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Moduli Spaces of Polygons
and Punctured Riemann Spheres
Philip Foth

Abstract. The purpose of this note is to give a simple combinatorial construction of the map from the canon-
ically compactified moduli spaces of punctured complex projective lines to the moduli spaces Pr of polygons
with fixed side lengths in the Euclidean space E3. The advantage of this construction is that one can obtain a
complete set of linear relations among the cycles that generate homology ofPr . We also classify moduli spaces
of pentagons.

1 Introduction

Let r = (r1, . . . , rn) be a collection of positive real numbers and let Pr be the moduli space
of polygons with consecutive side lengths r1, . . . , rn in Euclidean space E3. The study of
Pr was originated by Hausmann [4], Klyachko [10], Kapovich and Millson [7], Haus-
mann and Knutson [5], and Hu [6]. The complex-analytic structure on Pr is defined using
Deligne-Mostow weighted quotients of the projective line [2]. This structure depends only
upon the relations between

∑
i∈I ri and

∑
j∈ J r j for partitions I

∐
J = {1, . . . , n}. Each

n-tuple (r1, . . . , rn) can be perturbed a little so that all ri become rational numbers and the
complex-analytic structure of Pr doesn’t change. We will always assume therefore that all
ri are rational numbers. In this case, for a generic choice of r the space Pr has the struc-
ture of a smooth complex projective variety. This structure is given by the identification of
Deligne-Mostow quotients with Mumford’s quotients.

Let Mn be a canonically compactified space M0,n of n distinct labeled points on CP1 as
in Knudsen [11]. The projective manifold Mn is obtained from M0,n by adding a normal-
crossing divisor. We give a simple construction of a surjective algebraic map φ : Mn → Pr

such that its restriction onto M0,n is an isomorphism. Hu in [6] realized Mn as an iterated
sequence of blow-ups of Pr for a generic r.

There are certain algebraic cycles on Pr given by a set of conditions that several sides of
a polygon from Pr go in the same direction. (This is a stronger condition than just being
parallel.) Using the map φ and a theorem of Keel [9] one can easily see that these cycles
span the homology groups of Pr. For a non-smooth Pr we establish a similar result in
intersection homology.

Kontsevich and Manin in [12] found a complete set of linear relations among algebraic
cycles corresponding to isomorphism classes of trees on Mn. We show how one can use
their result and our map φ to get a complete set of linear relations among the algebraic
cycles on Pr.

When Pr is not smooth, its singularities are isolated. There exist natural resolutions of
singularities Ps → Pr with Ps being smooth. These resolutions are small in many cases.
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Moduli Spaces of Polygons 163

We also find a complete classification of moduli spaces of pentagons. It turns out that
such a moduli space is one of the following types: CP2 with 0, 1, 2, 3, or 4 points blown up,
or CP1 × CP1.

I am grateful to Jean-Luc Brylinski for very useful comments and educating discussions.
My interest in polygons was inspired by John Millson with whom I had many interesting
conversations. Valuable remarks were made by the referee. This note was written while I
had a Sloan Doctoral Dissertation Fellowship.

2 Moduli Spaces of Polygons

Here we mainly collect facts already known about moduli spaces of polygons in Euclidean
space E3. Our major sources of knowledge here are Klyachko [10] and Kapovich and Mill-
son [7].

Let us have an ordered collection of positive rational numbers r = (r1, . . . , rn) and let us
consider the moduli space Pr of n-gons in E3 with consecutive side lengths r1, . . . , rn. Two
polygons obtained from one another by a motion of E3 preserving the numbering of sides
are identified. A polygon P ∈ Pr is uniquely determined by a collection of unit vectors
v = (v1, . . . , vn) satisfying

∑
rivi = 0 and conversely, each polygon from Pr gives rise to

such a collection up to the action of SO(3). The space Pr is non-empty if and only if for
each 1 ≤ j ≤ n we have 2r j ≤

