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Abstract

We study bounded linear regularity of finite sets of closed subspaces in a Hilbert space. In particular,
we construct for each natural number n ≥ 3 a set of n closed subspaces of `2 which has the bounded
linear regularity property, while the bounded linear regularity property does not hold for each one of
its nonempty, proper nonsingleton subsets. We also establish a related theorem regarding the bounded
regularity property in metric spaces.
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1. Introduction

Infinite products of (linear and nonlinear) operators and, in particular, infinite products
of retractions are often used for approximating points in the intersection of a finite
number m ≥ 2 of closed and convex sets via individual (best) approximations from
each one of these sets. If all the sets are closed linear subspaces S 1, S 2, . . . , S m (or,
more generally, closed affine subspaces), of a given (real) Hilbert space H, then the
best approximations to a given point x ∈ H in each one of the subspaces S i coincide
with the orthogonal projections PS i x. Taking an arbitrary x0 ∈ H and defining the
iterations xn = (PS m PS m−1 · · · PS 1 )nx0, n = 1, 2, . . . , we obtain a sequence {xn} which
converges in norm to an element x∗ ∈ S := S 1 ∩ · · · ∩ S m. This fundamental fact was
first established for m = 2 by von Neumann in [3] and for the general case by Halperin
in [2].

The theorems in [2, 3] did not state any rate of the above-mentioned convergence
and in fact, it is now known that this convergence may be arbitrarily slow. Any
uniform estimate of the convergence rate that was proved since then in some particular
cases required special interplay between the subspaces S i, for example, positivity
of the angles between them and some of their intersections (see, for example, [4]).
The properties of a given set of subspaces {S 1, S 2, . . . , S m} guaranteeing uniform
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convergence of infinite products were investigated by Bauschke and Borwein in [1],
where they proved that this kind of convergence occurred if and only if the subspace
S ⊥1 + S ⊥2 + · · · + S ⊥m is closed in H. This property was named bounded linear
regularity of the given set of subspaces.

To provide a quantitative character to the property of regularity, one can use the
inclination of a given set of subspaces {S 1, S 2, . . . , S m}, where m ≥ 2, which is defined
by

`(S 1, S 2, . . . , S m) = inf
x<S

max1≤ j≤m ||x − PS j x||

||x − PS x||
.

Thus we see that the inclination compares the distances from an arbitrary point x ∈ H
to the subspaces S i and to their intersection. When the inclination is positive, not only
one obtains the uniform convergence of the infinite products, but also an estimate of
the rate of this convergence. Many useful applications of the concept of inclination can
be found in [5]. As a matter of fact, the positivity of the inclination (and of the inner
inclination [6]) is equivalent to the above-mentioned bounded regularity property.

In the next section we exhibit for any natural number n ≥ 3, a set A =

{X1, X2, . . . , Xn} of n closed linear subspaces of `2 with the following properties:
(i) the bounded linear regularity property does not hold for each nonempty, proper

nonsingleton subset of A (that is, its inclination is zero);
(ii) the whole set A has the bounded linear regularity property (that is, its inclination

is positive).
So we see that the bounded linear regularity property is not hereditary.
Property (i) is easily deduced from Proposition 2.1 below, while property (ii)

follows from Proposition 2.2.
In Section 3 we turn our attention to the bounded regularity property in general

metric spaces. We show (see Theorem 3.1 below) that if for each j ∈ {1, . . . , q},
L j = {C j,i : i = 1, . . . , n j} is a finite collection of nonempty subsets of a metric space
X such that

⋂q
j=1(

⋂n j

i=1 C j,i) , ∅ and L j has the bounded regularity property for each
j ∈ {1, . . . , q}, then the family

L = {C j,i : j ∈ {1, . . . , q}, i ∈ {1, . . . , n j}}

possesses the bounded regularity property if and only if the family

L̃ =

{ n j⋂
i=1

C j,i : j = 1, . . . , q
}

has this property.

