREM. For an extension property P, the following conditions are
equivalent:

(a) For each P-regular space Y, (7) implies (4).

(b) For each P-regular space Y, (7) implies (6).

)P =R(P)orP CAR.

d) P =R(P)or P C EXR.

Proof. (a) — (b). This follows from 3.1.

(b) — (c). Suppose on the contrary that 2 # R(#) and # § A X.
Then by axiom (A,) there exist a &-regular space S of nonmeasurable
cardinal not in & and a &#-space Z’ not in/ #. Since S is homeomorphic
to the diagonal of

I1{B5S — {s}|s € BsS — S},

BsS — {s*} ¢ £ for some s* € B85S — S. Fori = 1, 2, let K, be the copy
of B85S and s; the point of K, corresponding to s*. Let K = K; @ K.,
and let L be the quotient space obtained from K by identifying s; and s.
Then L € % 4, because it is homeomorphic to the closed subspace

({s1} X K») U (K1 X {s2})
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of K; X K,. Let ¢: K — L be the quotient map, and set L; = ¢(K,) and
Z = EZ'. Thenby1.1(b) Z € £P,but Z ¢ A. Let us set

X = (K XvZ) — (({s1} YK;) X vZ — Z)) and
Y= (L XvZ) = (L: X (vZ — Z)).

Since vZ is extremally disconnected, it follows from 1.1(c) that both X
and Y are P-regular. Note that vZ € % 4 by 2.7. Pick 20 € vZ — Z,
and set po = (5o, 20), where so = ¢(s1) (= ¢(s2)).

Claim 1.

PX = (Ky XvZ) ® (K: X Z) and po € PY C L X vZ.
To prove the first equality, let
Xl = (K]_ X UZ) - ({51} X (UZ - Z)) and Xz = Kz X Z;

then by axiom (A,;) and 1.1(f), X = X, ® #X,.Clearly X, = X,.
Since K; is a compact space of nonmeasurable cardinal, it follows from
[6, 5.3] that U(K] X Z) = K1 X UZ, SO UX] = Kl X vZ. Since Kl X
vZ € U4, Ky X vZ = U 3X,. We distinguish two cases. If N € £, then
Uy CP by 3.6, so PX, C UeX:. If N ¢ P, then it follows from
1.1(d) that Ziscountably compact. Since vZ is then compact by [8,3.11.1],
K, X vZ = B4X,. Thus, inany case, X, C K, X vZ.Foreach z € vZ —
Z, since (K; — {s1}) X {z} is homeomorphic to 855 — {s*}, it is not
closed in ZX,. This shows that (s;, z) must be contained in £X,, so
PX, = K; X vZ, and hence

The second inequality can be proved similarly.

Claim 2. Y satisfies (7).

Since (8) implies (7), we prove that Y satisfies (8). Let {G,|n € N} be
a countable, locally finite family of open sets in V. If we set

then U, D U,y clyU, D G, and NclyU, = B. Let H, = clz=[U,],
where = is the projection from L X Z to Z; then H, is open-and-closed
in Z. Since = is perfect, "H, = @, and so Ncl,zH, = @ by [11, 8.7].
Note that Y C L X vZ by claim 1. Since

clpyU, CclixwzU, CL X clyzH,,

we have Nclyy U, = B. Consequently {G,} is locally finite in Y.
Claim 3. Y does not satisfy (6).
To prove this, let

f= (¢ Xid,z)|X.
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Then f is a perfect map from X onto ¥, and
Pf = (¢ X id,z)|PX.

Since (Zf)~1(ps) = {(s1, 20)}, K1 X vZ is an open neighborhood of
(Zf)~1(po) in X, but (Zf)[K, X vZ] (= L, X vZ) contains no neigh-
borhood of po in & Y. This shows that Zf is not countably bi-quotient,
and thus, by 3.4, ¥V does not satisfy (6). Hence we have (c).

() > ). fP CAR,thenby 1.1 (e) &P C EAR = EAR.

(d) — (a). Let Y be a P-regular space satisfying (7). It suffices to
prove that Y satisfies (2). If & = R(Z), then Y clearly satisfies (2),
so suppose that &% C &% and

Phy: P(EY) - PY

is not perfect onto. Then by 1.2(d) there is p € B(EY) — Z(EY) such
that (Bky) (p) € LY. Since P C EHX,v(EY) C P(EY), and hence
by [8, 3.11.10], there is a map h: B(EY) — I such that h(p) = 0 and
h(v) > Oforeachy € EY. Foreachn € N, let

Gn = Y - ky[EY - Hn]v
where
H, ={y € EY|h(y) < 1/n}.