∑
ri . (Of course if we have an actual equality among

those, the space Pr is just a point.) If all those inequalities hold then we call the collection
r admissible. A polygon P ∈ Pr is called degenerate if it looks like a line segment, i.e., if
there exists a partition of (1, . . . , n) onto two non-intersecting subsets I and J such that∑

i∈I ri =
∑

j∈ J r j and for any i ∈ I, j ∈ J the vectors vi and v j have opposite directions.
Assuming that r1 ± r2 ± · · · ± rn 	= 0 the space Pr has the structure of a compact

complex manifold. It is identified [2] with the space of n (not necessarily distinct) stable
weighted points on the projective line CP1 with weights r1, . . . , rn modulo projective au-
tomorphisms. When several points collide we just add up the weights. We recall that a
configuration of m distinct points on CP1 with weights s1, . . . , sm is called (semi-)stable if
for each j we have 2s j <

∑
si (≤ for semistable).

We mentioned in Introduction that each n-tuple r = (r1, . . . , rn) of real numbers can
be perturbed a little so that the isomorphism class of Pr does not change and all ri become
rational numbers. It follows from the fact that the isomorphism class of Pr depends only
upon the set of (in)equalities where for each subset I ⊂ {1, . . . , n} the sum

∑
i∈I ri is

compared with the half the perimeter.
If for some partition I

∐
J = {1, . . . , n} we have

∑
i∈I ri =

∑
j∈ J r j , then the space

Pr is singular with isolated singularities corresponding exactly to the degenerate poly-
gons. At each such point P its neighbourhood is analytically isomorphic to a homogeneous
quadratic cone in Cpq (where p = #(I)−1, and q = #( J)−1) given by xi jxkl = xilxk j . Here
{xi j}, 1 ≤ i ≤ p, 1 ≤ j ≤ q is a coordinate system on Cpq. We refer to [7] for details.

Let us have a semi-stable configuration of not necessarily distinct points x1, . . . , xn on
CP1 with respective weights r1, . . . , rn which is not stable. It means that there is a point z ∈

CP1 such that the points xi1 , . . . , xik collide at z and the sum
∑k

j=1 ri j is equal to the half of
the total weight. This defines a partition of the set {1, . . . , n} onto two subsets: {i1, . . . , ik}
and the rest. We shall call two semi-stable and not stable configurations equivalent if the
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corresponding partitions coincide. A degenerate polygon corresponds to an equivalence
class of semi-stable and not stable configurations.

3 The Map φ : Mn → Pr

Let M0,n be the moduli space of n distinct labeled points on CP1. It is obtained from
(CP1)n by throwing out divisors xi = x j for i 	= j and factoring out by the diagonal
action of PSL(2,C). This space has a smooth canonical compactification Mn constructed
by Deligne, Grothendieck, Mumford, and Knudsen [11] such that M0,n is a complement
to a normal-crossing divisor D in Mn. (See e.g. [8] for a simple geometric construction of
Mn.) The purpose of this section is to construct an algebraic map φ : Mn → Pr which is an
isomorphism between two Zariski open subsets.

The strata of the compactification Mn are labeled by the isomorphism classes of trees
with n labeled legs. A point in Mn is a system

(C, x1, . . . , xn),

where C is a (possibly reducible) curve with at most nodal singularities of arithmetic genus
0 such that the intersection graph of C is a connected tree without loops. We also require
that xi ∈ C is a smooth point and C has no infinitesimal automorphisms preserving all the
xi and the nodes. Such a curve C is called stable.

The space Mn has one stratum M
(
(T)
)

for each tree T with n labeled legs. Points in
M
(
(T)
)

correspond to the stable curves with the graphs isomorphic to T. The graph of
a stable curve has vertices corresponding to the components of the subvariety of smooth
points, the edges are the double points, and the legs correspond to the marked points.
Codimension of the stratum is equal to the number of edges (cf. [3]).

Now we shall define an operation of contraction which produces from such a curve
(C, x1, . . . , xn) a configuration of n not necessarily distinct points of corresponding weights
r1, . . . , rn on CP1. To do this we have to choose an irreducible component C ′ of C which
we will call a stem and all the other irreducible components will be called branches then.
Given a stem, we look at its nodes and replace each one of them by the collection of points
xi1 , . . . , xik which belong to the branches growing from this node. Each node y of the stem
gets replaced by xi1 , . . . , xik which are collided into the single point y. At each such new
marked point the weight will be equal to the sum

∑
j ri j .