2. Bounded linear regularity of subspaces

Denote by X = `2 the Hilbert space consisting of all the sequences of real numbers
{xi}

∞
i=1 such that

∑∞
i=1 x2

i <∞, with the inner product

〈x, y〉 =
∞∑

i=1

xiyi, x = {xi}
∞
i=1, y = {yi}

∞
i=1 ∈ X.
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This inner product induces the norm

||x|| = 〈x, x〉1/2 =

( ∞∑
i=1

x2
i

)1/2

, x = {xi}
∞
i=1 ∈ X.

Let D1, D2 ⊂ X be nonempty sets. We say that D1 and D2 are orthogonal and write
D1 ⊥ D2 if 〈u, v〉 = 0 for all u ∈ D1 and v ∈ D2.

Let n ≥ 3 be a natural number and let ei, i = 1, 2, . . . , be the standard basis in X.
Namely, for j = 1, 2, . . . , e j = {e j,i}

∞
i=1 with

e j, j = 1, e j,i = 0 for all integers i ≥ 1 such that i , j.

For each x ∈ X and each nonempty set D ⊂ X, set ρ(x, D) = inf{||x − y|| : y ∈ D}.Denote
by L1 the closed linear subspace generated by the vectors {e2i+1 : i = 1, 2, . . . } and by
L2 the closed linear subspace generated by {e2i : i = 1, 2, . . . }.

For each pair of nonempty sets D1, D2 ⊂ X, set

D1 + D2 = {x + y : x ∈ D1, y ∈ D2}.

Let L and L̃ be two closed linear subspaces of L1 such that

L + L̃ = L1 and L ⊥ L̃. (2.1)

As we have already mentioned, we are going to construct a set A = {X1, . . . , Xn} of
n ≥ 3 closed linear subspaces of `2 with properties (i) and (ii). We construct them in
such a way that the following property also holds:

(iii) X j1 ∩ X j2 = L for all j1, j2 ∈ {1, . . . , n} such that j1 , j2.
Since L is an arbitrary linear closed subspace of L1, we can actually obtain many

examples of sets A with properties (i)–(iii).
To this end, we first construct closed linear subspaces X0,s ⊂ L2, s = 1, . . . , n,

such that Xs1 ∩ Xs2 = {0} for all s1, s2 ∈ {1, . . . , n} satisfying s1 , s2 and then for all
s = 1, . . . , n, we set Xs = X0,s + L. Since L2 ⊥ L, we conclude that property (iii) holds.

For each natural number k, each j ∈ {1, . . . , n} and each i ∈ {1, . . . , n − 1}, set

ξ(n−1)n(k−1)+( j−1)(n−1)+i = e2n2(k−1)+2( j−1)n+2 + 2−ke2n2(k−1)+2( j−1)n+2(i+1). (2.2)

Clearly, we have defined ξi, i = 1, 2, . . . .
Let s ∈ {1, . . . , n}. Denote by X0,s the closed linear subspace generated by the basis

vectors

{ξ(n−1)n(k−1)+( j−1)(n−1)+s−1 : k is a natural number, j ∈ {1, . . . , n} and j < s}

∪ {ξ(n−1)n(k−1)+( j−1)(n−1)+s : k is a natural number, j ∈ {1, . . . , n} and j > s}.
(2.3)

By (2.2) and (2.3),
X0,s ⊥ L1. (2.4)
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By (2.2), if k1 and k2 are natural numbers such that j1, j2 ∈ {1, . . . , n}, i1, i2 ∈
{1, . . . , n − 1} and (k1, j1) , (k2, j2), then

〈ξ(n−1)n(k1−1)+( j1−1)(n−1)+i1 , ξ(n−1)n(k2−1)+( j2−1)(n−1)+i2〉 = 0.

By (2.2), the system of vectors ξi, i = 1, 2, . . . , is linearly independent. When
combined with (2.3), this implies that for all s1, s2 ∈ {1, . . . , n} satisfying s1 , s2,

X0,s1 ∩ X0,s2 = {0}. (2.5)

Now for each s ∈ {1, . . . , n}, set

Xs = X0,s + L. (2.6)

By (2.1) and (2.4), Xs is closed for all s ∈ {1, . . . , n}.
Our first proposition shows that the set A = {X1, X2, . . . , Xn} has property (i).

