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Abstract. In this paper we show that generic continuous Lebesgue measure-preserving
circle maps have the s-limit shadowing property. In addition, we obtain that s-limit
shadowing is a generic property also for continuous circle maps. In particular, this implies
that classical shadowing, periodic shadowing and limit shadowing are generic in these two
settings as well.

Key words: shadowing, generic, Lebesgue measure, circle
2020 Mathematics Subject Classification: 37E10, 37B65, 37C20 (Primary)

1. Introduction
The notion of shadowing (or pseudo orbit tracing; see Definition 2.2) is a classical notion in
the theory of dynamical systems. It was defined independently by Anosov [1] and Bowen
[7] as a tool for better understanding asymptotic aspects of diffeomorphism dynamics.
Informally, the shadowing property ensures that computational errors do not accumulate
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in the following sense: in systems with the shadowing property the approximate trajectories
will reflect real dynamics up to some small error that is made at each iteration. In particular,
this is of great importance in systems with sensitive dependence on initial conditions,
where small errors may potentially result in large divergence of trajectories.

While we are still lacking the full classification of systems with shadowing, there are
classes where its occurrence has been completely characterized. To look only at the most
general results, all uniformly hyperbolic systems have the shadowing property and Walters
characterized the symbolic dynamical systems with the shadowing property, which are
shifts of finite type (see the books [22, 24] for more explanation). A useful collection of
conditions characterizing shadowing in the latter setting was recently provided by Good
and Meddaugh [9].

We call a property generic if it is satisfied on at least a dense Gδ subset of the
underlying Baire space. A naturally related question which has attracted the attention
of many researchers is the genericity of shadowing in dynamical systems. Hyperbolic
systems are known to be rather special, and finding an answer in other classes of functions
usually turns out to be a delicate matter. The first results in this direction were obtained
in dimension 1 by Yano in [25] for the space of homeomorphisms on the unit circle and
by Odani in [20] for all smooth manifolds of dimension at most 3. A particularly nice
technique was introduced by Pilyugin and Plamenevskaya in [23] who proved genericity of
shadowing for homeomorphisms on any smooth compact manifold without boundary. This
result was later extended using topological tools to a wider context (see, for example, [11]).

Mizera proved [19] that shadowing is a generic property in the class of continuous
maps of the interval or circle. Recently, these results were extended to many other
one-dimensional spaces; see [12, 14, 18]. It turned out that non-invertibility is not an
obstacle to obtaining genericity of shadowing also in higher dimensions [13].

In the literature there are many different generalizations of the shadowing property.
Among the most natural is the limit shadowing property (see Definition 2.2), which was
introduced by Pilyugin et al [8]. In this definition, the error in consecutive elements of
pseudo trajectories tends to zero (so-called asymptotic pseudo orbit), but we require that
the accuracy of tracing increases with time. While limit shadowing seems completely
different than shadowing, it was proved in [15] that transitive maps with limit shadowing
also have the shadowing property. Recently [2], it was proved that structurally stable
diffeomorphisms and some pseudo-Anosov diffeomorphisms of the 2-sphere satisfy both
the shadowing and the limit shadowing property.

In general, it can happen that for an asymptotic pseudo orbit which is also a δ-pseudo
orbit, the point which ε-traces it and the point which traces it in the limit are two
different points [3]. This shows that possessing a common point for such a tracing is
a stronger property than the shadowing and limit shadowing properties together. The
property described was introduced in [16] and is called the s-limit shadowing property
(again see Definition 2.2 for the precise definition). Not much is known about s-limit
shadowing or even limit shadowing with respect to genericity in particular classes of
functions. Besides the results mentioned above, the only result known to the authors which
barely touches on this problem is [17], where it is proven that in the class of continuous
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maps on manifolds of dimensionm ≥ 1, s-limit shadowing is a dense property with respect
to the metric of uniform convergence.

The main difficulty in proving denseness or genericity of s-limit shadowing is its
‘instability’, meaning that, intuitively, arbitrarily small perturbations can destroy it.
Therefore, even the density result in [17] relies on a very careful control of consecutive
perturbations. Our main theorem here, in particular, addresses the following very general
question from [17].

(Q2) Is s-limit shadowing a C0-generic property on spaces where shadowing is generic?

Let λ denote the normalized Lebesgue measure on I := [0, 1] and let λ̃ denote
the normalized Lebesgue measure on S1. The particular setting that we are interested
in this paper is the family of continuous Lebesgue measure-preserving maps of the
unit circle Cλ̃(S

1) endowed with the topology of uniform convergence, which makes
it a complete space. Topological and measure-theoretic properties of generic Lebesgue
measure-preserving interval maps were studied in [4–6]. We obtain the following two new
results.

THEOREM 1.1. The s-limit shadowing property is generic in Cλ̃(S
1).

COROLLARY 1.2. The limit shadowing, periodic shadowing and shadowing properties
are generic in Cλ̃(S

1).

In the context of Lebesgue measure-preserving functions, the genericity of shadowing
was recently proven in [10] for homeomorphisms on manifolds (with or without boundary)
of dimension at least 2, where the authors use Oxtoby and Ulam’s theorem [21] and its
underlying subdivision of any such manifold. For manifolds of dimension 1 it is natural
to ask analogous questions for non-invertible maps, and results here can also be viewed
as a contribution to this line of research. Let Cλ(I ) denote the family of Lebesgue
measure-preserving maps equipped with the metric of uniform convergence. For Cλ(I ),
the genericity of shadowing and periodic shadowing was proved recently in [5]; therefore,
the results obtained here can be viewed as a strengthening of those results. However, we
need to note that proving the genericity of s-limit shadowing turns out to be very delicate
and, in particular, we cannot apply the main idea of the proof to the interval setting (see
the explanation in §4).

Our result (with simplifications of the proof) holds in an even looser environment. We
denote by C(S1) the class of continuous maps of the circle endowed with the topology of
uniform convergence. In this setting we obtain the following two new results.

THEOREM 1.3. The s-limit shadowing property is generic in C(S1).

COROLLARY 1.4. The limit shadowing property is generic in C(S1).