Lemma 3.1 Given (C, x1, . . . , xn) as above and an admissible collection of weights r =
(r1, . . . , rn) there exists an irreducible component C ′ of C such that if we make C ′ to be a
stem and contract to it then the resulting configuration of n points on CP1 will be semi-stable.
If r1 ± · · · ± rn 	= 0 then a choice of C ′ is unique and the resulting configuration is actually
stable. Otherwise, there could be no more than two choices of C ′ and they produce equivalent
semi-stable configurations.

Proof Let us pick an irreducible component C ′ of C such that the contraction to C ′ min-
imizes the maximum value of weight assigned to a single point in C ′. Let y ∈ C ′ be this
point with a maximum weight r ′. Let us assume that 2r ′ >

∑
ri and arrive later to a

contradiction.
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Since we deal with an admissible collection r = (r1, . . . , rn), the point y is a node at C
connecting irreducible components C ′ and C ′ ′. If the contraction to C ′ ′ were performed
then the new marked points in C ′ ′ would bear weights less than r ′ each. This is clear for the
new marked points of C ′′ other than y since the total weight of points on branches growing
from y is initially equal to r ′ and the fact that C ′ ′ has at least three nodes and marked points.
At the point y ∈ C ′ ′ the new weight is equal to the total weight minus r ′ which is less than
r ′ by our assumption. Therefore the branch C ′ ′ would solve our minimization problem.
This contradicts to our choice of C ′ and the existence is established. This argument also
shows the uniqueness of the choice of C ′ if the resulting configuration is stable.

Let us assume that r1 ± · · · ± rn = 0 and that after contracting to C ′ the weight of the
point y ∈ C ′ defined above equals half the total weight. Let C ′′ be the irreducible com-
ponent which meets C ′ at y. Then one sees that only C ′ and C ′ ′ satisfy our minimization
problem and the partitions for contractions to C ′ and C ′ ′ clearly coincide.

The above result is now used to construct a map φ : Mn → Pr for each admissible
r = (r1, . . . , rn) in an obvious way. The map φ is holomorphic and bimeromorphic (it is
clearly biholomorphic on a Zariski open set). We notice that Pr has a Zariski open set U
(given by the conditions that vi does not have the same direction as v j for i 	= j) such that
φ|M0,n

: M0,n → U is an isomorphism. It is hardly worth mentioning that φ is proper and
surjective.

After rescaling by the common denominator of r1, . . . , rn we can assume that all ri are
positive integer numbers. The following is now obvious:

Proposition 3.2 For each n there exists a constant C(n) such that each isomorphism class of
Pr can be realized with positive integer numbers ri and the perimeter not exceeding C(n).

From now on we always assume that r is an n-tuple of positive integer numbers.
Deligne and Mostow in [2, (4.6)] relate the quotient Pr of weighted points on the pro-

jective line CP1 to Mumford’s GIT quotients as follows. Let L be the line bundle on CP1

dual to the tautological line bundle, so e.g. T∗CP1 = L⊗−2. Let pi be the projection from
(CP1)n to the i-th factor. Then on (CP1)n we define the line bundle

L =
⊗

i

p∗i (L⊗2ri ).

The line bundle L has a natural PSL(2,C) action induced by the one on T∗CP1. The space
Pr is now just the Mumford’s quotient

(
(CP1)n/ PSL(2,C)

)
L

.

Kapranov in [8] showed that the Chow quotient (CP1)n// PSL(2,C) is isomorphic to
Mn. He also constructed a regular birational morphism from the Chow quotient to Mum-
ford’s quotients (Theorem 0.4.3). Using the previous paragraph and verifying that our
construction is compatible with that in [8] one can conclude that our map φ is a specific
case of this result of Kapranov. As a consequence, we have

Proposition 3.3 The map φ is regular birational.