Then, ky being perfect irreducible, {G,} is a locally finite family of open
sets in ¥ and

cyG, = ky[clgyH,].
Since p € clggy)H, foreachn € N,
(Bky) (p) € NclggyG,
and so MclgyG, # B. This contradicts (7). Hence the proof is complete.

3.8 THEOREM. For an extension property &P, the following conditions are
equivalent:

(a) For each P-regular space Y, conditions (1) through (8) are equivalent.

b)P =RP)orCse#*P CAAR.

()P =RP)or P = &R.
Furthermore, if &P satisfies (As), then we can replace ‘(1) through (8)" by
“*(1) through (10)" in (a).

Proof. This is a consequence of 3.1, 3.6 and 3.7.

3.9. THEOREM. Let & be an extension property. Then P* = R(P) if and
only if either # = R(P) or P = € 5.

Proof. If ? = R(Z), then by 1.1(c) #(EY) = EY = E(ZY) for
each Y € R(%), and thus #* = R(P). If P = % 4, then it follows from
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1.2 (a) that Z* = R(Z). To prove the converse, assume that #* =
R(Z). Then, since each -regular space Y satisfies (6), it follows from
3.7 that either & = R(P) or P C L X. Let X be the space constructed
in [19, Example, p. 240]. In [36, p. 206], Woods essentially proved that
a(EX) # E(aX) and aX is 0-dimensional. By 1.1(c), X € R(£) and

a5(EX) = a(EX) # E(aX) = E(azX).

If €5 %P C AR, then it follows from 2.8(b) that Z (EX) # E(#X),
so X ¢ 2P*. This contradicts #* = R(Z), and hence, if # C A X, then
:@ = (gg.

3.10. Remark. Axiom (A.) is useful only for the implication (b) — (c)
in 3.7 (and hence, also for 3.8 and 3.9). The author does not know if 3.7
can be proved without assuming (A:). We note that, by 5.4 below, the
following are equivalent:

(a) Every cardinal is nonmeasurable.

(b) Every extension property satisfies (As).

3.11. Remarks. (i) A space is called Dieudonné complete if it is homeo-
morphic to a closed subspace in a product of metric spaces (cf. [8, 8.5.13]).
If we denote the class of Dieudonné complete spaces by.Z, then.7 is an
extension property such that the.7 -regularity is just complete regularity.
Let ¥~ denote the class of spaces which are homeomorphic to a closed
subspace in a product of a compact space with discrete spaces, and let
(7') denote the following condition on a %-regular space Y: Every
locally finite family of open sets in Y is locally finite in Y. By 2.3
U C¥ ,and (7') implies (7). If we use [8, 8.5.13(b)], then the following
results, concerning an extension property &, will be proved analogously
to 3.6 and 3.7:

(3.11.1) For each P-regular space Y (5) implies (7') if and only if
Y 5 C P (or equivalently, every discrete space has P).

(8.11.2) For each P-regular space Y (7') implies (4) if and only if
either ? = R(P)or P C AT .

For internal characterizations of members of &7, see [27].

(ii) For a space X,.7 X is usually denoted by uX, and pX denotes the
largest subspace S of 8X containing X such that X X T is C*-embedded
in .S X T for each paracompact p-space I', where a paracompact p-space
(= a paracompact M-space in the sense of Morita [22]) is a perfect
preimage of a metric space (cf. [1]). Recently, in [29], Przymusinski
proved that for a space X of nonmeasurable cardinal pX = pX is equi-
valent to p(EX) = E(uX), and he asked whether this equivalence holds
for every space X. In 5.6 below, we show that if there exists a measurable
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cardinal, then there exists a space X such that uX = pX but p(EX) #
E(uX). Hence his question is equivalent to the set theoretic question:
Is every cardinal nonmeasurable? His result quoted above follows also
from 3.8 and [26, 19.1] since pX = vX if the cardinality of X is non-
measurable (cf. [11.20]).

4. Applications. Let us call a property of spaces a strongly fitting
property if it is preserved by closed subspaces and perfect images. There
are several classes of spaces which are determined by a strongly fitting
property of the maximal &’-extensions; for example, an M’-space in the
sense of Isiwata [18] is characterized as a space X whose Dieudonfie
completion pX is a paracompact M-space (cf. [18] and [23]). Condition
(4) considered in the preceding section concerns the preservation of such
classes under perfect maps. The following theorem follows immediately
from 3.1.

4.1. THEOREM. Let & be an extension property, and let f be a perfect map
from a P-regular space X onto Y with ¥ € P*. If PX has a strongly
fitting property, then PY has the same property.

4.2. COROLLARY. Suppose that f: X — Y is a perfect onto map and vX is
locally compact. Then vY 1s locally compact if and only if v(EY) = E(WY).