Let us outline the structure of the paper. In §2 we first review the definitions related to
the shadowing property that we address in our context of Lebesgue measure-preserving
circle maps. Then we review the basic setting of Cλ(S

1) in which we work with in the rest
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of the paper. We start §3 by outlining the proof of main theorem. In §3.2 we restrict our
attention to particular families of maps in Cλ(S

1) and we study their properties; we use
these families and their properties later in the proof of s-limit shadowing. In §3.3 the proof
of s-limit shadowing starts. We pose five conditions (C1)–(C5) that our partitions and spe-
cial perturbations need to satisfy. In the rest of this section we address how to get such par-
titions and perturbations from the machinery developed in §3.2. Section 3.4 gives the proof
of Theorem 1.1 using the assumptions given by conditions (C1)–(C5) in §3.3. We conclude
the paper with §4 where we briefly explain why the proof of s-limit shadowing as presented
in this paper cannot work in the setting of Lebesgue measure-preserving interval maps.

2. Preliminaries
Denote N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Let S1 := {z ∈ C : |z| = 1} be the unit
circle. For x, y ∈ S1, let d(x, y) denote the minimal normalized arc-length distance on
S1 between x and y.

2.1. Shadowing property. First we give the definition of the shadowing property and its
related extensions that we use in this paper.

Definition 2.1. For δ > 0 and a map f ∈ C(S1) we say that a sequence of points
{xk}k∈N0 ⊂ S1 is a δ-pseudo orbit if d(f (xk), xk+1) < δ for all k ∈ N0. A δ-pseudo orbit is
called a periodic δ-pseudo orbit if there exists N ∈ N such that xk+N = xk for all k ∈ N0.

A sequence {xk}k∈N0 ⊂ S1 satisfying limk→∞ d(f (xk), xk+1) = 0 is called an asymp-
totic pseudo orbit.

If a sequence {xk}k∈N0 ⊂ S1 is a δ-pseudo orbit and an asymptotic pseudo orbit then we
say that it is an asymptotic δ-pseudo orbit.

Definition 2.2. We say that a map f ∈ C(S1) has the
• shadowing property if for every ε > 0 there exists δ > 0 satisfying the following

condition: given a δ-pseudo orbit y = {yn}n∈N0 , we can find a corresponding point
x ∈ S1 which ε-traces y, that is,

d(f n(x), yn) < ε for every n ∈ N0.

• periodic shadowing property if for every ε > 0 there exists δ > 0 satisfying the
following condition: given a periodic δ-pseudo orbit y = {yn}n∈N0 , we can find a
corresponding periodic point x ∈ S1 which ε-traces y.

• limit shadowing property if for every asymptotic pseudo orbit {xn}n∈N0 ⊂ S1 there
exists p ∈ S1 such that

d(f n(p), xn) → 0 as n → ∞.

• s-limit shadowing property if for every ε > 0 there exists δ > 0 such that
(1) for every δ-pseudo orbit y = {yn}n∈N0 we can find a corresponding point x ∈ S1

which ε-traces y,
(2) for every asymptotic δ-pseudo orbit y = {yn}n∈N0 of f, there is x ∈ S1 which

ε-traces y and

lim
n→∞ d(yn, f n(x)) = 0.
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Remark 2.3. Note that s-limit shadowing implies both classical and limit shadowing.

2.2. Lebesgue measure-preserving circle maps. Consider a continuous map f : S1 →
S1 of degree deg(f ) ∈ Z. Let F̃ : R → R be a lifting of f, that is, the continuous map for
which

φ ◦ F̃ = f ◦ φ on R, (1)

where φ : R → S1 is defined by φ(x) = e2πix . Then F̃ (x + 1) = F̃ (x)+ deg(f ) for each
x ∈ R. If F = F̃ |[0, 1)(mod 1), we say that F : [0, 1) → [0, 1) represents f. Note that
since two liftings of f differ by an integer constant, F does not depend on a concrete choice
of a lifting of f.

In what follows the set of all liftings (respectively, representatives) of onto circle maps
will be denoted F̃(R) (respectively, F([0, 1))).

Remark 2.4. One can easily see that a circle map f is onto if and only if its representative
F = F̃ |[0, 1)(mod 1) is onto.

Let λ̃ denote the normalized Lebesgue measure on S1 and B the Borel sets in S1. In
this paper we will work with continuous maps from S1 into S1 preserving the measure λ̃,
which we denote by

Cλ̃(S
1) = {f : S1 → S1 : for all A ∈ B, λ̃(A) = λ̃(f−1(A))}.

We consider the set Cλ̃(S
1) equipped with the uniform metric ρ:

ρ(f , g) := sup
x∈S1

|f (x)− g(x)|.

We leave the standard proof of the following fact to the reader.

LEMMA 2.5. (Cλ̃(S
1), ρ) is a complete metric space.

The next lemma describes elements of F([0, 1)) representing maps from Cλ̃(S
1). We

denote by λ the Lebesgue measure on [0, 1).

LEMMA 2.6. Let F ∈ F([0, 1)) represent f : S1 → S1. The following conditions are
equivalent.
(i) f ∈ Cλ̃(S

1).
(ii) For all A ⊂ [0, 1) Borel, λ(A) = λ(F−1(A)).

Proof. Let us assume that F̃ is a lifting of f and denote ψ = φ|[0, 1). Then ψ is a
continuous bijection. From equation (1) we get

ψ ◦ F = f ◦ ψ on [0, 1). (2)

Moreover, A ⊂ [0, 1) and Ã := ψ(A) ⊂ S1 are simultaneously Borel and

λ(A) = λ̃(Ã). (3)
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Assuming (i), using (2) and (3) we can write

λ(A) = λ(ψ−1(Ã)) = λ(ψ−1(f−1(Ã))) = λ(F−1(ψ−1(Ã))) = λ(F−1(A)).

This shows that the statement (i) implies (ii). If (ii) is true we can write

λ̃(Ã) = λ(A) = λ(F−1(A)) = λ(F−1(ψ−1(Ã))) = λ(ψ−1(f−1(Ã))) = λ̃(f−1(Ã)),

so (ii) implies (i).