P 2.1. Let ε ∈ (0, 1) and j ∈ {1, . . . , n}. Then there is a point z ∈ L2 such that
||z|| = ρ(z, L) = 1 and ρ(z, Xi) ≤ ε for all i ∈ {1, . . . , n} \ { j}.

P. Choose a natural number k such that

2−k < ε/2. (2.7)

There are two cases: j = 1 and j > 1.
Assume first that j = 1. Then by (2.3) and (2.6),

ξ(n−1)n(k−1)+s−1 ∈ X0,s ⊂ Xs, s = 2, . . . , n. (2.8)

Let
z = e2n2(k−1)+2. (2.9)

By (2.3) and (2.7)–(2.9), for all s ∈ {1, . . . , n} \ {1},

ρ(z, Xs) ≤ ||z − ξ(n−1)n(k−1)+s−1|| = ||e2n2(k−1)+2 − ξ(n−1)n(k−1)+s−1|| ≤ 2−k < ε/2

and the assertion of the proposition follows.
Assume next that j > 1. Then by (2.3) and (2.6), for all s = 1, . . . , j − 1,

ξ(n−1)n(k−1)+( j−1)(n−1)+s ∈ X0,s ⊂ Xs (2.10)

and for all integers s satisfying j < s ≤ n,

ξ(n−1)n(k−1)+( j−1)(n−1)+s−1 ∈ X0,s ⊂ Xs. (2.11)

Define
z = e2n2(k−1)+2( j−1)n+2. (2.12)
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By (2.9)–(2.12), (2.2) and (2.7), for all s ∈ {1, . . . , n} \ { j},

ρ(z, Xs) ≤ ρ(z, X0,s) = ρ(e2n2(k−1)+2+2( j−1)n, X0,s)

≤max{||e2n2(k−1)+2( j−1)n+2 − ξ(n−1)n(k−1)+( j−1)(n−1)+i|| : i = 1, . . . , n − 1}

≤ 2−k < ε/2

and the assertion of the proposition follows once again.
This completes the proof of Proposition 2.1. �

Next we show that the set A has property (ii).

P 2.2. Let x ∈ X with

ρ
(
x,

n⋂
j=1

X j

)
≥ 1. (2.13)

Then there is p ∈ {1, . . . , n} such that ρ(x, Xp) ≥ (2 + 2n)−1.

By (2.1) and (2.4)–(2.6),
n⋂

j=1

X j = L. (2.14)

Clearly, there is a vector y ∈ X such that

y ∈ L, ||x − y|| = inf{||x − u|| : u ∈ L}, {x − y} ⊥ L. (2.15)

There also is a point z ∈ X such that

z ∈ L̃, ||x − y − z|| = inf{||x − y − u|| : u ∈ L̃}, {x − y − z} ⊥ L̃. (2.16)

By (2.1), (2.15) and (2.16),
{x − y − z} ⊥ L1.

By (2.13)–(2.15),
||x − y|| ≥ 1. (2.17)

There are two cases:
||z|| > 2−1 and ||z|| ≤ 2−1.

Assume that
||z|| > 2−1. (2.18)

Let j ∈ {1, . . . , n}. By (2.16), (2.6), (2.1), (2.4) and the definition of L1,

{z} ⊥ X j. (2.19)

Let
u ∈ X j. (2.20)
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By (2.19) and (2.20),
〈u, z〉 = 0. (2.21)

By (2.16) and (2.21),
〈x − y − z − u, z〉 = 0. (2.22)

It follows from (2.22) that

||x − y − u||2 = ||(x − y − z − u) + z||2 = ||x − y − z − u||2 + ||z||2 ≥ ||z||2 > 4−1.

Since u is an arbitrary element of X j, we conclude that ρ(x − y, X j) ≥ 2−1. Since
y ∈ L ⊂ X j (see (2.6) and (2.15)), this implies that ρ(x, X j) ≥ 2−1 for all j ∈ {1, . . . , n}
and the assertion of the proposition follows.

