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Dynamics and Regularization of the Kepler
Problem on Surfaces of Constant Curvature

Jaime Andrade, Nestor Dávila, Ernesto Pérez-Chavela,
and Claudio Vidal

Abstract. We classify and analyze the orbits of theKepler problemon surfaces of constant curvature
(both positive and negative, S2 and H2 , respectively) as functions of the angular momentum and
the energy. Hill’s regions are characterized, and the problem of time-collision is studied. We also
regularize the problem in Cartesian and intrinsic coordinates, depending on the constant angular
momentum, and we describe the orbits of the regularized vector ûeld. _e phase portraits both for
S2 and H2 are pointed out.

1 Introduction

_e n-body problem in spaces of constant curvature has a long history, starting with
the works of Lobachevsky and Bolyai, the co-discovers of the non Euclidean geome-
tries, passing through Schering and Liebmann, andmore recently Cariñena et al. [2]
and by Kozlov and Harin [10]. In [7] the reader can ûnd a nice chronology of this
problem for n = 2. _e study of this problem for n ≥ 3 starts with the works of Di-
acu, Pérez-Chavela, and Santoprete [4–6]. A�er this breakthroughmany authors have
made important contributions on the subject; among others, we can cite [14,21,22].

In this paper we tackle the Kepler problem deûned in a two-dimensional space of
constant curvature that could be positive or negative. By the Kepler problem we un-
derstand that one particle of mass 1 (a�er normalization) is ûxed and the other one,
of arbitrary positive mass µ is moving with respect to it under the in�uence of the
respective law of attraction. When the two particles are moving freely on the corre-
sponding surface of constant curvature, it is called the 2-body problem. Contrary to
the classical Newtonian 2-body problem where both problems are equivalent, due to
the fact that the linear momentum is a ûrst integral, this is not the case when the par-
ticles aremoving on surfaces of constant curvature. In fact, here the Kepler problem
is an integrable problem, but the two body problem is not [16].
As we will see later in this paper, it is enough to do the analysis on the surface S2

embedded inR3 (for positive curvature) and on the hyperbolic surfaceH2 embedded
in the 3-dimensional Minkowski space (for curvature negative).
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Our contribution is to describe theHill’s regions for theKepler problemon S2 and
H2, showing how they depend of the sign of the total energy h, a ûrst integral of this
problem. Concerning the singularities of this problem we show that all them occur
in ûnite time. For the case of positive curvature, we also show that in order to have
collision, a necessary condition is that the angular momentum should be zero (c = 0).
By using spherical and hyperbolic coordinates in S2 and H2, respectively, we get

the phase portrait of theKepler problemon these surfaces, showing their dependence
with respect to the total energy h and the angular momentum c. Doing a central
projection for the solution curves of theKepler problemonS2 andH2 we obtain a nice
analogy between them and the solutions (conic curves) of the classical Newtonian
Kepler problem.
Finally, we regularize all singularities in both cases (positive and negative curva-

ture) by using a Levi–Civita type regularization. We do this in Cartesian coordinates
and also in spherical and hyperbolic coordinates in order to have more elements for
possible applications of this technique inmore complicated problems. It iswell known
for people in the ûeld that a Levi–Civita regularization of theNewtonianKepler prob-
lem generates a harmonic oscillator, whereas in the case of the Kepler problem on
positive curvature spaces and c = 0, it produces aMathieu equation.

_e paper is organized as follows. In Section 2 we review results and introduce
the potential that we will use throughout the paper. We give the equations ofmotion
for this problem. In Section 3 we study the ûrst integrals of the problem and do a
deep analysis of the Hill’s regions in both cases for positive and negative curvature.
In Section 4 we study the singularities of the problem. For positive and negative cur-
vature, all collisions correspond to singularities. For positive curvature, we also have
the “antipodal singularity” corresponding to antipodal positions of the two masses
(this term was introduced in [4,7]). In Section 5 we analyse the phase portrait of the
Kepler problem on S2 and H2. In Section 6 we study the central projection for the
solutions of the Kepler problem on S2 and H2. Finally, in Section 7 we regularize all
singularities of the problem, and in the small Section 8we give the conclusions of this
work.

2 Statement of the Problem

We know that all surfaces of constant curvature κ are characterized by the sign of
the curvature as follows. If κ > 0, the surface is the 2 dimensional sphere of radius
R = 1/

√
κ denoted by

S2
κ = {(x , y, z)∣ x2 + y2 + z2 = κ−1},

embedded in the Euclidean space R3. If κ = 0, we recover the Euclidean space R2. If
κ < 0, the surface is given by

H2
κ = {(x , y, z)∣ x2 + y2 − z2 = κ−1 , z ≥

√
−κ−1},

which corresponds to the upper part of the hyperboloid x2 + y2 − z2 = κ−1 embedded
in the 3-dimensional Minkowski space R2,1, i.e., R3 endowed with the Lorentz inner
product (see for instance [8,9]).
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Following [2], we can deûne a curved trigonometry in our surfaces, which we will
call trigonometric κ-functions. _emain utility of the κ-functions is thatwe can unify
elliptical and hyperbolic trigonometry. We deûne the κ-sine as

snκ(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

κ−1/2 sin κ1/2x if κ > 0,
(−κ)−1/2 sinh(−κ)1/2x if κ < 0,

the κ-cosine as

csnκ(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

cos κ1/2x if κ > 0,
cosh(−κ)1/2x if κ < 0,

as well as the κ-tangent and κ-cotangent, as

tnκ(x) ∶=
snκ(x)
csnκ(x)

ctnκ(x) ∶=
csnκ(x)
snκ(x)

,

respectively. It is easy to verify the fundamental formula κ sn2
κ(x) + csn2

κ(x) = 1.
If a = (ax , ay , az) and b = (bx , by , bz) inR3, we deûne a⊙ b as either of the inner

products

a ⋅ b ∶= axbx + ayby + azbz , if κ > 0,
a� b ∶= axbx + ayby − azbz , if κ < 0.

Also, we deûne an extended distance between two points a and b in R3 and R2,1 in-
duced by the above scalar product:

dκ(a, b) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

κ−1/2 cos−1(
κa ⋅ b

√
κa ⋅ a

√
κb ⋅ b

) , κ > 0,

(−κ)−1/2 cosh−1(
κa� b

√
κa� a

√
κb� b

) , κ < 0.

Notice that when a and b are points on the surface, the extended distance dκ(a, b)
coincides with the geodesic distance on the corresponding surface.

Now we are going to deûne the Kepler problem on both surfaces S2
κ and H2

κ . Let
us consider a particle with ûxed position q̃ = (0, 0, (σκ)−1/2), where σ = κ/∣κ∣, and
mass m1 > 0 and one free particle with position q = (x , y, z) remaining on one of
the surfaces S2

κ orH2
κ , with mass m2 > 0. By normalizing themasses, we can suppose

without loss of generality that m1 = 1 and m2 = µ > 0 and choosing a suitable scale of
units such that the universal gravitational constant is G = 1. Using the approach given
in [2], we deûne the κ-dependent cotangent potential as −Uκ(q), where

Uκ(q) ∶= µ ctnκ[dκ(q, q̃)]

and the kinetic energy

Tκ(q, q̇) ∶=
1
2
(q̇ ⋅ q̇)(κq ⋅ q).

Using the above potential and kinetic energy, we obtain the Lagrangian

Lκ(q, q̇) ∶= Tκ(q, q̇) +Uκ(q),
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and theHamiltonian

(2.1) Hκ(q, p) ∶= Tκ(q, p) −Uκ(q),

where p = q̇ is themomentum of the particle of unit mass, associated with the Kepler
problem on a surface of constant curvature with a ûxed point at q̃.

Now, we note that for κ ≠ 0, we can consider the (σκ)1/4-symplectic linear trans-
formation E(q, p) = ((σκ)1/2q, (σκ)−1/4p) = (Q , P), then the Hamiltonian (2.1) as-
sumes the simpliûed form

Ĥ(Q , P) = (σκ)1/4Hκ(E−1(Q , P)) = (σκ)3/4Hσ(Q , P).