We must mention an important paper by Hu [6] where for a generic r he explicitly
realizes Mn as an iterated sequence of blow-ups of Pr. We briefly review his construction.
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For each proper subset J ⊂ {1, . . . , n} such that #( J) > 2 we consider PrJ - the moduli
space of (# J + 1)-gons with side lengths r j , j ∈ J and

∑
j∈ J r j −1. A pair (P, P ′) ∈ Pr×PrJ

is called a bubble pair if P has only edges numbered by J parallel. Consider a subset M̃r

of Pr ×
∏

J PrJ consisting of (P, P1, . . . , Pm) such that whenever Ji ⊂ Jk then (Pi , Ps) is a
bubble pair and if Pi does not have a bubble then it is generic (does not have parallel edges).
Then it is claimed that M̃r is isomorphic to Mn, because each

P ∈ M̃r ⊂ Pr ×
∏

J

PrJ

gives rise to a stable curve of genus zero: each irreducible component corresponds to a
projection to a factor and nodes correspond to the longest edges in PrJ . We refer to [6] for
details. Our map φ is just the projection of M̃r �Mn onto the first factor.

Now we assume that we deal with the case of equal weights and consider φ : Mn → Pn.
Here by Pn we understand the moduli space of equal-side n-gons. The projective variety
Pn is smooth for n = 2m + 1 and has 1

2

(n
m

)
isolated singularities for n = 2m, m > 2.

Obviously the map φ is equivariant with respect to the action of the symmetric group Sn.
(On the right hand side the group Sn acts by renumbering the vectors vi .) We also notice
that for n = 3, 4, 5 this map is an isomorphism. Therefore, using [10] we may conclude
that M5 is the del Pezzo surface of degree 5 obtained from CP2 by blowing up 4 generic
points.

Let P ∈ Pn be a non-singular point such that the corresponding configuration on CP1 is
of m different points with weights s1, . . . , sm,

∑
si = n. The dimension of the fiber φ−1(P)

is equal to
∑m

i=1(si−2)+. (By definition, for y ∈ R we have y+ = (y + |y|)/2.) The fact that
P is non-singular for n > 4 can be rewritten as 2si < n and this amounts to the observation
that the fiber φ−1(P) is of dimension at most n− 5, and thus has codimension at least 2 in
Mn. But the fiber at a singular point is of dimension n− 4 and is of codimension 1 in Mn.

We now shall describe two algebraic maps. First, we will defineψ : Mn →Mn−1 for n >
3. Let us have a curve (C, x1, . . . , xn) representing a point in Mn. Consider the irreducible
component C ′containing xn. There are three possibilities:

1. C ′ has more than three special points (such as nodes and xis). In this case we just throw
xn away.

2. If C ′ has xn and two nodes connecting it to components C1 and C2 at the points y1

and y2 then we throw away the whole C ′ and connect the rest by a node identifying y1

and y2.
3. If C ′ has xn, xl and a node connecting it to C1 at a point y then we throw C ′ away and

replace y by xl.

In fact, the map ψ also appears in a work of Knudsen [11].

The second map χ : Pn → Pn−1 is defined for n = 2m+1 and goes as follows. If we have
a stable configuration of points on CP1 then we just throw xn away. We will clearly end up
with a semi-stable configuration. It remains to notice that for an odd n each semi-stable
configuration of equally weighted points is actually stable.
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Lemma 3.4 For n = 2m the following diagram is commutative.

Mn
ψ

−−−−→ Mn−1

φ

	
	φ

Pn
χ

−−−−→ Pn−1.

Proof Straightforward.

