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ASYMPTOTICS OF ITERATED
BRANCHING PROCESSES

DIDIER PIAU,∗ Université Lyon 1

Abstract

Gaweł and Kimmel (1996) introduced and studied iterated Galton–Watson processes,
(Xn)n≥0, possibly with thinning, as models of the number of repeats of DNA triplets
during some genetic disorders. Our main results are the following. If the process indeed
involves some thinning then extinction, {Xn → 0}, and explosion, {Xn → ∞}, can have
positive probability simultaneously. If the underlying (simple) Galton–Watson process is
nondecreasing with mean m then, conditionally on explosion, the ratios (logXn+1)/Xn
converge to logm almost surely. This simplifies the arguments of Gaweł and Kimmel,
and confirms and extends a conjecture of Pakes (2003).
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1. Introduction

Iterated Galton–Watson (IGW) processes are Markov chains (Xn)n≥0 with nonnegative
integer values, whose distribution depends on two parameters: a real number u in the interval
(0, 1], called the thinning parameter, and a probability measurep := (pk)k≥0 on the nonnegative
integers, called the reproduction law. The stochastic evolution of (Xn)n≥0 is as follows.

Let (Z(n))n≥0 denote an auxiliary independent and identically distributed (i.i.d.) collection of
Galton–Watson processes with common reproducing distribution p and starting fromZ(n)0 := 1.
Let (B(n)k )n≥0, k≥1 denote an auxiliary i.i.d. collection of Bernoulli random variables with
common distribution

P(B(n)k = 1) := u, P(B(n)k = 0) := 1 − u.

Assume that X0, (Z(n))n, and (B(n)k )n,k are independent. For every positive x, let S(n)x denote
the population produced by the nth Galton–Watson process Z(n) up to level x, that is,

S(n)x :=
x∑
y=1

Z(n)y .

If Xn = 0 then Xn+1 := 0. If Xn = x ≥ 1 then

Xn+1 := B
(n)
1 + · · · + B(n)y , where y := S(n)x .

In other words, the distribution of Xn+1 conditionally on {Xn = x} and on S(n)x is binomial
with parameters (S(n)x , u).
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Gaweł and Kimmel [1] introduced IGW processes to model the explosive growth of the
number of repeats of DNA triplets in specific regions of the genome during heritable disorders
such as fragile X-syndrome. Here, 1 +Xn models the length of a linear chain of DNA repeats
after n replications, and what we know of the molecular mechanism of replication suggests
describing the evolution of (Xn) as above. (We use notation that is mostly compatible with
that of Gaweł and Kimmel, with the exception that these authors defined the IGW process as
(X′

n)n≥0 with X′
n := 1 + Xn.) Indeed, simulations in Gaweł and Kimmel when p0 = 0 and

u < 1 suggested that IGW processes either die out or grow extremely fast after a period of
relative quiescence. This is precisely the behaviour of the number of repeats of DNA triplets
in successive generations of carriers of these genetic disorders. See also the book by Kimmel
and Axelrod [2, Chapter 3.7, pp. 51–56], which repeats the analysis of Gaweł and Kimmel.

We define the explosion F and death D of the IGW process as the events

F := {Xn → ∞}, D := {Xn → 0} = {Xn = 0 for large enough n}.

Thus, F and D are mutually exclusive. (In the context of genetic disorders, the death D of
the process corresponds to the extinction of the diseased gene lineage, and the explosion F
corresponds to unlimited expansion of DNA triplet repeats, interrupted by the death of the
mutation carrier.) Gaweł and Kimmel showed that P(D) = 1 as soon as p0 > 0, and that
P(F ) = 1 when p0 = 0, p1 < 1, and u = 1. Later on, their arguments were simplified by
Pakes [4]. Pakes also conjectured that, when p0 = 0, p1 < 1, and u = 1, (logXn+1)/Xn
converges almost surely to logm(p), where m(p) > 1 denotes the mean of p, that is,

m(p) :=
∑
k≥0

kpk.