By introducing the time-rescaling d t
dτ = (σκ)−3/4,we observe thatwhen κ is a nonzero

constant, it is suõcient to study the cases κ = 1 and κ = −1. Fromnow on,we just study
such cases and keep the notation q and p for the position and linear momentum,
respectively.
A straightforward computation shows that the potential can be written as

Uσ(q) ∶= µ

σ q̃⊙ q
√σq⊙ q

[σ − σ( σ q̃⊙ q
√σq⊙ q

)
2
]
1/2 .

From the equations of Euler–Lagrange with constraints, we obtain that the equations
ofmotion of the particle of unit mass on S2 (σ = 1) or H2 (σ = −1) are given by

(2.2) q̈ = −σ(q̇⊙ q̇)q + µ q̃ − (σ q̃⊙ q)q

[σ − σ(σ q̃⊙ q)2]
3/2 , q⊙ q = σ , q⊙ q̇ = 0,

and theHamiltonian equations are
q̇ =p,

ṗ = − σ(p⊙ p)q + µ q̃ − (σ q̃⊙ q)q
[σ − σ(σ q̃⊙ q)2]3/2

, q⊙ q = σ , q⊙ p = 0.

(2.3)

3 First Integrals and Hill’s Region

_e equations ofmotion (2.3) have energy integral

(3.1) h =
1
2
(p⊙ p) − µ σ q̃⊙ q

√
σ − σ(σ q̃⊙ q)2

,

which can be written using Cartesian coordinates as

1
2
(ẋ2 + ẏ2 + σ ż2) −

µz
√

σ − σz2
= h.

Additionally, we deûne the angular momentum as the vector

c ∶= (c1 , c2 , c3), with c i = (q × p)⊙ e i , i = 1, 2, 3.

Proposition 3.1 _e third component c = c3 of the angular momentum is a ûrst
integral of the system (2.3).
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Proof Let us write

c =
3

∑
i=1

[(q × p)⊙ e i] e i .

_en we have that

(3.2) ċ =
3

∑
i=1

[(q × ṗ)⊙ e i] e i =
µ

(σ − σz2)3/2 (y,−x , 0),

which completes the proof.

Remark 3.2 _e values of c1 and c2 can be obtained integrating equation (3.2). We
observe that c⊙ q = 0 and ċ⊙ q = 0, which means that the system has nonzero total
rotation with respect to the origin only in the x-y plane.

3.1 Hill’s Region of the Kepler Problem on S2

From equation (3.1) ûxing the value of h for σ = 1, we have that the Hamiltonian
function deûnes an invariant set given by

Σh = {(q, p) ∈ (S2 ∖ N) × S2 ∶ H1 = h}

for each real constant h. Since the kinetic energy 1
2 (p ⋅ p) is positive deûnite, in Σh

we have that

U1(q) + h =
1
2
(p ⋅ p) ≥ 0.

In order to obtain the Hill’s region that corresponds to the projection of Σh over the
space of conûguration (i.e., positions), we can deûne it as the set

Rh = {q ∈ S2 ∶ U1(q) + h ≥ 0} = {(x , y, z) ∈ S2 ∶
µz

√
1 − z2

+ h ≥ 0} .

_us, if (q(t), p(t)) is a solution of (2.3) with H1(q(0), p(0)) = h, then q(t) ∈ Rh .
We analyze the following cases for q = (x , y, z) ∈ Rh , the value z = 1 is not possible, it
corresponds to a binary collision, a singularity in the energy relation that determines
theHill’s region.
● If h < 0, then z ∈ [

√
h2/(µ2 + h2), 1) , thus themotion is restricted to a sphere cap

contained in the upper hemisphere (see Figure 1(a)).
● If h = 0, then z ≥ 0, thus the motion may occur on the whole upper hemisphere

(see Figure 1(b)).
● If h > 0, then z ∈ [−

√
h2/(µ2 + h2), 1) , thus themotion may occur in a sphere cap

which exceeds the Equator (see Figure 1(c)).

3.2 Hill’s Region of the Kepler Problem on H2

_e energy constant allows us to deûne a set that isnot exactly theHill’s region deûned
as in the spherical case, but which gets information related to the region of motion.
First, we note that the kinetic energy is not positive deûnite, from which we can only
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(a) (b) (c)

Figure 1: Hill’s region Rh represented by the darkened region. (a) h < 0; (b) h = 0; (c) h > 0.

state the inequality

Gh(z, ż) ∶= h + ż2

2
+

µz
√
z2 − 1

=
1
2
(ẋ2 + ẏ2) ≥ 0,

which induce us to deûne the set

Rh = {(q, p) ∈ H2 ×R3/ Gh(z, ż) ≥ 0} .

_us, if (q(t), p(t)) is a solution of (2.3) with H−1(q(0), p(0)) = h, then q(t) ∈ Rh .
We analyze the following cases for q = (x , y, z) ∈ Rh .
● If h ≥ −µ, then Gh(z, ż) ≥ 0 is always satisûed.
● If h < −µ, we have that Gh(z, ż) ≥ 0 implies that 1 ≤ z < h/

√
h2 − µ2 and the

Hill’s region projected on the (z, ż) plane corresponds to the shaded region as in
the Figure 2(a). _us, the region ofmotion in H2 is as in Figure 2(b).

(a) (b)

Figure 2: _e darkened region represents the projection of the Hill’s region: (a) on the plane
(z, ż) for h < −µ, (b) on H2 for h < −µ.
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4 Collisions

In the case of σ = 1, it is veriûed that equations (2.3) have singularities±q̃. _e positive
one is due to collision and the negative one is due to antipodal singularity, while for
σ = −1, equation (2.3) has a unique singularity that is due to collision with q̃. Let us
start by deûning themoment of inertia of the system (2.3) as

(4.1) I = 1
2
(q − q̃)⊙ (q − q̃).

_e ûrst technical result is an adaptation of the Lagrange–Jacobi identity of the
Newtonian Kepler problem (see [15]).

Lemma 4.1 Let q(t) be a solution of (2.2). _en the following identity holds

Ï = σ(p⊙p)(q⊙ q̃)−
1

σq⊙ q̃
Uσ(q) = [2(q⊙ q̃)2− 1]

µ
√

σ − σ(q⊙ q̃)2
+2σh(q⊙ q̃),

where h is the energy associated with the solution.

Proof By deriving twice in (4.1) along a solution and using the Euler formula and
the energy integral, we have that

Ï = p⊙ p + (q − q̃)⊙ ṗ

= p⊙ p + (q − q̃)⊙ (−σ(p⊙ p)q +∇Uσ(q))

= σ(p⊙ p)(q⊙ q̃) −
1

σq⊙ q̃
Uσ(q)

= 2σ(h +Uσ(q))(q⊙ q̃) −
1

σq⊙ q̃
Uσ(q)

= [2(σq⊙ q̃) −
1

σq⊙ q̃
]Uσ(q) + 2σh(q⊙ q̃)

= [2(q⊙ q̃)2 − 1]
µ

√
σ − σ(q⊙ q̃)2

+ 2σh(q⊙ q̃).

_eorem 4.2 Let q(t) be a solution of (2.2) and suppose that q(t)→ q̃ when t → t∗;
then t∗ ∈ R.

Proof Note ûrst that if q(t) → q̃, then I → 0 when t → t∗. In addition, from
Lemma 4.1, it follows clearly that Ï → +∞ when t → t∗. Suppose that t∗ = +∞; then,
given K > 0, there exists t0 > 0 such that Ï(t) > K, for all t > t0. By integrating twice
on both sides of this inequality, we get I ≥ K

2 t2 + At + B for all t ≥ t0. _us, I → +∞
when t →∞, which contradicts the fact that I → 0.

Remark 4.3 Note that in the case of S2,_eorem 4.2 applies to both, collision and
antipodal singularities

_e following result is an adaptation of the Sundman’s inequality (see [15]). Here,
the inequality is formulated for the case of S2.
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Lemma 4.4 Let q = q(t) be a solution of (2.2) for σ = 1, with third component of the
angular momentum c = (q − q̃) × p) ⋅ q̃ and energy h given by (3.1). _en, along this
solution, the following inequality holds:

c2 ≤ 4
2(q ⋅ q̃)2 − 1

I((q ⋅ q̃)Ï − h) .