Our next goal is to describe a section θ : Pr → Mn such that φ ◦ θ = Id|Pr
. We start

with a semi-stable configuration of n points (x1, . . . , xn) on CP1 such that the weight of xi

is equal to ri . We assume that we have a partition I1
∐
· · ·
∐

Im = {1, . . . , n}. We also
assume that physically we have m points y1, . . . , ym on C ′ := CP1 such that the points
{xi}i∈Ik collide at yk and the weight of yk is equal to

∑
i∈Ik

ri . What we do is replace each
y j with m := #(I j) > 1 by a tree growing from y j with branches C1, . . . ,Cm−1. Each
Ci � CP1; C1 is connected by a node with C ′ at y j , and Ci and Ci−1 are connected by a
node and there are no more singularities. Let I j := {i1, . . . , im} and i1 < · · · < im. We
place xi1 at a smooth point on C1, xi2 at a smooth point on C2, . . . , xim−2 at a smooth point
on Cm−2, and finally we place xim−1 and xim at two distinct smooth points at Cm−1. The
curve C of arithmetic genus zero obtained in this fashion with marked points x1, . . . , xn

defines a point in Mn and we see that the choice of this point depends only upon the initial
location of the points x1, . . . , xn on CP1. Therefore we get a section θ : Pr → Mn and
it is straightforward that φ ◦ θ is the identity map on Pr. Unfortunately, the section θ is
not algebraic (nor even continuous), but it is algebraic on each relatively closed stratum
corresponding to a combinatorial choice of locations of weighted points on CP1.

4 Homology of Pr

In this section unless specified otherwise we work over the coefficient ring Z.
The space Pn is singular with isolated singularities for n = 2m > 4.

Proposition 4.1 Let n = 2m and let P̃n be the moduli space of n-gons with r = (2, 1, . . . , 1).
There exists a small algebraic map ξ : P̃n → Pn which resolves the singularities of Pn.

Proof It is clear that each semi-stable configuration of points on CP1 corresponding to a
point in P̃n is in fact stable (as a consequence of the fact that n is even). Moreover if we
reduce the weight of x1 from 2 to 1 then we end up with a (semi-)stable configuration of
points of equal weights. Thus P̃n is smooth and the algebraic map ξ : P̃n → Pn is well-
defined. The surjectivity of ξ is not hard to notice. Besides, if P ∈ Pn is a singular point
then the fiber ξ−1(P) is of dimension m−2. This fiber corresponds to the locus in P̃n where
m labeled points of weight 1 have collided.
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As a consequence we immediately obtain:

Proposition 4.2 The above resolution gives rise to the following isomorphism:

IC•Pn
� Rξ•CP̃n

.

In particular,

IHi(Pn,C) � Hi(P̃n,C).

The last equality also holds over Z.

One can also notice that for n = 2m there is a natural inclusion ι : P̃n → Pn+1 which is
given by the treating the side corresponding to v1 which is of length 2 as two sides xn+1 and
x1 of lengths 1 of the new n + 1-gon. Moreover,

Lemma 4.3 The diagram

P̃n

ι ξ

Pn+1
χ

−−−→ Pn

is commutative.

The map ξ has its counterpart in the spaces Mn which works as follows. Let
(C, x1, . . . , xn) ∈ Mn. We add to C another irreducible component C ′ by replacing the
point x1 by a node which connects C with C ′ and we place x1 and xn+1 on C ′ after that. Let
us call M̃n the new space (which is a subspace of Mn+1) obtained in such a fashion and let
β be the isomorphism Mn → M̃n so constructed. From definitions one has

Lemma 4.4

ψ ◦ β = IdMn .

One can also resolve the singularities for any moduli space Pr with r = (r1, . . . , rn) such
that for a partition I

∐
J = {1, . . . , n} one has

∑
i∈I ri =

∑
j∈ J r j . Let us consider a new

n-tuple s = (s1, . . . , sn) constructed as follows. Let k be such that rk = min(ri) and we put
sl = rl for l 	= k and sk = rk + 1. Now the resolution ξ : Ps → Pr is given by the obvious
reduction of weight of the k-th point on CP1 from sk to rk. Let P ∈ Pr be a degenerate
n-gon corresponding to the above partition I ∪ J = {1, . . . , n}, I ∩ J = ∅. A similar
resolution appears in [6]. Let us assume that k ∈ J. The fiber ξ−1(P) is isomorphic to the
moduli space of

(
#( J) + 1

)
-gons with side lengths equal to {s j , j ∈ J, and

∑
i∈I si}. The

dimension of the fiber ξ−1(P) is equal to #( J)− 2 and in general ξ is not a small map.
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We have two maps φr : Mn → Pr and φs : Mn → Ps. The following result is now clear:

Lemma 4.5
ξ ◦ φs = φr.