In this paper we determine the asymptotic behaviour of every IGW process. We confirm the
conjecture of Pakes and extend it to IGW processes with thinning, that is, to the case where
u < 1, and we refine partial results of Gaweł and Kimmel which are not recalled above.

The two propositions below collect some simple facts about the mean behaviour of IGW
processes and about their almost-sure behaviour in some degenerate cases. These are mainly
due to Gaweł and Kimmel, or to Pakes. Proposition 2 for instance is due to Pakes when
m(p) > 1 (note that if p0 = 0 and p1 < 1, then m(p) > 1). We write Px and Ex for the
probability P and the expectation E, conditionally on X0 = x.

Proposition 1. The mean behaviour of the IGW process is as follows.

(i) If m(p) > 1 then Ex(Xn) → ∞ for every initial population x ≥ 1.

(ii) If m(p) < 1, or if m(p) = 1 and u < 1, then Ex(Xn) → 0 for every initial population
x ≥ 0.

(iii) If m(p) = u = 1 then Ex(Xn) = x for every initial population x ≥ 0.

Proposition 2. The almost-sure behaviour of the IGW process in some degenerate cases is as
follows.

(i) If p0 > 0 then Px(D) = 1 for every initial population x ≥ 0.

(ii) If p0 = 0, p1 < 1, and u = 1, then Px(F ) = 1 for every initial population x ≥ 1.
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We stress that the hypotheses of Propositions 1(i) and 2(i) are compatible; hence, we can
have Ex(Xn) → ∞ and Px(D) = 1 simultaneously for every initial population x ≥ 1. This
contrasts with the behaviour of usual Galton–Watson processes.

We now turn to the nondegenerate case, which Gaweł and Kimmel, and Pakes omitted.

Theorem 1. Assume that p0 = 0 and p1 < 1.

(i) For every initial population x ≥ 0, Px(D)+ Px(F ) = 1.

(ii) Assume further that u < 1. Then, for every initial population x ≥ 1, Px(D) and Px(F )
are both positive, and Px(D) ≤ P1(D)

x . Thus, Px(F ) → 1 when x → ∞.

We stress that Theorem 1(ii) does not state that Px(D) decreases geometrically when the
initial population x → +∞. In fact, we can show in this case that, when x → +∞,

log
1

Px(D)
� x.

We now state our main result.

Theorem 2. Assume that p0 = 0. For every initial population x ≥ 1, conditionally on the
explosion F , the random variable (logXn+1)/Xn converges almost surely to logm(p). In
particular, conditionally on F , Xn+1/Xn converges almost surely to ∞.

As regards the process conditional on the death D, we could try to show that, if suitably
renormalized, the death time, that is, the first hitting time of 0, converges in distribution,
conditionally onD and when the starting point of the process goes to ∞. As noted by a referee,
even a conjecture about this presumed limit distribution would be useful, and could be compared
to some simulations. We do not pursue this avenue here.

The rest of the paper is organised as follows. In Section 2 we (re)prove Propositions 1 and 2.
In Section 3 we deal with the easy parts of Theorem 1, that is, part (i) and the fact that the
probability of death is positive and at most geometric. In Section 4 we provide explicit upper
bounds of the probability of death in some specific cases. Section 5 exposes a strategy of proof
for the study of the explosion case. In Section 6 we apply this strategy, first to the proof of
Theorem 1(ii), that is, of the fact that the probability of explosion is positive, and then to the
proof of Theorem 2.

2. Proofs of Propositions 1 and 2

Proof of Proposition 1. From the construction of the IGW process, we see that, for every
initial population x ≥ 0, Ex(X1) = χ(x), where the sequence χ is defined by χ(0) := 0 and,
for every integer x ≥ 1,

χ(x) := u(m+ · · · +mx).