We say that a map from F([0, 1)) is piecewise affine if it has finitely many affine
pieces of monotonicity. We will say that F̃ ∈ F̃(R) is piecewise affine if its corresponding
representative F̃ |[0, 1)) is piecewise affine. In general, maps from F([0, 1)) are not
continuous but they can be piecewise monotone and smooth or even piecewise affine.
For these cases the following lemma states a useful criterion about when an element F of
F([0, 1)) represents f ∈ Cλ̃(S

1).

LEMMA 2.7. Let F ∈ F([0, 1)) be a piecewise affine representative with non-zero slopes
and such that its derivative does not exist at a finite set E. Then properties (i) and (ii) from
Lemma 2.6 are equivalent to the property

for all y ∈ [0, 1) \ F(E) :
∑

x∈F−1(y)

1
|F ′(x)| = 1. (4)

Proof. By the hypothesis the set F(E) is finite and for each y ∈ (0, 1) \ F(E) we can
write, for J (y, ε) = [y − ε, y + ε],

lim
ε→0+

∑
K∈Comp(F−1(J (y,ε)))

λ(K)

λ(J (y, ε))
=

∑
x∈F−1(y)

1
|F ′(x)| ,

thus Lemma 2.6(ii) implies (4).
For the other direction, assuming that property (ii) is not true, one can find some closed

interval J0 ⊂ [0, 1) \ F(E) and δ > 0 for which

λ(J0)

λ(F−1(J0))
∈ (0, 1 − δ) ∪ (1 + δ, ∞). (5)

Then, proceeding inductively, we can detect a nested sequence J0 ⊃ J1 ⊃ · · · of closed
intervals fulfilling (5) and

⋂∞
i=0 Ji = {y} with y ∈ (0, 1) \ F(E). By (5), equation (4) fails

in such y. This shows that (4) implies Lemma 2.6(ii).

3. The proof
3.1. Outline of the proof. The proof of our main result, Theorem 1.1, relies on four rather
technical steps. The first step is treated in Lemmas 3.1, 3.2 and 3.3 and consists of the
construction of a special dense subset Cλ̃,0(S

1) of Cλ̃(S
1). Let Qπ := Q + π . The maps

in Cλ̃,0(S
1) are piecewise affine and every map g from Cλ̃,0(S

1) fulfills the key property

g(φ(Qπ )) ⊂ φ(Q). (6)

In particular, the maps in Cλ̃,0(S
1) have all points of discontinuity of derivatives in φ(Qπ ),

so equation (6) applies. In the second step in Lemmas 3.5 and 3.6 we twice perturb
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maps from Cλ̃,0(S
1) to obtain maps satisfying the list of conditions (C1)–(C5) from §3.3.

Applying in §3.4 both perturbations and also the result of Lemma 3.7 on a sequence
{gm}m≥1 dense in Cλ̃,0(S

1), we arrive at new sequences {θm}m≥1 of maps from Cλ̃(S
1),

their neighbourhoods {Um}m≥1 and also carefully constructed partitions {Qm}m≥1. In
particular, using (6) we can ensure that for some pairs m < n, Qn is a refinement of Qm.
The final step consists of the proof that all maps in

A =
⋂
n≥1

⋃
m≥n

Um

have the s-limit shadowing property.

3.2. Particular families of Lebesgue measure-preserving circle maps and their
representatives. In this subsection we will define particular families of Lebesgue
measure-preserving circle maps that we will apply later for the construction of partitions
needed for the proof of genericity of s-limit shadowing property in our context.

For a piecewise affine map F̃ ∈ F̃(R) (that is, F̃ |[0, 1)) is piecewise affine) we
denote by T (F̃ ) (respectively, D(F̃ )) the turning points (respectively, the set of points
of discontinuity of derivative) of F̃ . We also put T[0,1](F̃ ) = T (F̃ ) ∩ [0, 1] and denote

Qπ = {r + π : r ∈ Q}.
Let us recall our convention that is stated before Remark 2.4; the set F̃(R) consists of

liftings of onto circle maps. Let F̃0(R) ⊂ F̃(R) be defined as

F̃ ∈ F̃0(R) ≡
{

(i) F̃ |[0, 1) is piecewise affine with non-zero slopes,

(ii) for S = {0} ∪ F(T[0,1](F̃ )), D(F̃ ) ∩ [0, 1] = F−1(S) ⊂ Qπ .
(7)

Since the set Qπ is dense in R, we have the following lemma.

LEMMA 3.1. The set F̃0(R) is dense in F̃(R).
Proof. Fix F̂ ∈ F̃(R) and ε > 0. Clearly there exists a piecewise affine map F̃ ∈ F̃(R)
with non-zero slopes such that:
• supx∈[0,1] |F̂ (x)− F̃ (x)| < ε;
• F̂ (1)− F̂ (0) = F̃ (1)− F̃ (0);
• T (F̃ ) ⊂ Qπ ;
• for F = F̃ |[0, 1)(mod 1), if x ∈ (0, 1) satisfies F(x) ∈ S then x ∈ D(F̃ ) ∩ Qπ , so

(D(F̃ ) ∩ [0, 1]) ⊃ F−1(S).
Notice that for a piecewise affine F̃ the set (D(F̃ ) ∩ [0, 1]) \ F−1(S) has to be either

empty or finite. For any x ∈ (D(F̃ ) ∩ [0, 1]) \ F−1(S) we can proceed in two steps. First,
we modify the graph of F on a small neighbourhood of x as shown in Figure 1. Second,
denoting the new maps by F, F̃ , arrange both new turning points and also all preimages of
their images to be from D(F̃ ) ∩ Qπ and therefore reduce the number

#(D((F̃ ) ∩ [0, 1]) \ F−1(S)).
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0 1 x
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FIGURE 1. Adjustments from the proof of Lemma 3.1.

Repeating the described modification finitely many times, we fulfil (7)(ii), that is, F̃ ∈
F̃0(R).

Consider a lifting F̃ ∈ F̃0(R) introduced by (7) and the corresponding representative
F = F̃ |[0, 1)(mod 1). Define the outer homeomorphism h : [0, 1] → [0, 1] by

h(0) = 0 and h(x) = λ(F−1((0, x))), x ∈ (0, 1]. (8)

Clearly, by (7) and Remark 2.4 the map F is surjective with non-zero slopes, h is
an increasing continuous piecewise affine function satisfying h(0) = 0 and h(1) = 1. In
particular, h is a homeomorphism of [0, 1]. The set of all liftings of maps from Cλ̃(S

1)

will be denoted by F̃λ(R).
For the visual representation of the notions from Lemma 3.2, we refer the reader to

Figures 2 and 3.