If we denote p = #(I)−1 and q = #( J)−1 then a neighbourhood of P in Pr is analytically
isomorphic to the variety V of complex p× q matrices of rank not more than 1. This easily
follows from results of Kapovich and Millson [7] discussed in our Section 2. Without any
loss of generality we shall assume that p ≥ q. Let us denote V ∗ ⊂ V the variety of p × q
matrices of rank exactly equal to 1. If we consider V as sitting inside Cpq in an obvious
fashion, then V ∗ is obtained from V by throwing out the origin. It follows that V ∗ is a
homogeneous space under GL(p,C)×GL(q,C) and a stabilizer of each point is isomorphic
to GL(p− 1,C)×GL(q− 1,C)×C∗. Therefore, topologically, this neighbourhood of P is
homeomorphic to (S2p−1 × S2q−1)/S1. If we assume that the sphere S2m−1 standardly sits
in Cm, then S1 acts as the multiplication by e

√
−1α on the first multiple and by e−

√
−1α on

the second. Therefore, it can be represented as the following fibration

S2p−1 −−−−→ (S2p−1 × S2q−1)/S1

	

CPq−1.

It is easy to see that the spectral sequence corresponding to this fibration degenerates at E2

and thus we obtain

Proposition 4.6 The local intersection homology stalk at P is a truncation in degrees ≤
p + q− 2 of H•(S2p−1)⊗H•(CPq−1).

Next we shall have the result analogous to a theorem of Keel [9] (see also Theorem 3.3
in [3]). We start with Pr such that r = (r1, . . . , rn) is an admissible n-tuple of positive
numbers. Let us have a partition of {1, . . . , n} onto l non-intersecting subsets I1, . . . , Il

such that the l-tuple t = (t1, . . . , tl) given by

t j =
∑

i∈I j

ri

is an admissible l-tuple. In fact, this defines an inclusion Pt ↪→ Pr and Pt can be considered
as an algebraic cycle in Pr denoted by [Pt ]. In terms of weighted points on CP1 this cycle
corresponds to the collision of the points {xi}i∈I j separately for each j.

Theorem 4.7 If Pr is non-singular then the cycles [Pt ] span H•(Pr).

Proof First of all we claim that the map φ∗ : H•(Mn)→ H•(Pr) is surjective. This happens
because one can see that φ∗φ! = Id on H•(Pr). (Since we deal with a continuous map of
degree 1 between two compact manifolds.) We also notice that the pre-image of Pt consists

of M
(

(T)
)

for some collection T ∈ T
(
(n)
)

. (This notation was introduced in Section 3.)
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A result of Keel [9] (see also Theorem 3.3 in [3]) implies that the cycles
[
M
(

(T)
)]

span
H•(Mn). The theorem now follows from the surjectivity of φ∗.

In particular, from this statement one easily obtains Corollary 2.2.2 i) of [10].
If Pr is singular then its singularities are isolated and the algebraic cycles Pt respect the

natural stratification of Pr . In fact, it is possible to define the class [Pt ] of the cycle Pt of
dimension d in the intersection homology group IH2d(Pr,Q). First, we define a Zariski
open subset Po

t as the complement in Pt of all Pt ∩ Pt ′ for t ′ 	= t . Recall the section θ
from Section 3. Then we consider the closure θ(Po

t ) in Mn. It is an algebraic cycle in Mn

and clearly it is one of M
(

(T)
)

. Now we apply the decomposition theorem 6.2.5 of [1]
which tells us that (in general, non-canonically) the complex Rφ∗IC•Mn

has IC•Pr
(φ∗QM0,n )

as a direct summand. Since Mn is smooth, we conclude that there is a surjective map
H•(Mn,Q)→ IH•(Pr,Q) which (abusing notation) we denote φ∗. We define

[Pt ] := φ∗[θ(Po
t )].