Proof It follows from Lemma 4.1 that

Ï = ∥p∥2q ⋅ q̃ −
1

q ⋅ q̃
(h − 1

2
∥p∥2) =

∥p∥2

2q ⋅ q̃
(2(q ⋅ q̃)2 − 1) +

h
q ⋅ q̃

,

which implies that

∥p∥2 =
2q ⋅ q̃

2(q ⋅ q̃)2 − 1
( Ï − h

q ⋅ q̃
) .

Using the Cauchy–Schwarz inequality, we obtain that

c2 ≤ ∥q − q̃∥2∥p∥2 =
4

2(q ⋅ q̃)2 − 1
I((q̃ ⋅ q)Ï − h) ,

which completes the proof.

Now, we are going to prove a modiûed version of the Sundman _eorem related
to total collision (see [15, 19]), which is adapted to the Kepler problem on S2.

_eorem 4.5 Let q(t) be a solution of (2.2) for σ = 1. If q(t) → q̃ when t → t∗ ∈ R,
then c = 0.

Proof Suppose that q → q̃ when t → t∗ ∈ R, where we assume that t∗ > 0 (analo-
gously it is proved for t∗ < 0). _en it follows from Lemma 4.1 that Ï(t) > 0 for t ∼ t∗;
therefore, İ is increasing, which implies that limt→t∗ İ(t) exists. If İ → +∞ when
t → t∗, then I will be increasing for t ∼ t∗. Moreover, I → 0,which clearly forces I < 0
for t ∼ t∗, which is impossible. Now, assume that İ → k > 0, then İ > 0 for t ∼ t∗, and
by the same above argument, we obtain a contradiction. _erefore, limt→t∗ İ(t) ≤ 0
and thus, İ(t) ≤ 0 for all t ∈ J = (t∗ −є, t∗], with є small enough. Since q ⋅ q̃→ 1when
t → t∗, then for є small enough, we can assume that

√
3/2 ≤ q ⋅ q̃ ≤ 1, for all t ∈ J,

which implies that

(4.2) 1 ≤
1

2(q ⋅ q̃)2 − 1
≤ 2.

By using (4.2) to get an upper bound in the inequality given by Lemma 4.4,we obtain
that c2 ≤ 8I(Ï − h), andmultiplying this inequality by −İ/I ≥ 0, we get that

−c2 İ
I
≤ −8Ï İ + 8hİ, ∀t ∈ J .

By taking t∗ − є < t1 < s ≤ t∗, with t1 ûxed and integrating in (t1 , s), it follows that

c2 ln( I1
I(s)

) ≤ −4(I(s) − I1) + 8h(I(s) − I1),
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where I1 = I(t1). Notice that we can take є small enough and s close enough to t∗ to
obtain that ln(I1/I(s)) > 0, thus

(4.3) c2 ≤ −4(I(s)2 − I21 )
ln(I1/I(s))

+
8h(I(s) − I1)
ln(I1/I(s))

.

Finally,wemake s → t∗; then the right side of (4.3) tends to zero and c = 0 as claimed.

5 Phase Portrait of the Kepler Problem on S2 and H2

_e surfaces S2 andH2 can be parametrized by

(5.1) x = snσ θ cosφ, y = snσ θ sinφ, z = csnσ θ , φ ∈ [0, 2π],
where θ ∈ [0, π] if σ = 1 and θ ∈ [0,+∞) if σ = −1. In these coordinates, the equations

(a) (b)

Figure 3: (a) spherical coordinates and central projection of S2 onto TNS2 . (b) Hyperbolic
coordinates and central projection ofH2 onto TNH2 .

ofmotion become
θ̈ = φ̇2 snσ θ csnσ θ − µ cscσ 2 θ ,

φ̈ = −2θ̇φ̇ ctnσ θ ,

(5.2)

with φ ∈ [0, π], θ ∈ (0, π) if σ = 1 and θ ∈ (0,+∞) if σ = −1. Additionally, the
constant ofmotion given by the angularmomentum is expressed as c = φ̇ snσ

2 θ, thus
it is suõcient to solve the ûrst equation of (5.2), which becomes

(5.3) θ̈ = c2 ctnσ θ cscσ 2 θ − µ cscσ 2 θ .

By deûning the variable v = θ̇, the equation (5.3) can be written as the Hamiltonian
system of one degree of freedom

θ̇ = v ,

v̇ = c2 cscσ 2 θ(ctnσ θ − µ
c2

) ,

(5.4)
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with Hamiltonian function

(5.5) Kσ(θ , v) =
v2

2
+

c2

2 snσ 2 θ
− µ ctnσ θ .

5.1 Phase Portrait for the Case c ≠ 0

Let h = Kσ a ûxed energy level, and note that (5.5) induces the deûnition of the aux-
iliary function

(5.6) Fh(θ) = 2h + 2µ ctnσ θ − c2 cscσ 2 θ ,
which satisûes Fh(θ) ≥ 0, for all θ = θ(t) solution of (5.3). Also, the orbits of the
Hamiltonian system (5.4) are given by the curves (θ ,±

√
Fh(θ)); thus, in order to

determine the phase portrait of (5.4), it is suõcient to know the graph of the function
Fh(θ). We start analyzing the phase portrait on S2. We do σ = 1 in each equation
and deûnition depending on σ . _e following theorem characterizes the orbits of the
system (5.4) for σ = 1.

_eorem 5.1 Let c ≠ 0 and h∗ = − 1
2c2 (µ

2 − c4). If h ≥ h∗, then every orbit of the
system (5.3) is periodic and its phase portrait in the plane (θ , θ̇) is as in Figure 4(b), in
particular, the �ow is complete. Moreover, there are values θ1 , θ2 ∈ (0, π) such that the
solution θ(t) of (5.3) satisûes θ1 ≤ θ(t) ≤ θ2. In particular, [θ1 , θ2] ⊂ (0, π/2) if and
only if h ∈ [h∗ , c

2

2 ) . Finally, there are no solutions of the system (5.3) if h < h∗.

Proof It is veriûed that for σ = 1, the function Fh(θ) has an absolute maximum
θ∗ = arccot(µ/c2), which is given by

Fh(θ∗) = 2h + 1
c2

(µ2 − c4),

where, also,we get that (θ∗ , 0) is an equilibrium solution, being a center of the system
(5.4). Now, from the condition Fh(θ) ≥ 0, in order to assure the existence of the solu-
tion θ(t), we must impose that the constant of energy associated with such solution
satisûes

h ≥ −
1

2c2
(µ2 − c4) = h∗ .

On the other hand, by deûning the new variable u = cot θ and by replacing in the
equation Fh(θ) = 0, we obtain the quadratic equation

u2 −
2µ
c2

u + (c2 − 2h)
c2

= 0,

whose solutions are
u± =

µ
c2
±

1
∣c∣

√
2(h − h∗),

both reals, since h ≥ h∗ and u+ > u− > 0, if and only if, h < c2
2 , while u− > 0 > u+ if

and only if h > c2
2 . _us, the solutions of the equation Fh(θ) = 0 are given by

θ1 = arccotu+ , θ2 =

⎧⎪⎪
⎨
⎪⎪⎩

arccotu− , if h ≤ c2
2 ,

π + arccotu− , if h > c2
2 .
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_erefore, we have proved the existence of values θ1 , θ2 ∈ (0, π) such that θ1 ≤
θ(t) ≤ θ2, for all time t in which the solution is deûned. From the above arguments,
we conclude that if h < c2

2 , then θ(t) is contained on the upper hemisphere, since
θ1 , θ2 ∈ (0, π/2), also limh→∞ θ1 = 0 and limh→∞ θ2 = π, so the range of θ approaches
to the interval (0, π) for large values of h. It follows from the above analysis that the
graph of Fh is as in Figure 4(a), and therefore, the phase portrait given by the curves
(θ ,±Fh(θ)) is as in Figure 4.

h > 0

h = 0

h < 0
h = h*

Θ

Θ
  2

0.5 1.0 1.5 2.0 2.5 3.0

-20

-15

-10

-5

5

(a) (b)

Figure 4: Graph of Fh(θ). (a) µ > c2 ; (b) µ ≤ c2 .