Proof. Since local compactness is a strongly fitting property, the neces-
sity follows from 4.1. The sufficiency is due to Woods [35, 2.10].

Conditions (5), (6), (9) and (10) concern the problem of when the
relation (X X V) = X X Y is valid.

4.3. THEOREM. Let & be an extension property, satisfying (As), such that
Cp # P C AR, and let Y be a P-regular space of nommeasurable
cardinal. Then the following conditions on Y are equivalent:

(a) (EY) = E(27).

(b) For each perfect onto map f: X — Y with X € R(Z) and each
Z € RP),P(Y XZ)=PY X PZ whenever P (X X Z) = PX X
PZ.

(c) For each perfect onto map f: X — Y with X € R(Z) and each perfect
onto map g: S — T with S € R(P) and with T € P*, P(Y X T) =
PY X PT whenever P (X X S) = PX X PS.

(d) P(Y X T) =PY X PT for each bi-sequential P-space 1.

) P (Y X M) = PY X PM for each strongly 0-dimensional, metric
space M of nonmeasurable cardinal.

Proof. (a) — (b). By 3.1 and 3.4, &f is bi-quotient onto, so it follows
from 3.2 that 2f X ids is bi-quotient onto. Hence (b) follows from 3.3.

(b) = (c). By (b),Z2(Y X S) = PY X PS.Since P (ET) = E(?T)
and (a) implies (b) as proved above, (Y X T) = YV X PT.
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(c) — (d). Let T be a bi-sequential #-space. Then T € £* since
P CP* LetX = EY,f = ky,S = Tand g = ids. Then # (EX) =
PX = E(PX), because X and ZX are extremally disconnected. Since
Cp # P C AR, it follows from 3.8 that X X S is P-embedded in
PX X S5,50P(X XS)=2PX X S.Sincef: X — Yand g: S — T are
perfectonto, (Y X T) = PY X T (= PY X PT) by (c).

(d) — (e). Note that a strongly 0-dimensional, metric space of non-
measurable cardinal is N-compact (cf. [24, (iv,), p. 598] and [11, 15.20]).
Since €5 # P C A, it follows from 2.4 that M is a P-space. Thus
(d) implies (e).

(e) — (a). Observe that the space I" constructed in the proof that
(9) — (8) in 3.1 is a strongly 0-dimensional, metric space whose cardi-
nality is equal to that of V. From 3.8 and this fact we have (a). Hence
the proof is complete.

The next theorem improves [28, 3.4], and shows that “T € 2*’ in
4.3(c) cannot be replaced by “T € R(%)” even when & = X (see 5.3).

4.4. THEOREM. The following conditions on a space Y of nonmeasurable
cardinal are equivalent:

(a) vY s locally compact.

(b) For each perfect onto map f: X — YV and each quotient onto map
g2 S > T,v(Y XT) =vV X vl whenever v(X X S) = vX X vuS.

(c) Asin (b) with “perfect’ instead of ‘‘quotient’.

Proof. (a) — (b). By [35, 2.10], v(EY) = E(vY), so it follows from 4.3
that v(¥ X S) = v¥ X vS. Thusv(¥ X T) = v¥V X vT by [28, 3.4].
The implication (b) — (c) is obvious, and (c) — (a) is a special case of

[28, 3.4].

If # = Z, then a theorem analogous to 4.4 is not necessary true.
In fact, if & is ultrarealcompactness, T is the real line and S = ET,
then T is the image of S under a perfect map and by 2.7 (I X S) =
I XS (=21 XZ2S), but it follows from 2.3 and Glicksberg’s theorem
(cf. [8, p. 298]) that

P(IXT)=8 XT) #BI XBT =PI XPT.

For an extension property £, the class of #-regular spaces X for which
PX = BsX is denoted by &’. In [37, 2.10], Woods proved that if £-
regularity is O-dimensionality, then either & = %4 or &’ does not
properly contain the class of pseudocompact &-regular spaces, and
Broverman remarked in [3] that this result is not valid for arbitrary
extension properties. If we denote the class of -regular spaces X for
which Z (EX) = B(EX) by ", then we have the following theorem.

4.5 THEOREM. Let & be an extension property. Then:
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(@) &' = P NP+
(b) Either PP = € 5 or P"' does not properly contain the class of pseudo-
compact P-regular spaces.
Proof. (a) Let X € &". Then, since
PX D (Pkx)P (EX)] = (Phx)[B(EX))],
PX is compact, so X € &’. From this fact and 1.2 (a),
P (EX) = B(EX) = E(BsX) = E(¥X),

and hence X € 2*, Conversely, if X € &’ N P*, then it follows from
1.2(a) that

P (EX) = E(PX) = E(BsX) = B(EX),

ie, X ¢ &,

(b) Assume that & # % 4, and choose a P-space X not in % 4.
If N ¢ &, then X is pseudocompact by 1.1(d), but X ¢ £ since
P(EX) = EX #B(EX). If N € P,then X C &L by 3.6, and hence
it follows from [11, 8A4] that each space in &*”' is pseudocompact. In
any case, &’’’ does not properly contain the class of pseudocompact
P-regular spaces.