We mentioned above that the cycles M
(

(T)
)

span H•(Mn) and thus we obtain

Theorem 4.8 The cycles [Pt ] span IH•(Pr,Q).

Since the singularities of Pr are isolated, in case when dim(Pt ) is more than (n − 3)/2
(half the dimension of Pr) then the class [Pt ] is defined completely canonically since for
2i > n − 3 all the 2i-chains are allowable. (We deal with the middle perversity.) Thus
IH2i(Pr) � H2i(Pr). If the defined above resolution ξ : Ps → Pr is small, then H•(Ps) �
IH•(Pr) and we can define the classes [Pt ] using this isomorphism. Now we apply our
Theorem 4.7 for the smooth Ps to conclude that Theorem 4.8 is valid for Pr even if we
replace Q by Z.

We shall now address the question of finding a complete set of linear relations among
the cycles [Pt ] in H•(Pr) for a smooth Pr. Essentially one can use the complete set of linear
relations found by Kontsevich and Manin [12] (see also [3]) for the cycles generating the
homology of Mn and our map φ. Let us recall these linear relations.

As we know, each tree T with n labeled legs determines an algebraic cycle in Mn and thus
a homology class [T] ∈ H•(Mn). These classes were shown by Keel [9] to span H•(Mn).
Let us have a collection R = (T, i, j, k, l, v), where T is an n-tree, 1 ≤ i, j, k, l,≤ n are
pairwise distinct, and v is a vertex of T such that the paths leading from v to the legs labeled
by i, j, k, and l start with pairwise distinct edges ei , e j , ek, and el respectively. Next, consider
an n-tree T ′ such that contraction of one of its internal edges results in T and that the lifts
of two pairs ei , e j , and ek, el are incident to two different vertices of T ′. We will denote such
a tree by {i jT ′kl}. The Kontsevich-Manin set of linear relations is now

∑

{i jT ′kl}

[T ′] =
∑

{ikT ′ ′ jl}

[T ′ ′].

The number of these relations depends on the number non-isomorphic collections R and
the number of the internal edges in T satisfying the above condition.
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These linear relations translate to linear relations in H•(Pr) via φ∗. Although these
relations seem cumbersome, in each particular situation due to the explicit nature of the
recipe the answer is easily attainable. We will give an example of such a computation in the
next section.

As to the multiplicative structure, it was described by Hausmann-Knutson in [5]. There
is an obvious observation that one should consider the cycles Pi j of co-dimension 1 given
by the equation vi = v j , i 	= j. A cycle Pi j exists if and only if the (n − 1)-tuple
(ri + r j , r1, r2, . . . , r̂i, . . . , r̂ j , . . . , rn) satisfies the polygon inequalities, i.e., is admissible. It
is clear that all other cycles Pt in question are obtained by intersecting some of Pi j .

In the equilateral situation when we deal with Pn we have an action of Sn by permut-
ing vi . The character of the symmetric group action on homology was computed in [10].
In [3] the character of the Sn-module Hi(Mn) was computed together with the equivariant
Poincaré polynomials of Mn. Using our map φ these results can be easily translated to Pn.
In the smooth case, an embedding of Pr into a toric variety was used in [5] to address these
and other questions related to the cohomology ring of Pr .

5 Moduli of Pentagons

In this section we will classify moduli spaces of pentagons. As usual, we exclude the degen-
erate cases when one side is equal to the sum of all others. (The moduli space of triangles
with fixed side lengths is just a point and the moduli space of 4-gons is CP1.) One im-
portant remark is that each moduli space of pentagons can be identified with a smooth
projective manifold. It follows from the fact that at each candidate for a singular point in
Proposition 4.6 (and the preceding discussion) we are forced to put p = 2 and q = 1, and
observe that the origin is a smooth point at the space of 2 × 1 matrices of rank ≤ 1. Let
r = (r1, r2, r3, r4, r5) be an admissible 5-tuple of positive integer numbers and without any
loss of generality we assume that ri ≤ r j for i ≤ j. Let R stand for half the perimeter:
2R =