Assume now that
||z|| ≤ 2−1. (2.23)

By (2.17) and (2.23),
||x − y − z|| ≥ 2−1. (2.24)

By (2.1), (2.16) and (2.15),
{x − y − z} ⊥ L1.

Thus
x − y − z ∈ L2. (2.25)

For any j ∈ {1, . . . , n}, denote by Y j the closed linear subspace generated by the vectors

{ξ(n−1)n(k−1)+( j−1)(n−1)+i : k is a natural number, i ∈ {1, . . . , n − 1}}.

By the definition of X j, Y j, j = 1, . . . , n, and ξi, i = 1, 2, . . . , we have, for any j ∈
{1, . . . , n},

Y j ⊂ L2, Y j ⊥ L1, Y j ⊥ X j, Y j1 ⊥ Y j2 (2.26)

for all j1, j2 ∈ {1, . . . , n} such that j1 , j2.
Clearly, Y1 + Y2 + · · · + Yn is a closed subspace of L2. Set

Y0 = {y ∈ L2 : {y} ⊥ Yi, i = 1, . . . , n}. (2.27)

Clearly, Y0 is a closed linear subspace of L2 (it may happen that Y0 = {0}) and

Y0 + Y1 + · · · + Yn = L2. (2.28)

By (2.25) and (2.28), there exist points

yi ∈ Yi, i = 0, . . . , n, (2.29)

such that
n∑

i=0

yi = x − y − z. (2.30)

https://doi.org/10.1017/S0004972713000749 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000749


[7] Bounded linear regularity 223

By definition,
X0,1 + X0,2 + · · · + X0,n ⊂ Y1 + Y2 + · · · + Yn.

By (2.24) and (2.30), there is an integer j ∈ {0, . . . , n} such that

||y j|| ≥ 2−1(n + 1)−1. (2.31)

By (2.6), (2.16), (2.1), (2.4), (2.29) and (2.27),

{z + y0} ⊥ Xi, i = 1, . . . , n. (2.32)

There are two cases: j = 0 and j , 0.
Assume first that j = 0. Let

i ∈ {1, . . . , n} and u ∈ Xi. (2.33)

By (2.31)–(2.33), (2.16), (2.1), (2.25), (2.29), (2.28), (2.30), (2.27) and (2.18),

||x − y − u||2 = ||x − y − z − y0 − u + z + y0||
2

≥ ||z + y0||
2 + ||x − y − z − y0 − u||2

+ 2〈z + y0, x − y − z − y0 − u〉

≥ ||z + y0||
2 + 2〈z + y0, x − y − z − y0〉

= ||z + y0||
2 + 2〈y0, x − y − z − y0〉

= ||z + y0||
2 = ||z||2 + ||y0||

2 ≥ 4−1(n + 1)−2

and

||x − y − u|| ≥ 2−1(n + 1)−1 for all u ∈ Xi,

ρ(x − y, Xi) ≥ 2−1(n + 1)−1.

Since y ∈ L (see (2.15)),

ρ(x, Xi) ≥ 2−1(n + 1)−1 for all i = 1, . . . , n

and the assertion of the proposition follows.
Assume now that j , 0. Let

u ∈ X j. (2.34)

Clearly,

||x − y − u||2 = ||x − y − z − y j − u + z + y j||
2

≥ ||z + y j||
2 + 2〈z + y j, x − y − z − y j − u〉

≥ ||z + y j||
2 + 2〈z + y j, x − y − z − y j〉 − 2〈z + y j, u〉.

(2.35)

By (2.16), (2.34), (2.6), (2.1), (2.2), (2.29) and (2.26),

〈z + y j, u〉 = 〈z, u〉 + 〈y j, u〉 = 0. (2.36)
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By (2.16), (2.28), (2.30), (2.26), (2.27) and (2.28),

〈z + y j, x − y − z − y j〉 = 〈y j, x − y − z − y j〉 = 0. (2.37)

By (2.35), (2.36), (2.37), (2.16), (2.29), (2.28), (2.1), (2.31) and (2.32),

||x − y − u||2 ≥ ||z + y j||
2 = ||z||2 + ||y j||

2 ≥ 4−1(n + 1)−2,

||x − y − u|| ≥ 2−1(n + 1)−1 for all u ∈ X j

and
ρ(x − y, X j) ≥ 2−1(n + 1)−1.