Remark 5.2 From the phase portrait in Figure 4,we observe that there are no solu-
tions tending to collision, i.e., θ(t) ↛ 0. _is property agrees with _eorem 4.5. We
observe also that there are not antipodal singularity either, i.e., θ(t)↛ π.

Now we analyze the phase portrait onH2. As in the previous case, here we set σ =
−1 in each equation and deûnition depending on σ . _e following result characterizes
the orbits of the system (5.4) for σ = −1.

_eorem 5.3 Let h = K−1 be the constant of energy deûned in (5.5), suppose that
c ≠ 0 and deûne the constant h∗ = −(c4 + µ2)/2c2.

If c2 < µ, then the following hold:
(i) (θ∗ , 0), with θ∗ = arccoth( µ

c2 ) is an equilibrium solution of the system (5.4) and
it is a center stable in the sense of Lyapunov;

(ii) _emotion is periodic if h∗ ≤ h < −µ;
(iii) _emotion is parabolic if h = −µ (i.e., v → 0 when θ →∞);
(iv) _emotion is hyperbolic if h > −µ (i.e., v → v0 ≠ 0 when θ →∞);
(v) If h ≤ h∗, there is no motion.

If c2 ≥ µ, then the following hold:
(vi) _emotion is hyperbolic if h > −µ;
(vii) If h ≤ −µ, there is no motion.
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Proof First we assume that c2 < µ. To prove (i), from equation (5.4), it follows that
(θ∗ , 0) is an equilibrium solution and it is well deûned, because µ

c2 > 1. By shi�ing
the variables,we obtain theHamiltonian H(θ+θ∗ , v), and its Taylor development up
to order 2 around the origin has quadratic part

H2 = (
θ
v)

T

(
(c2−µ)2(c2+µ)2

c6 0
0 1

2
)(

θ
v) ,

which is positive deûnite, and therefore (θ∗ , 0) is a center stable in the sense of Lya-
punov. If we make σ = −1 in the auxiliary function (5.6), it is clear that if (θ , v) is a
solution of (5.4), then ∣v∣ =

√
Fh(θ). _us, to prove (ii), (iii), (iv), and (v), we need

only study the graph of Fh . By straightforward computations we get

lim
θ→0+

Fh(θ) = −∞ and lim
θ→+∞

Fh(θ) = 2(µ + h),

and the equation Fh(θ) = 0 has solutions

(5.7) θ± = arccoth[
µ ±

√
4µ2 + 2c2h + c4

c2
] .

If c2 < µ, then Fh(θ) has an absolute maximum in θ∗ with Fh(θ∗) = c4+2c2h+µ2

c2 ≥ 0
if and only if h ≥ h∗. Now, if h + µ ≥ 0, then only θ+ is real and θ+ ≤ θ(t) for all
time t in which the solution is deûned. If h + µ < 0 and h ≥ h∗, then both values
θ± are reals and θ+ ≤ θ(t) ≤ θ− for all time t, where the solution is deûned. Finally,
if h < h∗, then Fh(θ) < 0, which implies that there is no motion. From the above
arguments, we conclude that for c2 < µ, the graph of Fh is as in Figure 5(a), while the
orbits of the system (5.4) are the curves (θ ,±

√
Fh(θ)) represented in Figure 5(b). If

we make θ → ∞ in the equation K(θ , u) = h, we get v2 → 2(h + µ), which implies
that themotion is elliptic when µ + h < 0, is parabolic if µ + h = 0, and is hyperbolic
if µ + h > 0.
For the case c2 > µ, the system (5.4) does not have equilibrium solutions. On the

other hand, the function Fh(θ) does not have critical points; it is always increasing,
Fh(θ) → 2(µ + h)− when θ → ∞, and it cuts the θ axis at a single point θ+ given
in (5.7), which exists if and only if µ + h > 0. For µ + h ≤ 0 we have Fh(θ) < 0, in
which case there is nomotion. From the above arguments, it follows that the graph of
Fh(θ) is as in Figure 6(a), and the phase portrait is as in Figure 6(b). Similarly to the
previous case, we get that if θ → ∞. _en v tends to a positive value, and therefore,
themotion is hyperbolic, which completes the proof.

From _eorem 5.3 we obtain the following corollary.

Corollary 5.4 If c ≠ 0, then there are no solutions of (5.4) tending to collision.

Remark 5.5 We observe that from_eorems 5.1 and 5.3we get that all non-collision
bounded orbits are periodic in both cases σ = ±1. _is fact was already proved by H.
Liebmann in 1902 [13].
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(a)

(b)

Figure 5: (a) Graph of Fh(θ) for σ = −1, c2 < µ and diòerent values of energy. (b) Phase portrait
of the system (5.4) for σ = −1 and c2 < µ.

(a) (b)

Figure 6: (a) Graph of Fh(θ) for c2 > µ and diòerent values of the energy parameter. (b) Phase
portrait of the system (5.4) for c2 > µ.

5.2 Phase Portrait for the Case c = 0

It is clear that, for c = 0, the particle moves along of a geodesic containing the ûxed
and the free particle. In this case, (5.3)–(5.6) become

θ̈ = −µ cscσ 2 θ , h =
v2

2
− µ ctnσ θ ,(5.8)

θ̇ = v , v̇ = −µ cscσ 2 θ ,(5.9)
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and
Fh(θ) = 2h + 2µ ctnσ θ ,(5.10)

with θ in its corresponding phase space.

5.2.1 Phase Portrait for c = 0 on S2

In this case, we take σ = 1 in (5.8)–(5.10), and we deûne

(5.11) θ1 =

⎧⎪⎪
⎨
⎪⎪⎩

π + arccot(− h
µ ) if h > 0,

arccot(− h
µ ) if h ≤ 0.

Notice that limh→+∞ θ1 = π and limh→−∞ θ1 = 0. It is easy to see that Fh(θ) ≥ 0 if
and only if θ ∈ (0, θ1], so the graphic of Fh is as in Figure 7(a). _e following result
characterizes the orbits of the system (5.9).

_eorem 5.6 If c = 0 and θ(t) is a solution of the ûrst equation of (5.8), for σ = 1, then
θ(t) remains in the interval (0, θ1] for all time in which the solution is deûned, with θ1
deûned in (5.11). If h < 0, then the orbit does not cross the equator, i.e., θ1 ∈ (0, π/2),
if h = 0, the orbit crosses the equator only once, i.e., θ1 = π/2, and if h > 0, the orbit
crosses the equator twice, i.e., θ1 ∈ (π/2, π). _e phase portrait of the system (5.9) is as
Figure 7(b).

Proof Along a solution of (5.8),we have that Fh(θ(t)) ≥ 0,which occurs if and only
if θ(t) ∈ (0, θ1] for all time in which the solution is deûned. If we consider the graph
of Fh given in Figure 7(a) and the fact that the solution satisûes ∣θ̇∣ =

√
Fh(θ), then

we obtain that the phase portrait is as in Figure 7(b), which concludes the proof.

h > 0

h = 0

h < 0

� Fh

Θ
0.5 1.0 1.5 2.0 2.5 3.0

-30

-20

-10

10

20

30

(a) (b)

Figure 7: (a) Graph of Fh(θ). (b) Phase portrait for the system (5.9)

Remark 5.7 An immediate consequence obtained from _eorem 5.6 is that for
c = 0, there are no solutions tending to antipodal singularity. _is can easily be seen
from the fact that all solution θ(t) ∈ (0, θ1], with θ1 ∈ (0, π).
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Remark 5.8 An important diòerence between the classical Newtonian collinear
Kepler problem and the Kepler problem on S2 for c = 0 is that in the last case every
solution comes from a collision and goes to a collision, in both cases with equal ve-
locity. But in the ûrst one, this kind of behaviour holds only for negative energy, since
for the nonnegative energy, the particle comes from (or tends to) a collision and tends
to (or comes from) inûnity with constant velocity.