∑
i ri . Essentially, the problem of classification boils down to comparing

∑
j∈ J r j

with R for all proper subsets J ⊂ {1, 2, 3, 4, 5}. It follows that isomorphism classes of
Pr can be presented by the following 12 5-tuples completely exhausting the combinatorics
among r1, r2, r3, r4, and r5:

(1, 1, 1, 1, 1) (1, 1, 1, 2, 2) (1, 1, 1, 1, 3) (1, 2, 2, 2, 3)

(1, 1, 2, 2, 3) (1, 1, 3, 3, 3) (1, 1, 2, 2, 2) (1, 1, 2, 3, 3)

(1, 1, 1, 1, 2) (2, 2, 2, 3, 3) (1, 1, 1, 2, 3) (1, 2, 2, 3, 4)

Further we denote by e.g. P11233 the moduli space of pentagons with side lengths
(1, 1, 2, 3, 3). We already saw that P11111 is a blow-up of CP2 at 4 generic points; it was
shown in [2, (4.5.1)] that P11112 is CP2. Now we complete the classification:

• P11123 � P11113 � P11112 � CP2,
• P11122 � P22233 is a blow-up of CP2 at 3 points,
• P12223 � P12234 is a blow-up of CP2 at one point,
• P11223 is a blow-up of CP2 at 2 points,
• P11222 � P11233 � P11333 � CP1 × CP1.
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In determining the types of these varieties, we used two essential techniques which we
illustrate by the following two examples:

1. Assume that we know that P11123 is CP2 and consider a map P11223 → P11123 given by
the reduction of the weight of the third point from 2 to 1. One can see that it is a regular
birational morphism. The fiber at each point of P11123 except for two points corresponding
to v1 = v5 and v2 = v5 is just a point. The fibers over v1 = v5 and v2 = v5 are CP1

corresponding to moduli space of 4-gons with side lengths (1, 2, 2, 4). It follows that P11223

is a two point blow-up of CP2.

2. Consider P11333 and consider a PSL(2,C) equivariant map

(p1, p2) : (CP1)5 → CP1 × CP1

given by

p1 = c(v1, v3, v4, v5), p2 = c(v2, v3, v4, v5).

Here

c(z1, z2, z3, z4) =
z1 − z3

z3 − z2

z4 − z2

z1 − z4

is the cross-ratio. One can easily verify that (p1, p2) induces an isomorphism on the quo-
tient: P11333 � CP1 × CP1.

We also would like to sketch an example which demonstrates how the relations of
Kontsevich-Manin [12] and our map φ give linear relations for the cycles on P12223. We will
work with 1-cycles. Any tree T with 5 legs and one internal edge we denote as [i j − klm].
For instance, if edges at one vertex are labeled by 1 and 2 and at the other by 3, 4, and 5,
then we denote this tree (as well as the 1-cycle M

(
(T)
)

corresponding to T) by [12− 345].
The complete set of Kontsevich-Manin relations among 1-cycles now reads as

[12− 345] + [34− 125] = [24− 135] + [13− 245] = [23− 145] + [14− 235],

plus 4 similar equalities given by the action of the cyclic group in 5 elements on the set
{1, 2, 3, 4, 5}. This set of generators and relations amounts to 5 independent generators,
e.g. [12 − 345], [23 − 145], [34 − 125], [45 − 123], and [15 − 234]. Now if we apply the
map φ∗ to these cycles, we notice that φ∗[25− 134] = φ∗[35− 124] = φ∗[45− 123] and
is equal to a point (so they will not contribute to 1-cycles on P12223). Therefore, on the set
of one cycles φ∗[i j − klm] we will have two independent generators, e.g. φ∗[12− 345] and
φ∗[34− 125]. Moreover,

φ∗[23− 145] = φ∗[34− 125], φ∗[15− 234] = φ∗[12− 345]− φ∗[34− 125].

This explicit computation is in total agreement with our knowledge that P12223 is a one-
point blow-up of CP2.
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