LEMMA 3.2. Let F̃ ∈ F̃0(R) be a lifting of f ∈ C(S1), F its corresponding representative
and h be defined as in (8). For the map G = h ◦ F the following statements are true.

(i) For all A ⊂ [0, 1) Borel, λ(A) = λ(G−1(A)).
(ii) G−1(0) = F−1(0).

(iii) The function Ĝ : [0, 1) → R defined by Ĝ(x) = G(x)+ F̃ (x)− F(x) is piece-
wise affine, continuous and limx→1− Ĝ(x) = Ĝ(0)+ deg(f ).

(iv) The function G̃ : R → R defined as the extension of Ĝ satisfying

G̃(x + 1) = G̃(x)+ deg(f )

belongs to F̃λ(R), so G̃ is a lifting of some g ∈ Cλ̃(S
1).

(v) D(G̃) ⊂ D(F̃ ) ⊂ Qπ .
(vi) G̃(D(G̃)) ⊂ G̃(D(F̃ )) ⊂ Q; in particular, G̃(D(G̃)) ∩D(G̃) = ∅.

(vii) The set D = D(g) = φ(D(G̃)) of discontinuities of the derivative of g satisfies

g(D) ∩D = ∅.

(viii) For every x ∈ Qπ , G̃(x) ∈ Q.
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FIGURE 2. In this figure the numbers along the graph lines represent slopes of respective affinity pieces. The
upper left-hand graph shows a lifting of a non-Lebesgue measure-preserving circle map F̃ restricted on [0, 1)
(taking into account the dashed lines) and also of F, its corresponding representative (without the dashed lines).
The lower left-hand graph depicts the corresponding outer homeomorphism h. The right-hand graph represents
a Lebesgue measure-preserving map G; however, the lifting of this map is not from the set F̃0 since the maps F̃
and F do not have their turning points (black squares) and also preimages of images of turning points that are not

turning points (black discs) in Qπ .

Proof. To verify (i), for 0 ≤ u < v ≤ 1 we can write, with the help of (8),

λ(G−1((u, v))) = λ(F−1(h−1(u, v))) = λ(F−1((h−1(u), h−1(v))))

= λ(F−1((0, h−1(v))))− λ(F−1((0, h−1(u)))) = v − u.

(ii) This is because h(x) = 0 if and only if x = 0.
(iii) This follows from the fact that G = h ◦ F and the outer map h is an increasing

continuous piecewise affine homeomorphism of [0, 1].
(iv) By the previous property (iii), G̃ ∈ F̃(R). Lemma 2.6(ii) and (i) furthermore imply

that G̃ ∈ F̃λ(R) and g ∈ Cλ̃(S
1).

(v) This is because the slopes of piecewise affine outer homeomorphism h can change
only at the points from F(T (F̃ )).

(vi) For each interval (u, v), where
(1) either u = 0 and v is the least value F(x) > 0 at a turning point x of F̃ ,
(2) or u, v are two consecutive values at turning points of F̃ ,
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FIGURE 3. Let r ∈ Q and let α = π − r > 0 be a small irrational number. The left-hand graph of function F̂
represents a shift (that is, rotation on the circle for the original circle map) of the representative F from Figure 2
for α to the right (and its lift, similarly to Figure 2). Due to the choice of α, the lifting F̃ (x + α) will already be

from F̃0(R). Note that the outer homeomorphism for F̂ stays the same as the one in Figure 2.

(3) or u is the biggest value F(x) < 1 at a turning point x of F̃ and v = 1,
F−1((u, v)) can be expressed as a finite union

F−1((u, v)) =
⋃
j

(aj , bj ) where F((aj , bj )) = (u, v), for each j .

It follows from our definition of F̃0(R) in (7) that aj , bj ∈ Qπ for all j, so

λ(F−1((u, v))) =
∑
j

(bj − aj ) ∈ Q. (9)

Fix a turning point w ∈ T[0,1](F̃ ) for which F(w) > 0. One can set

0 = u1 < v1 = u2 < v2 = · · · = vk = F(w),

where ui , vi were described above in (vi)(1)–(3); then by (8) and (9),

G(w) = (h ◦ F)(w) = λ(F−1(0, F(w))) =
∑
i

λ(F−1((ui , vi))) (10)

=
∑
i

∑
j

(bj − aj ) ∈ Q.

By (v) and (7)(ii), D(G̃) ⊂ D(F̃ ) ∩ [0, 1] = F−1(S) ⊂ Qπ . Since G(x) ∈ Q if and only
if G̃(x) ∈ Q, from (10) and (7)(ii) we obtain G̃(D(G̃)) = G̃(D(F̃ )) ⊂ Q, hence

G̃(D(G̃)) ∩D(G̃) = ∅.

(vii) This property is a consequence of (iv) and the fact that G̃ is a lifting of g due to
formula (1).
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To prove (viii), by conditions (v) and (vi) we can assume that x /∈ D(F̃ ). Let x ∈
(p, q) ∩ Qπ , where p, q ∈ D(F̃ ) are adjacent. Then

G̃(x) = G̃(p)+ G̃(q)− G̃(p)

q − p
(x − p).

By (vi), each of the numbers G̃(p), G̃(q)− G̃(p), q − p and x − p is rational, so
G̃(x) ∈ Q.

Using Lemma 3.2 we introduce the set Cλ̃,0(S
1) of circle maps from Cλ̃(S

1) with
liftings in F̃λ,0(R), where

F̃λ,0(R) := {G̃ : F̃ ∈ F̃0(R) and G = h ◦ F }. (11)

Recall that by our definition the set F̃(R) consists of liftings of onto circle maps (see
Remark 2.4 and the text preceding it).

LEMMA 3.3. The set Cλ̃,0(S
1) is dense in Cλ̃(S

1).