5.2.2 Phase Portrait for c = 0 on H2.

_e following result characterizes the phase portrait of the system (5.9) for σ = −1.

_eorem 5.9 If c = 0 and θ(t) is a solution of the ûrst equation of (5.8), for σ = −1,
then the following statements hold:
(i) All solutions go to (or come from) collision.
(ii) If h + µ < 0, then the motion is bounded, with θ ∈ (0, arccoth(−h/µ)) and the

orbits are elliptic.
(iii) If h + µ = 0, then the orbit is parabolic.
(iv) If h + µ > 0, then the orbits are hyperbolic.
_e phase portrait is as in Figure 8(b).

Proof It veriûes that, for σ = 1 and each value of h, Fh is decreasing for all θ > 0
and Fh(θ) → +∞ when θ → 0, which implies that all orbits are collision ones. On
the other hand, Fh(θ) → 2(µ + h)+ when θ → ∞. If h + µ ≥ 0, then Fh(θ) > 0 for
all θ > 0. If h + µ < 0, then Fh(θ) ≥ 0 if and only if θ ∈ (0, arccoth(−h/µ)), which
implies that the motion is bounded. _us, the graph of Fh is as in Figure 8(a). Since
the orbits are contained in the curves (θ ,±

√
Fh(θ)), it follows that the phase portrait

is as in Figure 8(b). Finally, if θ → ∞ in the second equation of (5.8), we obtain that
θ̇ → 2(h + µ), from which it follows that the orbit is elliptic if h + µ < 0, parabolic if
h + µ = 0 and hyperbolic if h + µ > 0.

(a) (b)

Figure 8: (a) Graph of Fh(θ). (b) Phase portrait of the system (5.9) for σ = −1
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6 Central Projection of the Kepler Problem on S2 and H2

In order to establish an analogy between the conic orbits of the Newtonian Kepler
problem and the ones deûned on the surfaces S2 and H2 as previously, we propose
to identify every point of the surface with a point in the plane via central projection
from the surface to the plane.

6.1 Central Projection for the Solutions of the Kepler Problem on S2

Points on the upper hemisphere are identiûed with a point in the tangent plane at the
north pole by means of central projection, while points on the lower hemisphere are
identiûedwith their corresponding antipodal pointwhich is on the upper hemisphere
and then we proceed as previously described. In a similar way, we identify each point
of the equator with its antipodal point and it is mapped with the inûnity of R2. No-
tice that this correspondence is 2 to 1. Next, we write the equations of motion of the
“projected problem” in suitable coordinates.

We start by establishing the correspondence between the points on S2 and R2 via
inverse central projection (we call it simply central projection) deûned from the upper
hemisphere onto the tangent plane TNS2, identiûed with R2. Such a transformation
is given by

Φ+∶ H+ Ð→ R2

(x , y, z) z→ ( x
z ,

y
z ) .

In order to extend Φ+ to both hemispheres H+ ∪ H−, we can identify every point
x ∈ H− with its antipodal −x ∈ H+ and thus, Φ+ extends to the whole sphere as
Φ∶S2 → R2 ∪ {∞}; it is deûned in spherical coordinates as

Φ(θ , φ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Φ+(θ , φ) if θ ∈ (0, π/2),
∞ if θ = π/2,
Φ+(π − θ , π + φ) if θ ∈ (π/2, π),

where Φ+(θ , φ) = tan θ(cosφ, sinφ). _us, by means of central projection, we can
project points from both the upper and lower hemisphere. We emphasize that points
on the equator are in correspondence with the inûnity of R2.

Now, we will show that if (θ(t), φ(t)) is a solution of the system (5.2) (with c ≠ 0
and σ = 1), then Φ(θ(t), φ(t)) is a conic orbit in TNS2. For this purpose,we consider
q the position of a particle ofmass m and Q the point where the straight line passing
through the origin and q, intersects the plane TNS2 (see Figure 3(a)). Let θ be the
angle determined by the vector

Ð→Oq and the z axis. By deûning r = tan θ, with 0 ≤
θ < π/2, we have that r = ∣N − Q∣. _us, the point q = (sin θ cos θ , sin θ sinφ, cos θ)
becomes Q = Φ(q) = (r cosφ, r sinφ). In these coordinates it is veriûed that the
equation (5.3) is written as

(6.1) r̈ = −V ′(r),

with V(r) = VKep(r) + Ṽ(r), where

(6.2) VKep(r) =
c2

2r2
−

µ
r
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is the eòective potential of the planar Kepler problem, and

Ṽ(r) = −2µr + (
3c2

2
− 2h) r2 − µr3 + (

c2

2
− h) r4 ,

where h is the energy constant deûned in (5.5). Note that the system (6.1) corresponds
to themotion of a particle in a central ûeld, and it has energy

(6.3) Γ(r, ṙ) = 1
2
ṙ2 + V(r).

_e phase portrait of the Hamiltonian system associated to (6.3) can be seen in Fig-
ure 9.

Figure 9: Phase portrait associated with theHamiltonian Γ (equation (6.3)).

In order to describe how the trajectories are in the plane TNS2,wemust determine
the trajectory r(t) or some reparameterization of it. From the conservation of the
third component of the angular momentum, it follows that φ varies monotonically
with respect to the time; therefore, it can be considered as a new time that is denoted
by ′ ≡ d

dφ . Let us deûne the new variable ρ = 1/r, and it is easy to check that

(6.4) ρ′ = − θ̇
c
, ρ′′ = − sin2 θ θ̈

c2
.

By replacing (6.4) in (5.3) (with σ = 1), we obtain that ρ satisûes the diòerential equa-
tion of a nonhomogeneous harmonic oscillator

(6.5) ρ′′ + ρ = µ
c2
,

whose general solution is given by ρ(φ) = µ
c2 + ( ρ0 − µ

c2 ) cos(φ − φ0). Considering
that ρ = cot θ, then by ûxing an energy level h in (5.5) and from the ûrst relation given
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in (6.4), we get that

(6.6) r(φ) = p
1 + e cos(φ − φ0)

,

with

p = c
2

µ
and e =

¿
Á
ÁÀ1 +

2c2
µ2 (h − c

2

2
) .

It is veriûed that in TNS2, (6.6) represents the polar equation of a conicwith one focus
at the origin and eccentricity e. From _eorem 5.1, we conclude the following.
(a) Elliptic orbits in TNS2 come from the orbits in S2 which are contained in H+,

since 0 ≤ e < 1 if and only if h∗ ≤ h < c2
2 (see Figure 10(a)).

(b) Parabolic orbits in TNS2 come from the orbits in S2 which are tangent to the
equator, since e = 1 if and only if h = c2/2 (see Figure 10(b)).

(c) Hyperbolic orbits in TNS2 come from the orbits in S2 that cross the equator, since
e > 1 if and only if h > c2/2 (see Figure 10(c)).

(a) (b) (c)

Figure 10: Central projection for the orbits of the Kepler problem on S2 onto TNS2 for diòerent
values of the energy. (a) h∗ < h < c2

2 . (b) h = c2

2 . (c) h > h∗.

6.2 Central Projection for the Solutions of the Kepler Problem on H2

We consider the straight line from the origin O = (0, 0, 0) to a point Q ∈ H2. We
deûne the central projection of the point Q ∈ H2 to be the point P ∈ TO′H2 given by
the intersection between the segment OQ, and the plane z = 1 (here O′ = (0, 0, 1) is
the origin of the plane z = 1). Consider the parametrization of H2 given in (5.1) and
let Q ∈ H2 with the hyperbolic coordinates (θ , ϕ). _en we have that Φ∶H2 → D2,
where D2 is the Poincaré disk, is given by Q ↦ P = Φ(θ , ϕ) = tanh θ(cos ϕ, sin ϕ).
We deûne the variable r = tanh θ, then it is veriûed that 0 < d(O′ , P) = r < 1, where
r = 1 corresponds to the inûnity. _us, to describe the central projection of an orbit
in H2, it will be suõcient to determine r. In these coordinates, the system (5.3), as
well as in the case of S2, assumes the form (6.1), with V(r) = VKep(r) + Ṽ(r), where
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VKep(r) is as in (6.2) and

Ṽ(r) = 2µr + (
3c2

2
+ 2h) r2 − µr3 − (

c2

2
+ h) r4 .