Whenm > 1, χ can be extended to a convex function on [0,+∞), which we still call χ . (This
step of the proof would be false form < 1.) Thus, for every initial population x ≥ 0 and every
time n ≥ 0,

Ex(Xn+1) ≥ χ(Ex(Xn)).

Choose x0 ≥ 1 large enough such that χ(x0) ≥ 2x0. Then, Ex0(Xn) ≥ x02n for every n ≥ 0.
(This step of the proof uses the fact that χ is nondecreasing.) For smaller values of x, for
instance for x = 1, consider the event thatXn ≥ x0. For large enough n, n = n0 say, this event
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has positive probability, say r , with respect to P1. Finally, (i) holds since, for every n ≥ n0 and
every x ≥ 1,

Ex(Xn) ≥ E1(Xn) ≥ P(Xn0 ≥ x0)Ex0(Xn−n0) ≥ rx02n−n0 .

When m = 1, Ex(X1) = ux; thus, the m = 1 cases in (ii) and (iii) are obvious. Finally, when
m < 1, Ex(X1) ≤ umx and um < 1; thus, Ex(Xn) → 0. This completes the proof of (ii).

Proof of Proposition 2. The proof of (ii) is direct since in this caseXn+1 ≥ Xn almost surely.
As regards (i), if p0 > 0, for each n ≥ 0, the event that Z(n)1 = 0 has positive probability p0
and these events are independent. One of these events is almost surely realized, say Z(n)1 = 0.
Then S(n)x = 0 for every integer x ≥ 1 and Xn+1 = 0, which proves (i). The argument also
shows that

Px(Xn ≥ 1) ≤ (1 − p0)
n

for every time n and initial population x. In other words, the time to absorption is uniformly
stochastically dominated by the geometric distribution of parameter p0.

3. Elementary parts of Theorem 1

3.1. Almost surely, death or explosion

This is straightforward, and analogous to the usual Galton–Watson case. We have to check
that 0 is the only nontransient state of the Markov chain (Xn). If p0 = 0 and u = 1, this is
true; see the proof of Proposition 1(i). If p0 = 0 and u < 1, the return to x ≥ 1, starting
from x, assumes that the first step is not to 0. As such, the probability of this event is at most
1 − Px(X1 = 0) < 1; see the next subsection.

3.2. Probability of death, not zero

WhenX0 = x,X1 = 0 if and only if the thinning phase kills each and every S(0)x individual.
Hence, for every x ≥ 0,

Px(D) ≥ Px(X1 = 0) = E((1 − u)Sx ),

which is positive.

3.3. Probability of death, at most geometric

Assume that p0 = 0, and fix x ≥ 1 and y ≥ 1. The fundamental branching property of
the Galton–Watson process Z(n) means that Z(n)x+y is the sum of Z(n)x ≥ 1 random variables
distributed like Z(n)y . Hence, S(n)x+y is stochastically greater than the sum of S(n)x and of an
independent copy of S(n)y . After thinning, this shows that X1 under Px+y is stochastically
greater than the sum of X1 under Px and of an independent copy of X1 under Py . By recursion
over n ≥ 1, the same assertion holds when we replace X1 by Xn. Hence,

Px+y(Xn = 0) ≤ Px(Xn = 0)Py(Xn = 0).

This implies that Px(D) ≤ P1(D)
x for every x ≥ 0, an assertion of Theorem 1(ii).

Note that the important step here is to prove that P1(D) < 1. We do this in Section 4 in
some specific cases, the general case is given in Section 6.1.
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4. Upper bounds of the probability of death

When p0 = 0, in the special case mu > 1, we can explicitly bound P1(D) by some q < 1,
using the generating function of the distribution (pk)k . Thanks to Section 3.3, this proves that
Px(D) ≤ qx .

4.1. Special case

We can often obtain an upper bound of q := P1(D) at small cost, as follows. Since the
sequence (Px(D))x≥0 is submultiplicative,

q = E1(PX1(D)) ≤ E1(q
X1).