Proof. Fix ε > 0 and a map e ∈ Cλ̃(S
1) with a lifting Ẽ ∈ F̃λ(R). By Lemma 3.1 and

Remark 2.4 there is a map F̃ ∈ F̃0(R) such that its representative F = F̃ |[0, 1) is onto
and:
(i) ρ(Ẽ, F̃ ) < ε/2;

(ii) for h : [0, 1] → [0, 1] defined by h(0) = 0, h(x) = λ(F−1((0, x))) (as in (8)),

ρ(h, id) <
ε

2
.

Condition (ii) can be fulfilled due to the following reasoning. If circle maps fn converge in
the uniform metric to a Lebesgue measure-preserving circle map then their corresponding
hn defined as in (ii) converge to id; we refer the reader to [4] where the analogous interval
case had been treated in detail. We have proved in Lemma 3.2(iv) that G = h ◦ F is a
representative of a map g from Cλ̃,0(S

1). Moreover, using (i) and (ii) and the definition of
G̃ in Lemma 3.2(iii) and (iv) showing that ρ(F̃ , G̃) = ρ(F , G), we obtain

ρ(e, g) ≤ ρ(Ẽ, G̃) ≤ ρ(Ẽ, F̃ )+ ρ(F̃ , G̃)

= ρ(Ẽ, F̃ )+ ρ(F , G) = ρ(Ẽ, F̃ )+ ρ(F , h ◦ F) < ε.

Thus, for each ε > 0 and e ∈ Cλ̃(S
1) we have found a map g ∈ Cλ̃,0(S

1) such that
ρ(e, g) < ε.

Definition 3.4. We say that two maps f , g : [a, b] ⊂ [0, 1] → R are λ-equivalent if for
each Borel set A ⊂ R,

λ(f−1(A)) = λ(g−1(A)).

For 0 ≤ a < b ≤ 1 and 0 ≤ c < d ≤ 1 we denote by +h[a,b];[c,d],− h[a,b];[c,d] the affine
maps from [a, b] onto [c, d] fulfilling +h(a) = c, +h(b) = d (respectively, −h(a) = d ,
−h(b) = c).
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Φ

0 a b c d e hgf 1

ε

1 − ε

Ψ

0 aa′b′c′ d e f ′ hh′g′ 1

ε

1 − ε

FIGURE 4. For ε ∈ (0, 1/2), a = b − a = c − b = g − f = h− g = 1 − h = b′ − a′ = c′ − b′ = g′ − f ′ =
h′ − g′ = ε/3.

LEMMA 3.5. For any map f ∈ Cλ(I ), the maps

±h[0,1];[c,d] ◦ f ◦ +h[a,b];[0,1]

are λ-equivalent to the maps ±h[a,b];[c,d].

Proof. For each Borel A ⊂ [c, d] we have

λ((±h[0,1];[c,d] ◦ f ◦ +h[a,b];[0,1])
−1(A))

= λ((+h[a,b];[0,1)
−1 ◦ f−1 ◦ (±h[0,1];[c,d])

−1(A))

= b − a

d − c
λ(A) = λ((±h[a,b];[c,d])

−1(A)).

We will apply Lemma 3.5 for two special classes of elements from Cλ(I ). The first
consists of piecewise affine maps with 2n+ 1, n ∈ N, full laps: for points 0 = x0 < x1 <

· · · < x2n < x2n+1 = 1, x̄ = (x0, x1, . . . , x2n+1) and i ∈ {0, 1, . . . , 2n+ 1} we define
β[2n+ 1, x̄] ∈ Cλ(I ) as

β[2n+ 1, x̄](xi) :=
{

0, i even,

1, i odd,
(12)

and continuous, affine on each [xi , xi+1].
The second class that we define consists of maps � = �[ε, a′, d , e, h′], where

0 <
ε

3
< a′, a′ + 2ε

3
< d < e < h′ − 2ε

3
, h′ < 1 − ε

3
, (13)

as illustrated by the right-hand part of Figure 4 and its caption.

LEMMA 3.6. For each choice of values ε, a′, d , e, h′ fulfilling (13), �[ε, a′, d , e, h′] ∈
Cλ(I ).
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θ

LJ
1 LJ

2 MJ RJ
2 RJ

1

FIGURE 5. J = φ([qi , qi+1]) = LJ1 ∪ LJ2 ∪MJ ∪ RJ2 ∪ RJ1 .

Proof. Consider the discontinuous map � defined by the left-hand part of Figure 4. The
reader can easily verify that for each y ∈ (0, 1) \ {ε, 1 − ε},

∑
x∈�−1(y)

1
|�′(x)| = 1. (14)

Now pick the points a, b, b′, c, c′, f , f ′, g, g′, h ∈ [0, 1] as suggested in Figure 4. The
map � from the right-hand part of Figure 4 is continuous. Using its description in the
caption of Figure 4, let us show that � ∈ Cλ(I ). It is clear that for any y ∈ (0, ε) ∪ (1 −
ε, 1) the equality (14) estimated for � holds true again. For any y ∈ (ε, 1 − ε) we can
write ∑

x∈�−1(y)

1
|� ′(x)| = a′ − a

1 − 2ε
+ d − c′

1 − 2ε
+ e − d

1 − 2ε
(15)

+ f ′ − e

1 − 2ε
+ h− h′

1 − 2ε
= ♣.

Since a′ − a + d − c′ = d − c and f ′ − e + h− h′ = f − e, we can rewrite (15) with the
help of (14) as

♣ = d − c

1 − 2ε
+ e − d

1 − 2ε
+ f − e

1 − 2ε
= 1,

that is, � ∈ Cλ(I ) by Lemma 2.7.