_eHamiltonian function associatedwith the system is as in (6.3). Now, taking a ûxed
energy level γ = Γ(r, ṙ), we have that given c, µ and h, the level curves cut the line
r = 1 (i.e., the inûnity) in two possible points ṙ = ±

√
−3c2 − 2h + 2γ. For the energy

level γ0 = (3c2 − 2h)/2, the level curve cuts the straight line r = 1 at exactly one point
and the r axis at

r = (−µ +
√
c4 + 2c2h + µ)/(c2 + 2h).

Also, since ṙ cannot tend to inûnity, because 0 < r < 1 and γ is a real constant, then
by symmetry of the Hamiltonian Γ(r, ṙ) with respect to the variable ṙ, we have that
the level curve Γ = γ0 must close at (1, 0); thus, it must be similar to a homoclinic
curve. For values of the energy γ > γ0, the level curve cuts the straight line r = 1
in two points, while for γ < γ0, the level curve does not cut the straight line r = 1.
_en it corresponds to a closed orbit contained inside the curve Γ = γ0. _us, the
phase portrait in the variables (r, ṙ) is as in Figure 11. We have shown that if values

Figure 11: Phase portrait associated with theHamiltonian Γ(r, ṙ) for the case σ = −1 (equation
(6.3)).

of the parameters c, µ, and h are ûxed, the projected system has elliptic orbits, which
are identiûed with energy levels γ < γ0, one parabolic orbit, identiûed with γ = γ0 ,
and hyperbolic orbits, which are identiûed with γ > γ0. Nevertheless, this analysis
can be more speciûc if we consider a new variable and also, a new time, as follows.
We consider the variable ρ = coth θ = 1/r, and from the conservation of the third
component of the angular momentum, we obtain that ϕ(t) is monotone; then it can
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be considered as a new time ϕ. By using prime to denote d
dϕ , we have that

(6.7) ρ′ = − θ̇
c
, ρ′′ = − sinh2 θ θ̈

c2
.

By replacing (6.7) in (5.3), we get that ρ satisûes the diòerential equation of a nonho-
mogeneous harmonic oscillator

(6.8) ρ′′ + ρ = µ
c2
,

whose general solution is given by ρ(φ) = µ
c2 + ( ρ0 + µ

c2 ) cos(φ − φ0). Taking into
account that ρ = cot θ, thenûxing an energy levelK = h in (5.5) andusing the relations
given in (6.4), it follows that

(6.9) r = tanh θ =
p

1 + e cos(φ − φ0)
,

with p = c2/µ and e =
√

1 + 2c2/µ2(h + c2/2). Equation (6.9) describes conics in
H2. If e = 0, then the conic is a circumference, which in terms of the energy means
h = h∗. If e ≥ 1, then the conic is not bounded. To determine when the conic is an
ellipse, we must require that it is contained inside the disk, i.e., it does not cut the
boundary, whereby we will determine the conditions so that such cuts do not exist.
Where r → 1 in (6.9), we get the equation

1 =
p

1 + e cos(φ − φ0)
,

whose solutions are given by

φ± = φ0 ± arccos(
c2 − µ

√
c4 + 2c2h + µ2

) .

If c2 − µ < 0, then the above solutions exist if and only if h > −µ; therefore, the conic
must be an ellipse. In particular, it is a circumference when h = h∗. _e conic will be
tangent to the boundary of the disk if and only if h = −µ, since in this case we have
φ+ = φ− and then the conic is an elliptic parabola. _e conic will be a parabola if
h ∈ (−µ,− c

2

2 ), a hyperbolic parabola if h = −c2/2 and a hyperbola if h ∈ (−c2/2,∞)

(see Figure 12(a)). For the case c2 − µ ≥ 0, we know that solutions exist if and only if
h > −µ and we obtain two diòerent solutions θ±. If µ < c2 ≤ 2µ, then the conic will
be a parabola if h ∈ (−µ,−c2/2] and a hyperbola if h ∈ (−c2/2,∞). If c2 > 2µ, then
the conic will be a hyperbola, for all h ∈ (−µ,∞) (see Figure 12 (b) and see [18]).

7 Regularization

In this section, we propose a regularization of Levi–Civita type, for the Kepler prob-
lem deûned on both surfaces S2 and H2 (in fact, it is an adaptation of this type of
Hamiltonian regularization [12]). Remember that a regularization of the Levi–Civita
type consists in making a change of coordinates, a suitable time-rescaling and make
use of the constant of energy, in order to obtain a regular ûeld [3]. Once such a ûeld
is obtained, we can carry out a qualitative study of the regularized problem, as for
example, in [11] for the Newtonian case and also by several other authors.
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(a) (b)

Figure 12: (a) Case c2 − µ < 0. Orbits for µ = 2.5, c = 0.5, ϕ = 0. Γ1 ∶ h = h∗; Γ2 ∶ h ∈

(h∗ ,−µ); Γ3 ∶ h = −µ; Γ4 ∶ h ∈ (−µ, c2/2); Γ5 ∶ h =
c2

2 ; Γ6 ∶ h ∈ (c2/2,∞). (b) Case
c2 − µ ≥ 0. Orbits for µ = 2, c =

√

3, ϕ = 0.

By using Cartesian coordinates and introducing the energy constant deûned in
(3.1), we obtain the following system of second order ODE’s

ẍ = µσxz(2z2 − 3)
[σ(1 − z2)]3/2

− 2σhx ,

ÿ = µσ yz(2z2 − 3)
[σ(1 − z2)]3/2

− 2σhy,

z̈ = µσ(1 − 2z2)

[σ(1 − z2)]1/2
− 2σhz.

(7.1)

7.1 Regularization of the Kepler Problem on S2

We know that for σ = 1, the system (2.3) has both for collision and antipodal singu-
larities, which are given by the points q = q̃ and q = −q̃ , respectively (either θ = 0 or
θ = π, in spherical coordinates).

7.1.1 Regularization in Cartesian Coordinates

_e following result globally regularizes the equations ofmotion of the Kepler prob-
lem deûned on S2 in Cartesian coordinates given by (7.1); i.e., both singularities are
removed.

_eorem 7.1 _e Kepler problem on S2 in Cartesian coordinates given by (7.1) admits
a Levi-Civita type regularization, i.e., the singularities are regularized by introducing
the change of coordinates

(7.2) ζ = (ζ1 , ζ2 , ζ3) =(
x

√
1 − z2

,
y

√
1 − z2

,
z

√
1 − z2

) ,
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and the new time τ given by

(7.3) dt = (1 − z2)3/2dτ.

Proof From (7.2) we have

(7.4) ∥ζ∥2 = ζ2
1 + ζ2

2 + ζ2
3 =

1
1 − z2 ;

thus, the following relations hold:

(7.5) x = ζ1
∥ζ∥

, y = ζ2
∥ζ∥

, z = ζ3
∥ζ∥

.

_en the equations ofmotion (7.1) can be rewritten as

ẍ = µζ1ζ3
∥ζ∥

(2ζ2
3 − 3∥ζ∥2) − 2h ζ1

∥ζ∥
,

ÿ = µζ2ζ3
∥ζ∥

(2ζ2
3 − 3∥ζ∥2) − 2h ζ2

∥ζ∥
,

z̈ = − µ
∥ζ∥

(2ζ2
3 − ∥ζ∥2) − 2h ζ3

∥ζ∥
.

(7.6)

Let prime denote d
dτ . From (7.3) and (7.4), we obtain the relation

(7.7) ż = z′∥ζ∥3 .