5. Examples and questions.

5.1. Example. There exists a P,(X;)-compact space but not ultra-
realcompact.

Proof. Let X = U{I,\J S,|n € N}, where I, and S, are subspaces of
the Euclidean plane as follows:
L = {(x,y)|x =1/n,0 sy =1},
S, = {(x,y)|x* + 92 = 1/n%,and x £ 0ory =< 0}.
Then, each I,, \U S, being a compact zero-set, X is P,(X;)-compact. Since
X is connected but not compact, it is not ultrarealcompact.

5.2. Example. Condition (2) does not imply (2') even when & = #4.

Proof. Let Y be the Tychonoff Plank (cf. 11, 8.20]), and let E = {w,}
X N be the right edge of Y. Since Y is pseudocompact, it follows from 3.7
that Y satisfies (2) for #Z. Let X = ¥V @ E, and let f: X — Y be the
natural map. Then f is perfect onto, but #f: vX — vY is not even a
closed map, because vX = vV @ E.

5.3. Example. There exists a space Y such that v(EY) = E(vY) but
vY is not locally compact.

Proof. Let W be the space of all countable ordinals with the order
topology and Q the space of rational numbers. Set ¥ = W X Q. Then a
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similar argument to that of [11, 8.20] shows that vY = W X Q, sovY is
not locally compact. Since the projection from Y to Q is a closed map with
countably compact fibers, it is easily checked that Y satisfies (8) for #,
and hence it follows from 3.8 (or [12, 2.4]) that v(EY) = E(wY).

5.4. Example. 1f there exists a measurable cardinal, then there exists
an extension property which fails to satisfy (A,).

Proof. Let A be the class of spaces which are embedded as a closed
subspace in a product of spaces of nonmeasurable cardinal. Then .# is
an extension property and, by Tychonoff's theorem, .#-regularity is just
complete regularity. Clearly, every space of nonmeasurable cardinal has
M. Let D be the discrete space of measurable cardinal; then D ¢ &%
by [11, 12.2]. If D is a closed subspace in a product of spaces of non-
measurable cardinal, then D remains homeomorphic and closed if one
changes the topology of each factor to the discrete topology, so D must
be realcompact by [11, 12.2]. This contradiction shows that D is an
M -regular space not in.#, and hence # does not satisfy (A,).

5.5. Question. Does every almost realcompact space have .#? This
question is closely related to the questions asked by Hu$ek in [16, p. 43].

5.6. Example. 1f there exists a measurable cardinal, then there exists
a space X such that uX = pX but u(EX) # E(uX).

Proof. Let W* be the space of all ordinals less than or equal to the first
uncountable ordinal w; with the order topology and let N = N \U {0}
be the one-point compactification of N. Let K be the quotient space
obtained from W* @ wN by identifying w; and o and lety: W* @ wN —
K be the quotient map. Let D be the discrete space of measurable cardi-
nal; then D = uD # vD. Let

X = (K X vD) — (y[eN] X (vD — D)).
Then it follows from [6, 5.3] that

vX = v(K X D) =K XvD, and

pX = vX — (Y[N] X (WD — D))

since it is the smallest Dieudonné complete subspace of vX containing X.
Following [29], let mX denote the largest subspace .S of X containing X
such that X X M is C*-embedded in .S X M for each metric space M.
Since K X D is paracompact, it follows from [28, 3.5 (1)] that m (K X D)
= v(K X D), so mX = vX, and hence pX = mX M pX = puX by [29,
Corollary 1]. If we set

1 = {y[N] X {d}|d € D},

then U is a locally finite family of open sets in X, but it is not locally finite
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at any point of uX — X. Hence it follows from 3.11.1 that u(EX) #
E(uX).

A continuous image of I containing two distinct points is called a
non-trivial arc. Let & be the class of compact spaces containing no
non-trivial arcs. Then R(Z) is known to be the largest extension property
whose regularity is not complete regularity (cf. [15, p. 329]). We conclude
this paper by asking a question about this property.

5.7. Question. Does every space containing no non-trivial arcs belong
to R(£?)? In other words, does every space containing no non-trivial arcs
have a compactification possessing the same property?

The referee kindly informed me that SRt — R+, where R+ is the space
of non-negative real numbers, is an example of a compact connected space
containing no non-trivial arcs. The author wishes to thank the referee for
his helpful suggestions.
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