3.3. Partitions, special perturbations. In this section we will start with maps from
Cλ̃,0(S

1) defined in the previous section and particular associated partitions of S1 and
show how to perturb such maps and refine their associated partitions so that they will
satisfy conditions (C1)–(C6) given below. This will provide us with the crucial step in
proving genericity of s-limit shadowing in the next section. For what follows we refer the
reader to Figure 5 to visualize the discussed concepts better.
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Given a piecewise affine circle map g ∈ Cλ̃,0(S
1), ε > 0 and its affine partition P ⊃

D(g) for which

P ⊂ φ(Qπ ) and ‖P‖ < ε

(where ‖·‖ denotes the maximum diameter of partition elements), we will construct a
perturbation θ of g and a partition Q ⊂ φ(Qπ ) for θ for which P ≺ Q (that is, Q refines
P) and such that each J ∈ Q has a subdivision into subarcs LJ1 , LJ2 , MJ , RJ2 , RJ1 whose
order preserves order in J and satisfies the following conditions.
(C1) There is I ∈ Q (depending on J) such that θ(J ) ⊃ I .
(C2) Let I ∈ Q be such that θ(J ) ∩ (LI1 ∪ LI2) �= ∅. Then

(a) LI1 ∪ LI2 ⊂ θ(J ),
(b) if K ∈ Q is the unique element such that RK1 ∩ LI1 �= ∅ then RK1 ∪ RK2 ⊂

θ(J ).
(C3) Let I ∈ Q be such that θ(J ) ∩ (RI1 ∪ RI2 ) �= ∅. Then

(a) RI1 ∪ RI2 ⊂ θ(J ),
(b) if K ∈ Q is the unique element such that LK1 ∩ RI1 �= ∅ then LK1 ∪ LK2 ⊂

θ(J ).
(C4) θ(J ) = θ(LJ1 ) = θ(RJ1 ).
(C5) B4η(θ(M

J ∪ LJ2 ∪ RJ2 )) ⊂ θ(J ) for sufficiently small η > 0.
By (11), the map g has its lifting G̃ from Fλ̃,0(R) represented by G = h ◦ F ∈

F([0, 1)), where F and h were described immediately prior to Lemma 3.2. By (iii) and
(iv) of Lemma 3.2, g is piecewise affine, that is, such that the map G̃ (respectively, G) is
piecewise affine. Applying (8) and Lemma 3.2, we can consider a finite set P of points
such that

D(F̃ ) ∩ [0, 1] ⊂ P := {0 < p1 < p2 < · · · < pm < 1} ⊂ Qπ

for which G̃|[pi , pi+1] is affine for each i (set pm+1 = p1 + 1), and for

P := φ(P ) = {φ(p1), . . . , φ(pm)} ⊂ φ(Qπ ) ⊂ S1,

(a) g(P) ⊂ φ(Q) hence g(P) ∩ P = ∅,
(b) ‖P‖ := max1≤i≤m |φ(pi+1)− φ(pi)| < ε.

We will call the set P (respectively, P) a partition for G̃ (respectively, g). Redefining G̃
on each [pi , pi+1] by (the numbers n(i) ∈ N and vector x̄(i) will be specified later)

�̃i := s(i)h[0,1];[G̃(pi ),G̃(pi+1)]
◦ β[2n(i)+ 1, x̄(i)] ◦ +h[pi ,pi+1];[0,1], (16)

where the βs were introduced in (12) and s(i) ∈ {+, −} are chosen to satisfy �̃i(pi) =
G̃(pi), yields a map �̃ : [0, 1] → R given by �̃(x) = �̃i(x), x ∈ [p̃i , p̃i+1]. Notice
that still �̃(1)− �̃(0) = deg(g), so abusing the notation we will again denote by �̃ its
extension from [0, 1] to the whole real line keeping the rule �̃(x + 1) = �̃(x)+ deg(g).
In fact the map �̃ is a lifting of some map σ : S1 → S1. Because by Lemma 3.5 each
map G̃|[pi , pi+1] has been replaced by a λ-equivalent map �̃i , it follows that the map
� ∈ F([0, 1)) representing σ satisfies the conditions of Lemma 2.7, hence by Lemma
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2.6(i) we have that σ ∈ Cλ̃(S
1). For the map �̃|[0, 1] we will consider a new partition

Q :=
m⋃
i=1

2n(i)+1⋃
j=0

h−1
[pi ,pi+1];[0,1](xj (i)) =: {0 = q1 < q2 < · · · < qm′ = 1}

for some m′ ∈ N, where the vectors x̄(i) = (x0(i), x1(i), . . . , x2n(i)+1(i)) will be chosen
to satisfyQ ⊂ Qπ . Thus, the set Q contains P and also all new turning points of �̃ in (0, 1)
being in Q \ P . From our specific choice of βs in (16) and Lemma 3.2(viii) we obtain

Q ⊂ Qπ and �̃(Q) ⊂ Q;

denoting Q = φ(Q), we analogously obtain for σ and Q,

Q ⊂ φ(Qπ ) and σ(Q) ⊂ φ(Q),

which implies that
σ(Q) ∩ Q = ∅.

At the same time the numbers n(i) (recall that the number of full laps of β is
2n(i)+ 1) can be taken sufficiently large to satisfy, for each i and arcs [φ(qi), φ(qi+1)] =
φ([qi , qi+1]),

#{j : σ([φ(qi), φ(qi+1)]) ∩ [φ(qj ), φ(qj+1)] �= ∅} ≥ 3.

Up to now, using rescaled versions of βs, we have perturbed the map G̃ (respectively,
g) on the intervals [pi , pi+1] (respectively, arcs φ([pi , pi+1])) to obtain the lifting �̃ of
σ ∈ Cλ̃(S

1).
In the last part of this proof we will proceed similarly: using rescaled versions of �s

from Figure 4, we will perturb the map �̃ (respectively, σ ) on the intervals [qi , qi+1]
(respectively, arcs φ([qi , qi+1])) to obtain the lifting �̃ of θ ∈ Cλ̃(S

1).
Therefore, for each i define

�̃i := s(i)h[0,1];[�̃(qi ),�̃(qi+1)]
◦�[εi , a′

i , di , ei , h
′
i] ◦ +h[qi ,qi+1];[0,1], (17)

where s(i) ∈ {+, −} is chosen to satisfy

�̃i(qi) = �̃(qi); (18)

using �̃i , we can define the map �̃ : [0, 1] → R by �̃(x) = �̃i(x), x ∈ [qi , qi+1]. The
reason why the degree-preserving extension of �̃ to the real line is a lifting of a map
θ ∈ Cλ̃(S