On the other hand, from (7.2) we have that

(7.8) ζ′3 =
dζ3
ds

=
dζ3
dt
dt
ds

= ż,

which combined with (7.7) yields

z′ = ζ′3
∥ζ∥3 .

Diòerentiating in (7.4) gives

(7.9) ∥ζ∥′ = ζ3ζ′3
∥ζ∥

.

Now, diòerentiating the ûrst equation of (7.5) and using (7.9), we obtain the relation

ẍ = ∥ζ∥5ζ′′ + ζ3ζ′1ζ′3∥ζ∥3 − ζ1ζ′23 ∥ζ∥3 − ζ1ζ3ζ′′3 ∥ζ∥3 .

Substituting it into the ûrst equation of (7.6) we obtain

∥ζ∥5ζ′′ + ζ3ζ′1ζ′3∥ζ∥3 − ζ1ζ′23 ∥ζ∥3 − ζ1ζ3ζ′′3 ∥ζ∥3 =
µζ1ζ3
∥ζ∥

(2ζ2
3 − 3∥ζ∥2) − 2h ζ1

∥ζ∥
,

or equivalently,

(7.10) ζ′′1 +
ζ3ζ′3
∥ζ∥2 ζ

′
1+[

2h
∥ζ∥6 +

3µζ3
∥ζ∥4 −

2µζ3
3

∥ζ∥6 −
ζ′23
∥ζ∥2 −

ζ3ζ′′3
∥ζ∥2 ] ζ1 = 0.

We proceed similarly for the second equation of (7.5) to obtain the relation

ÿ = ∥ζ∥5ζ′′ + ζ3ζ′2ζ′3∥ζ∥3 − ζ2ζ′23 ∥ζ∥3 − ζ2ζ3ζ′′3 ∥ζ∥3 ,
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which being replaced into the second equation of (7.6) gives

(7.11) ζ′′2 +
ζ3ζ′3
∥ζ∥2 ζ

′
2+[

2h
∥ζ∥6 +

3µζ3
∥ζ∥4 −

2µζ3
3

∥ζ∥6 −
ζ′23
∥ζ∥2 −

ζ3ζ′′3
∥ζ∥2 ] ζ2 = 0.

It follows from (7.8) that z̈ = ζ′′3 ∥ζ∥3; then replacing into the third equation of (7.6)we
obtain the third regularized equation

(7.12) ζ′′3 =
µ

∥ζ∥2 −
2µζ2

3

∥ζ∥4 −
2hζ3
∥ζ∥4 .

Finally, replacing (7.12) into (7.10) and (7.11), the following regularized system is ob-
tained:

ζ′′1 +
ζ3ζ′3
∥ζ∥2 ζ

′
1+[

2h
∥ζ∥4 +

2µζ3
∥ζ∥4 −

ζ′23
∥ζ∥2 ] ζ1 = 0,

ζ′′2 +
ζ3ζ′3
∥ζ∥2 ζ

′
2+[

2h
∥ζ∥4 +

2µζ3
∥ζ∥4 −

ζ′23
∥ζ∥2 ] ζ2 = 0,

ζ′′3 +
2µζ2

3

∥ζ∥4 +
2hζ3
∥ζ∥4 −

µ
∥ζ∥2 = 0.

(7.13)

It is clear that a�er the change of coordinates and the time-rescaling, the equations of
motion (7.13) have no singularities, because for (x , y, z) ∈ S2, the term ∥ζ∥ deûned in
(7.4) is nonzero. In addition, since 1 − z2 /→∞, ∥ζ∥ /→ 0, and the proof is concluded.

7.1.2 Pseudo-regularization in Spherical Coordinates and Angular Momen-
tum c ≠ 0

In this case we have used the term pseudo-regularization, because for c ≠ 0 no sin-
gularities are encountered. Nevertheless, even though the solutions do not tend to
collision, we get some kind of nice “regularized” formulation of the equations by do-
ing a change of coordinates, a suitable time-rescaling, andmaking use of the constant
of energy (Levi–Civita type regularization), in order to obtain a regularized formula-
tion of the problem, which is equivalent to a harmonic oscillator.

_eorem 7.2 _e Kepler problem on S2 in spherical coordinates with the constant
of motion given by the third component of the angular momentum c ≠ 0, deûned by
the system (5.3) ( for σ = 1), admits a pseudo-regularization, which is carried out by
considering φ as the new time and introducing the change of coordinates

δ = cot θ , θ ∈ [0, π].

Proof _e proof follows directly from the process described in (6.4) and the ob-
tained harmonic oscillator is given by (6.5), which has associated a regular vector
ûeld.
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We also note that the energy integral (5.5) becomes

(7.14) δ′2 + (δ − µ
c2

)
2
=

2(h − h∗)
c2

,

where h∗ is the constant deûned in _eorem 5.1. From here we get that the singu-
larities in the new coordinates are determined by δ =∞, which occurs if and only if
θ = 0 or θ = π. _is proves that there are no solutions tending to collision in these
variables. _erefore, from (7.14) it follows that the orbits of the pseudo-regularized
system are as in Figure 13(a).

7.1.3 Regularization in Spherical Coordinates and Angular Momentum c = 0

In this case, themotion is carried out along a geodesic containing the poles. In con-
trast to the previous case, all orbits go to collision; therefore, singularities represent a
big problem in obtaining the solutions.

_eorem 7.3 _e Kepler problem on S2 in spherical coordinates with c = 0, deûned
by (5.8) ( for σ = 1) admits a Levi–Civita type regularization, which is carried out by
considering the change of coordinates

(7.15) θ = 2 arctanψ2

and the time-rescaling

(7.16) dt =
2 tan θ

2

sec2 θ
2

dτ.

Proof From (7.15) and (7.16), we obtain the following relations

θ̇ =
dθ
dτ
dτ
dt

= θ′
sec2 θ

2

2 tan θ
2

, θ′ = 4ψψ′

sec2 θ
2

,

which imply that

(7.17) θ̇ =
2ψψ′

tan θ
2

=
2ψ′

ψ
.

Also, replacing (7.17) in the second equation of (5.8), we obtain that the constant of
energy becomes

(7.18) 4ψ′2 − µ(1 − ψ4) = 2hψ2 .

We compute the second derivative of θ,

θ̈ =
d θ̇
dt

=
d θ̇
dτ
dτ
dt

= 2(
ψ′′ψ − ψ′2

ψ2 )
sec2 θ

2

2 tan θ
2

.

Replacing the above relations into the ûrst equation of (5.8), we have that

(7.19) (
ψ′′ψ − ψ′2

ψ2 )
sec2 θ

2

tan θ
2

= −µ csc2 θ .
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Finally, replacing (7.18) into (7.19) we obtain the equation

(7.20) ψ′′ = h
2
ψ − µ

2
ψ3 ,

which is called the Mathieu equation. _us, it is proved that through a change of
coordinate and a time-rescaling, equation (5.8) is regularized, and the regularized
equation is given by (7.20).

_e phase portrait of (7.20) is shown in Figure 13(b). Note that it conûrms the fact
that all solutions do not have collisions, and the orbits are closed for any value of h.

h = c
2 � 2

h < c
2 � 2

h > c
2 � 2

h = h*

∆

∆ '

0.5 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

(a)

Ψ '

Ψ

h > 0

h = 0

h < 0

-2 -1 1 2

-1.0

-0.5

0.5

1.0

(b)

Figure 13: (a) Phase portrait generated by level curves associated to (7.14) for the regularized
Kepler problem in S2 with angular momentum c ≠ 0. (b) Phase portrait generated by level
curves associatedwith (7.20) for the regularizedKepler problem in S2 with angularmomentum
c = 0.

Remark 7.4 _e above theorem shows a signiûcant diòerence with respect to the
Newtonian case. In fact, it is known that in the Newtonian case, a Levi–Civita regu-
larization gives a diòerential equation associated with a harmonic oscillator for any
value of c ([1,11,12,17,20]), while in this case, for c = 0, we obtain aMathieu equation.

7.2 Regularization of the Kepler Problem on H2

We already know that for σ = −1, the system (2.3) has a unique singularity that is due
to collision at q = q̃ (or θ = 0).