The generating function of X1 is g(s) := E1(s
X1) = f (1 − u+ us), with

f (s) :=
∑
k≥1

pks
k.

Thus, q ≤ g(q), and it is not hard to see that q is at most the smallest root of the equation
s = g(s). In the supercritical case, g′(1−) = mu > 1, s ≤ g(s) for s = 1 and s ≤ q0, where
q0 in (0, 1) is defined by q0 = g(q0). Finally, q ≤ q0. In particular, Px(D) < 1.

4.2. Binary case

Assume that the Galton–Watson process describes a binary replication with efficiency λ.
Thus, f (s) := (1 − λ)s + λs2 and m = 1 + λ. Elementary computations then yield the
following. If u > 1/m, q ≤ q(λ, u) with

q(λ, u) := (1 − u)(1 − λu)

λu2 .

Note that 0 < q(λ, u) < 1, except when u = 1, and then q = q(λ, 1) = 0, and when u = 1/m,
and then q(λ, u) = 1 but q < 1.

5. A general strategy

Assume that p0 = 0. We first explain our strategy to study the probability of explosion. We
fix an integer-valued sequence (ϕ(x))x such thatϕ(x) ≥ x+1 for every x, and an integer-valued
sequence (ψ(x))x .

Definition 1. For every x ≥ 1, let ηx denote a random variable of binomial distribution of
parameters (ψ(x), u), and let Sx be a random variable distributed like every S(n)x . Introduce
the probabilities A(x) and B(x), defined as

A(x) := P(Sx ≤ ψ(x)), B(x) := P(ηx < ϕ(x)),

and the event C, defined as

C := {for all n ≥ 0, Xn+1 ≥ ϕ(Xn)}.
To show that Px(C) > 0 for every x ≥ 1, we start from the inequality

Px(X1 < ϕ(x)) ≤ A(x)+ B(x).
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The Markov inequality and the fact that Sx ≥ Zx imply that

A(x) ≤ P(Zx ≤ ψ(x)) ≤ ψ(x)E

(
1

Zx

)
≤ ψ(x)e−κx,

with a positive κ that depends only on p; see, for instance, Proposition A.2 of [5].
We now estimate B(x). The Chebyshev inequality for ηx and the fact that ηx is distributed

like the sum of ψ(x) i.i.d. copies of a Bernoulli random variable B of parameter u imply that

B(x) ≤ eϕ(x) E(e−B)ψ(x) = eϕ(x)
(

1 − u+ u

e

)ψ(x)
.

Computing the first and second derivatives of the function

u �→ e−u2 − 1 + u− u

e
,

we see that it is positive on (0, 1); hence, 1 − u+ u/e ≤ e−u2
and

B(x) ≤ exp(ϕ(x)− u2ψ(x)).

Definition 2. We say that (γ (x))x≥1 is admissible with respect to (ϕ(x))x and (ψ(x))x if the
sequence (γ (x))x≥1 is nonincreasing, summable, and such that, for every x ≥ 1,

ψ(x)e−κx + exp(ϕ(x)− u2ψ(x)) ≤ γ (x) < 1.

Let (γ (x))x denote an admissible sequence. For x ≥ 1, recursively define (γk(x))k≥0 by

γ0(x) := γ (x), γk+1(x) := γk(ϕ(x)) (k ≥ 0).

Then Px(X1 < ϕ(x)) ≤ γ (x) for every x ≥ 1. Conditioning successively on the values of Xn
and iterating the above yields

Px(C) ≥
∏
k≥0

(1 − γk(x)).

The iteration uses both the fact that ϕ(x) ≥ x and the fact that (γ (x))x is nonincreasing.
Since ϕ(x) ≥ x + 1 and (γ (x))x is nonincreasing, γk(x) ≤ γ (k + x). Hence,

Px(C) ≥ α(x), α(x) :=
∏
y≥x

(1 − γ (y)).