1) is analogous to the reason above: the map θ is represented by the map � =
�̃|[0, 1)(mod 1) ∈ F([0, 1)) that fulfils conditions of Lemma 2.7. Let us consider the map
�̃ (respectively, θ ) with respect to partition Q (respectively, Q). For what follows we refer
the reader to the right-hand graph in Figure 4. Taking εi , a′

i , di , ei and h′
i in (17) such that

h−1
[qi ,qi+1];[0,1]({ai , a′

i , b
′
i , c

′
i , di , ei , f

′
i , g

′
i , h

′
i , hi}) ⊂ Qπ , (19)

εi and di sufficiently close to 0 and ei sufficiently close to 1, with the help of (18) we can
ensure that for each i,

�̃(Q) ∩ [qi , qi+1] = �̃(Q) ∩ [qi , qi+1]

= �̃(Q) ∩ (h−1
[qi ,qi+1];[0,1](di), h

−1
[qi ,qi+1];[0,1](ei)).
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Let us put for each i, [qi , qi+1] and H := h[qi ,qi+1];[0,1],

Li1 = H−1([0, c′i]), Li2 = H−1([c′i , d ′
i]), Mi = H−1([d ′

i , e
′
i]),

Ri2 = H−1([e′i , f ′
i ]), Ri1 = H−1([f ′

i , 1]);

then, using φ, we can transfer these sets to the arc

J = φ([qi , qi+1])

by

LJ1 = φ(Li1), L
J
2 = φ(Li2), MJ = φ(Mi),

RJ2 = φ(Ri2), RJ1 = φ(Ri1).

A sketch of this construction is given in Figure 5.
Since Q ⊂ φ(Qπ ) is a refinement of P , from (b) we obtain that ‖Q‖ < ε. By Lemma

3.2, θ(Q) ∩ Q = ∅ and conditions (C1)–(C5) for the map θ ∈ Cλ̃(S
1) with respect to

Q = Qε,θ := φ(Q)

easily follow.

3.4. S-limit shadowing is generic in Cλ̃(S
1). For a given ε > 0, assume that θ , Qε,θ

with ‖Qε,θ‖ < ε, and η are provided in such a way that they satisfy conditions (C1)–(C5)
and there is also δ = δ(θ) > 0 such that:
(C6) δ < η and 2δ < diam K for any K ∈ {LJ1 , LJ2 , MJ , RJ1 , RJ2 } and any J ∈ Qε,θ .

LEMMA 3.7. Let ε > 0, θ , Qε,θ and δ = δ(θ) > 0 be as above. For every τ ∈ Cλ̃(S
1)

such that ρ(τ , θ) < δ, every δ-pseudo orbit for τ is ε-traced.

Proof. Let x = {xs}∞s=0 be a δ-pseudo orbit for τ . We claim that there is a sequence of arcs
Js ∈ Q = Qε,θ and sets Qs ⊂ Js such that
(1) xs ∈ Js ,
(2) τ(Qs) ⊃ Qs+1 and Qs ∈ {LJs1 , RJs1 }.

As J0 ∈ Q select any arc such that x0 ∈ J0 (in the worst case there are two such arcs).
Fix any Q0 ∈ {LJ0

1 , RJ0
1 }.

Now suppose that the above conditions are satisfied for some s and let Js+1 ∈ Q be
such that xs+1 ∈ Js+1. If θ(xs) ∈ Js+1 then since θ(Js) contains at least one element of
Q, by condition (C1) we have that θ(Js) ∩ LJs+1

1 �= ∅ or θ(Js) ∩ RJs+1
1 �= ∅. In the first

case LJs+1
1 ∪ LJs+1

2 ⊂ θ(Js), and in the second case RJs+1
1 ∪ RJs+1

2 ⊂ θ(Js). Also θ(Js) =
θ(Qs). But then, by the definition of δ and conditions (C2), (C3) and (C5) we have either
L
Js+1
1 ⊂ τ(Qs) or RJs+1

1 ⊂ τ(Qs). Put Qs+1 = L
Js+1
1 and Qs+1 = R

Js+1
1 in the respective

cases and observe that the claim holds. But then, since ‖Q‖ < ε, it is enough to choose
z ∈ ⋂

τ−s(Qs) to obtain a point ε-tracing x.
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In the previous section we described a special type of perturbation of a piecewise affine
map g ∈ Cλ̃,0(S

1) ⊂ Cλ̃(S
1) leading to a circle map θ . The main property of θ was stated

in Lemma 3.7. We now apply a similar approach to a dense sequence of piecewise affine
maps from Cλ̃,0(S

1) which is possible by invoking Lemma 3.3.
To that end, let � := {gm}m≥1 ⊂ Cλ̃,0(S

1) be a dense sequence of maps in Cλ̃(S
1) such

that:
• each gm has an affine partition Pm ⊂ φ(Qπ ) satisfying ‖Pm‖ < 1/m;
• for each n ≥ m, gn(Pm) ∩ Pm = ∅.
Notice that the second property is guaranteed by Lemma 3.2(viii). Following the previous
section we perturb gm to θm with ε = 1/m, corresponding partition Qm := Q1/m,θm , ηm,
δm = δ(θm) < 1/m and Um an open neighbourhood around θm in Cλ̃(S

1) such that:
• Um ⊂ Bδm(θm);
• the boundary of Um does not intersect �.
Repeatedly using Lemmas 3.2(viii) and 3.3, we will proceed as follows to construct
sequences {Qm}∞m=1, where each Qm is a subset of φ(Qπ ), and {Um}∞m=1.
(1) We perturb g1 to θ1 to obtain gn(Q1) ∩ Q1 = ∅ for each n ≥ 1.
(2) For m > 1, having already constructed the sets Qi and Ui , i = 1, . . . , m− 1, in

order to construct Qm and Um we distinguish two possibilities:
(a) either gm /∈ ⋃m−1

i=1 Ui , and then we construct Qm and Um to fulfil

gn(Qm) ∩ Qm = ∅ for each n ≥ m, Um ∩
m−1⋃
i=1

Ui = ∅;

(b) or gm ∈ Ui , where i ≤ m− 1 is the largest number with this property; denoting
by E(Qi ) the set of φ-images of points defined in (19) for all J ∈ Qi , a new
partition Qm ⊂ φ(Qπ) will fulfil

E(Qi ) ∪ Qi ∪ Pm ≺ Qm and Um ⊂ Ui \
⋃

i<j≤m−1

Uj .