Since y ∈ L ⊂ X j (see (2.6) and (2.15)), ρ(x, X j) ≥ 2−1(n + 1)−1 and the assertion of the
proposition follows once again.

This completes the proof of Proposition 2.2. �

3. Bounded regularity in metric spaces

In this section we state and prove a theorem regarding bounded regularity in general
metric spaces.

Let (X, ρ) be a metric space. For each point x ∈ X and each subset A ⊂ X, set
ρ(x, A) = inf{ρ(x, y) : y ∈ A}. Fix a point θ ∈ X.

Let L = {X1, . . . , Xn} be a finite collection of nonempty subsets of X such that⋂n
i=1 Xi , ∅.
Recall that L is said to have the bounded regularity property [1] if for each ε > 0

and M > 0, there exists δ > 0 such that:
(P1) if x ∈ X satisfies ρ(x, θ) ≤ M and ρ(x, Xi) < δ, i = 1, . . . , n, then

ρ
(
x,

n⋂
i=1

Xi

)
< ε.

Suppose that L possesses the bounded regularity property. Let ε > 0 and M > 0 be
given. Denote byD(M, ε) the set of all numbers δ ∈ (0, ε] for which (P1) holds and set

φL(ε, M) = sup(D(ε, M)).

It is clear that φL(ε, M) ≤ ε and (P1) holds with δ = φL(ε, M).

T 3.1. Suppose that q is a natural number. For each integer j ∈ {1, . . . , q},
let L j = {C j,i : i = 1, . . . , n j} be a finite collection of nonempty subsets of X such that⋂n j

i=1 C j,i , ∅, L j possesses the bounded regularity property and

q⋂
j=1

( n j⋂
i=1

C j,i

)
, ∅.

Let
L = {C j,i : j ∈ {1, . . . , q}, i ∈ {1, . . . , n j}}
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and

L̃ =

{ n j⋂
i=1

C j,i : j = 1, . . . , q
}
.

ThenL has the bounded regularity property if and only if L̃ has the bounded regularity
property. If they possess the bounded regularity property, then for each ε, M > 0,

φL̃(ε, M) ≥ φL(ε, M) ≥min{φL j (φL̃(ε, M), M) : j = 1, . . . , q}.

P. Assume that L possesses the bounded regularity property. To show that
L̃ possesses the bounded regularity property, let ε and M be positive. Let x ∈ X,
ρ(x, θ) ≤ M,

ρ
(
x,

n j⋂
i=1

C j,i

)
< φL(ε, M), j = 1, . . . , q. (3.1)

By (3.1), the bounded regularity property of L and the definition of φL,

ρ(x,C j,i) < φL(ε, M), j = 1, . . . , q, i = 1, . . . , n j,

and ε > ρ(x,
⋂q

j=1(
⋂n j

i=1 C j,i)). Thus L̃ has the bounded regularity property and
φL̃(ε, M) ≥ φL(ε, M).

In the other direction, assume that L̃ has the bounded regularity property. To
show that L possesses the bounded regularity property, let ε and M be positive. Let
x ∈ X, ρ(x, θ) ≤ M,

ρ(x,C j,i) < min{φL j (φL̃(ε, M), M) : j = 1, . . . , q}, j = 1, . . . , q, i = 1, . . . , n j. (3.2)

Let j ∈ {1, . . . , q}. By (3.2) and the bounded regularity of L j,

ρ
(
x,

n j⋂
i=1

C j,i

)
< φL̃(ε, M). (3.3)

By (3.2), (3.3) and the bounded regularity of L̃,

ρ
(
x,

q⋂
j=1

( n j⋂
i=1

C j,i

))
< ε.

Thus L possesses the bounded regularity property and

φL(ε, M) ≥min{φL j (φL̃(ε, M), M) : j = 1, . . . , q}.

This completes the proof of Theorem 3.1. �
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