If an admissible sequence exists, α(x) > 0. In particular, Px(C) > 0 for every x ≥ 1.
Furthermore, C ⊂ F ; hence, Px(F ) ≥ Px(C) and Px(F ) > 0 as well. Finally, the sequence
(α(x))x increases to 1 when x → +∞; hence, Px(F ) and Px(C) both converge to 1 when
x → +∞.

We need a slight refinement of this, stated as Lemma 1, below.

Lemma 1. If an admissible sequence exists then lim inf Xn/n ≥ 1 almost surely, conditionally
on F .
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Proof. Consider the event H := {lim inf Xn/n ≥ 1}. Then C ⊂ H = Hk for every
nonnegative integer k, with

Hk :=
{

lim inf
Xn+k
n

≥ 1

}
.

Furthermore, for every x ≥ 1, on the event {Xk ≥ 1},
Px(Hk | Xk) = PXk (H) ≥ PXk (C) ≥ α(Xk).

Since F ⊂ {Xk ≥ 1}, this shows that

Px(H) ≥ Ex(α(Xk) 1F ).

When k → +∞, Xk → +∞; hence, α(Xk) → 1 on F , and Px(H) ≥ Px(F ). This completes
the proof.

6. Some applications of the strategy

6.1. Probability of explosion, not zero

We first apply the strategy explained in Section 5 with ϕ(x) := x + 1 and ψ(x) := x2. We
can choose γ (x) < 1 for every x ≥ 1 and such that γ (x) ≤ e−cx when x → ∞, with a positive
c; hence, admissible sequences exist and Px(F ) > 0 for every x ≥ 1. This is the missing part
of Theorem 1(ii), completing the proof of Theorem 1.

6.2. Lower bound in Theorem 2

Our second application of the strategy explained in Section 5 is more involved. We choose
µ in the interval (1,m) and an integer sequence (ϕ(x))x such that µ−xϕ(x) → 1 when x →
+∞. Then we choose ν in the interval (µ,m) and an integer sequence (ψ(x))x such that
ν−xψ(x) → 1 when x → +∞. Since ν > µ, the contributions (B(x))x are summable.

As regards the contributions (A(x))x , we use standard estimates of the harmonic moments
of Zx . Choose a positive real number r such that p1m

r < 1, this is possible as soon as m is
finite and p1 < 1. Results in [3] allow us to control the behaviour of E(1/(Zx)r ) as follows.

To keep things simple, we choose a real number 
 in (ν,m) and we use the following easy
consequence of the results of [3]. There exists a finite constant c0 such that E(1/(Zx)r ) ≤
c0


−rx for every x ≥ 1.
The Markov inequality for (Zx)r yields, for large enough x,

A(x) ≤ P(Zx ≤ ψ(x)) ≤ ψ(x)r E

(
1

(Zx)r

)
≤ c0

(
ν




)rx
.

Finally, the sequence (γ (x))x is allowed to decrease geometrically, and, hence, to be summable.
Since admissible sequences exist, Px(C) > 0. Furthermore, introduce

G := {lim inf Yn ≥ logµ}, Yn := logXn+1

Xn
.

Since C ⊂ G and G is asymptotic, G is almost sure on F . Finally, conditionally on F ,

lim inf Yn ≥ logm almost surely.
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6.3. Upper bound in Theorem 2

As regards the other side of the equality in Theorem 2, fix µ > m. We use the simple fact
that if Yn ≥ logµ then, conditionally on Xn = x, we have S(n)x ≥ Xn+1 ≥ µx . Furthermore,

P(Sx ≥ µx) ≤ µ−x E(Sx) ≤ (m/µ)xm

m− 1
,

which is summable. By Lemma 1, lim inf Xn/n ≥ 1 almost surely, conditionally on F . This
implies that the events {Yn ≥ logµ} are realized at most for a finite number of values of n,
conditionally on F or not. Thus, lim supYn ≤ logµ almost surely. This concludes the proof
of Theorem 2.
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