In particular, Qm is an affine partition for θm which is a refinement of Qi and
gn(Qm) ∩ Qm = ∅ for each n ≥ m.

In addition, we require that the boundary of Um does not intersect �; this is
possible since � is countable.

Let us put An = ⋃
m≥n Um. Clearly, each An is open and dense so the intersection

A =
⋂
n≥1

An =
⋂
n≥1

⋃
m≥n

Um

is a dense Gδ set in Cλ̃(S
1).

Proof of Theorem 1.1. We will prove that each τ ∈ A has the s-limit shadowing property.
By our definition of A, there is an increasing sequence {m(k)}∞k=1 such that

Um(1) ⊃ Um(2) ⊃ · · · , {τ } =
∞⋂
k=1

Um(k).
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Let x = {xs}∞s=0 be an asymptotic pseudo orbit. By Lemma 3.7 the partition Qm(i) and
δ = δm(i) > 0 were chosen for α-shadowing with α = 1/m(i). Fix k so that

4/k < δ. (20)

Let the partition Qm(j) and γ := δm(j) > 0 where i < j be provided for β-shadowing with
β = 1/m(j) ≤ 1/k. Note that by condition (C6), γ < 1/k, hence together with (20) we
obtain

γ + 2/k < 3/k < 4/k < δ. (21)

Assume for simplicity that x is a δ-pseudo orbit and it is a γ -pseudo orbit for all s ≥
N − 1 for some N. Let Js ∈ Qm(i) and Qs ⊂ Js be provided as in (1) and (2) of the proof
of Lemma 3.7 for x, and by the same conditions, let Rs ∈ Qm(j), and let Ws ⊂ Rs for
s ≥ N − 1 be provided by the fact that τ ∈ Um(j) ⊂ Bδm(j) (θm(j)). In particular,

τ(Qs) ⊃ Qs+1, s ≥ 0, τ(Ws) ⊃ Ws+1, s ≥ N − 1. (22)

First, if WN ⊂ τ(QN−1) then we can switch directly from the arc QN−1 used for
α-tracing to the arc WN used for β-tracing.

Now, assume that WN \ τ(QN−1) �= ∅. Notice that WN ∩ int(QN) = ∅, since other-
wise

WN ⊂ QN ⊂ τ(QN−1) because Qm(i) ≺ Qm(j),

which gives a contradiction. On the other hand, xN−1 ∈ JN−1 and d(xN , τ(xN−1)) < γ

and diam(RN) < 1/k. Also WN ⊂ RN and xN ∈ RN . Then if ξ := γ + 1/k,

WN ⊂ RN ⊂ Bξ (τ(JN−1)) ⊂ Bδ(τ(JN−1)),

where the last inclusion is a consequence of (21). Since WN is not included in the arc
τ(QN−1) and both diameters diam L

JN
2 and diam R

JN
2 are greater than 2δ, the only

possibility is that

WN ⊂ L
JN
2 ∪MJN ∪ RJN2 .

But by (C5) we have

B4δ(θm(i)(WN)) ⊂ θm(i)(JN) = θm(i)(QN),

and thus since τ ∈ Um(i),
B3δ(θm(i)(WN)) ⊂ τ(QN)

and

B2δ(τ (WN)) ⊂ τ(QN). (23)

On the other hand, from (22) we obtain

WN+1 ⊂ τ(WN) ⊂ B2δ(τ (WN)). (24)

Gluing (23) and (24) together, we get

WN+1 ⊂ τ(QN).
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1

1 − ε QN−1 WN

WN

1

θ

1

1 − ε QN−1

QN−1

WN

WN

1

τ

FIGURE 6. After perturbation the image of QN−1 = QN covers itself. Therefore, ε-tracing is still possible, but
the image of QN−1 = QN no longer covers WN = WN+1.

This allows us to switch from the arc QN used for α-tracing to the arc WN+1 used for
β-tracing.

Then, using the above construction inductively, we obtain that for every ε > 0, every
τ ∈ ⋂

n≥1 An and every asymptotic pseudo orbit x = {xs}∞s=0 which is a δ-pseudo orbit,
we can find a sequence of closed arcs Is ⊂ S1 with the following properties:
(1) τ(Is) ⊃ Is+1;
(2) diam(Is ∪ {xs}) < ε;
(3) for every β > 0 there is N > 0 such that diam(Is ∪ {xs}) < β for all s > N .
Now it is enough to take any z ∈ ⋂

s≥0 τ
−s(Is) to ε-trace and asymptotically trace x.

4. Final remarks
As already mentioned, some inspiration for this paper comes from [17] where it is proved
that on manifolds (including dimension 1) s-limit shadowing is dense in the class of
continuous maps. In particular, it is dense in continuous maps on the circle and the
interval. It was also proved in our recent paper [5] that s-limit shadowing is also dense
in Lebesgue measure-preserving maps on the interval. Then, in view of the above results
and the results in the present paper, it is natural to expect that s-limit shadowing is generic
also in Lebesgue measure-preserving interval maps. Unfortunately, the proof of Theorem
1.1 will not directly work in that case, as we explain below. The main technique in our
proof is showing that WN ⊂ τ(QN−1) or WN+1 ⊂ τ(QN) under the map τ which is
small perturbation of θ ; see the discussion after (22) for more details. While for small
perturbations we may ensure that τ(QN−1) ⊃ QN , we cannot control the covering of
smaller sets Ws by Qs ; see Figure 6 for an intuitive explanation of possible problems.
This situation may happen near endpoints of the interval, where we cannot guarantee
sufficiently long overlapping of τ(QN−1) or τ(QN). Such a situation does not happen on
the circle due to the absence of boundary. This motivates us to pose the following question.

Question A. Is s-limit shadowing generic in Lebesgue measure-preserving maps on the
interval?
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As explained above, a possible positive answer to the above question will require some
new techniques, beyond those used in the present work. On the other hand, a standard
technique to disprove that a condition is generic is to find an open set without the property.
This approach is again impossible, because we have proved [5] that s-limit shadowing is
dense in Cλ(S

1).
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