7.2.1 Regularization in Cartesian Coordinates

An analogous result to _eorem 7.1 is veriûed for the hyperbolic case.

https://doi.org/10.4153/CJM-2016-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-014-5


986 J. Andrade, N. Dávila, E. Pérez-Chavela, and C. Vidal

_eorem 7.5 _e Kepler problem on H2 in Cartesian coordinates given by (2.3) al-
lows a regularization of the Levi–Civita type, i.e., the singularities are regularized by
introducing the change of coordinates

(7.21) ρ = (ρ1 , ρ2 , ρ3) =(
x

√
z2 − 1

,
y

√
z2 − 1

,
z

√
z2 − 1

) ,

and the new time τ given by

(7.22) dt = (z2 − 1)3/2dτ.

Proof Let prime denote d
dτ . From (7.21) we have

(7.23) 9ρ92 = −ρ� ρ = −ρ2
1 − ρ2

2 + ρ2
3 =

1
z2 − 1

;

thus, the following relations hold

(7.24) x = ρ1

9ρ9
, y = ρ2

9ρ9
, z = ρ3

9ρ9
.

_en the equations ofmotion (2.3) can be rewritten as

ẍ = µρ1ρ3

9ρ9
(2ρ2

3 − 39 ρ92) + 2h ρ1

9ρ9
,

ÿ = µρ2ρ3

9ρ9
(2ρ2

3 − 39 ρ∥2) + 2h ρ2

9ρ9
,

z̈ = µ
9ρ9

(2ρ2
3 −9ρ92) + 2h ρ3

9ρ9
.

(7.25)

From (7.22) and (7.23), we obtain the relation

(7.26) ż = dz
dt

=
dz
dτ
dτ
dt

= z′ 9 ρ 93 .

On the other hand, from (7.21) we have that

(7.27) ρ′3 =
dρ3

ds
=
dρ3

dt
dt
ds

= −ż,

which, combined with (7.26) yields

z′ = − ρ′3
9ρ93 .

Diòerentiating with respect to τ in (7.23) gives

(7.28) 9ρ9′ = ρ3ρ′3
9ρ9

,

and diòerentiating twice in the ûrst equation of (7.24) and using (7.28) we obtain the
relation

ẍ = 9ρ 95 ρ′′ + ρ3ρ′1ρ′3 9 ρ 93 −ρ1ρ′23 9 ρ 93 −ρ1ρ3ρ′′3 9 ρ93 ,

and substituting it into the ûrst equation of (7.25) we obtain

9ρ95ρ′′+ρ3ρ′1ρ′39ρ93−ρ1ρ′23 9ρ93−ρ1ρ3ρ′′3 9ρ93 =
µρ1ρ3

9ρ9
(2ρ2

3−39ρ92)+2h ρ1

9ρ9
,
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or equivalently

(7.29) ρ′′1 +
ρ3ρ′3
9ρ92 ρ

′
1+[ −

2h
9ρ96 +

3µρ3

9ρ94 −
2µρ3

3

9ρ96 −
ρ′23
9ρ92 −

ρ3ρ′′3
9ρ92 ] ρ1 = 0.

We proceed similarly for the second equation of (7.24) to obtain the relation

ẏ = ρ′2 9 ρ 92 −ρ2ρ3ρ′3 ,
ÿ = 9ρ 95 ρ′′ + ρ3ρ′2ρ′3 9 ρ 93 −ρ2ρ′23 9 ρ 93 −ρ2ρ3ρ′′3 9 ρ93 ,

which being replaced into the second equation of (7.25) gives

(7.30) ρ′′2 +
ρ3ρ′3
9ρ92 ρ

′
2+[ −

2h
9ρ96 +

3µρ3

9ρ94 −
2µρ3

3

9ρ96 −
ρ′23
9ρ92 −

ρ3ρ′′3
9ρ92 ] ρ2 = 0.

It follows form (7.27) that z̈ = −ρ′′3 9 ρ93; then replacing into the third equation of
(7.25) we obtain the third regularized equation

(7.31) ρ′′3 =
µ

9ρ92 −
2µρ2

3

9ρ94 −
2hρ3

9ρ94 .

Finally, replacing (7.31) into (7.29) and (7.30), the following regularized system is ob-
tained

ρ′′1 +
ρ3ρ′3
9ρ92 ρ

′
1+[

2h
9ρ94 +

2µρ3

9ρ94 −
ρ′23
9ρ92 ] ρ1 = 0,

ρ′′2 +
ρ3ρ′3
9ρ92 ρ

′
2+[

2h
9ρ94 +

2µρ3

9ρ94 −
ρ′23
9ρ92 ] ρ2 = 0,

ρ′′3 +
2µρ2

3

9ρ94 +
2hρ3

9ρ94 −
µ

9ρ92 = 0,

which has no singularities, since the term 9ρ9, deûned in (7.23), is nonzero for any
ρ ∈ H2, and the proof is concluded.

7.2.2 Pseudo-regularization in Hyperbolic Coordinates and Angular
Momentum c ≠ 0.

We know that for σ = −1, the equation (5.3) has a singularity at θ = 0, which corre-
sponds to collision; however, there is no solution tending to collision if c ≠ 0. _e
following results shows that, as in Subsection 7.1.2 for positive curvature, it is pos-
sible to give a pseudo-regularization that transforms equation (5.3) into a harmonic
oscillator.

_eorem 7.6 _e Kepler problem on H2 in hyperbolic coordinates with the constant
ofmotion given by the third component of the angular momentum c ≠ 0, deûned by the
system (5.3), admits a pseudo-regularization, which is carried out by considering ϕ as
the new time and introducing the change of coordinates ξ = coth θ .

Proof _e proof follows directly from the process described in (6.7), and the ob-
tained harmonic oscillator is given by (6.8), which has associated a regular vector
ûeld.
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We also note that the energy integral (5.5) becomes

ξ′2 + ( ξ − µ
c2

)
2
=

2(h − h∗)
c2

,

where h∗ is the constant deûned in _eorem 5.3. Hence, it follows that the singularity
in the new coordinates is determined by θ = 0 if and only if ξ = ∞. _us, the phase
portrait is similar to the spherical case, and therefore, there are no solution tending
to collision.

7.2.3 Regularization in Hyperbolic Coordinates and Angular
Momentum c = 0

An analogous result to _eorem 7.3 for the spherical case is veriûed for H2.

_eorem 7.7 _e Kepler problem onH2 in hyperbolic coordinates with c = 0 deûned
by (5.8) admits a regularization of Levi–Civita type, which is carried out by considering
the change of coordinates

(7.32) dt = tanh θ
sech2 θ

dτ,

and the time-rescaling

(7.33) θ = arg tanh ξ2 .

Proof We proceed as in proof of the_eorem 7.3 to obtain from the energy constant
given in (5.8), the following relation

(7.34) 2ξ′2 = hξ2 + µ,
while the regularized equation is given by

(7.35) ξ′′ − h
2
ξ = 0.

_us,we have proved that bymeans of the time-rescaling (7.32) and the change of co-
ordinates (7.33), the equation (5.8) (for σ = −1) becomes a regular diòerential equation
(7.35).

Similarly to the spherical case, we observe that the change of coordinates given by
the transformation

(θ , θ̇) = T(ξ, ξ′) =( arg tanh ξ2 , 2ξ
′

ξ
) ,

makes theHamiltonian (5.5) (for σ = −1 and c = 0) assuming the following form

Ĥ(ξ, ξ′) = 2ξ′2

ξ2
−

µ
ξ2

.

We observe that the transform T veriûes

(
∂T(ξ, ξ′)
∂(ξ, ξ′)

)
T
J( ∂T(ξ, ξ′)

∂(ξ, ξ′)
) =

4
1 − ξ4

J ,
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where J = ( 0 1
−1 0 ) . So, in order to preserve the Hamiltonian structure, this transfor-

mation must be done along with a time-rescaling. From equation (7.34), we obtain
that the phase portrait of the regularized problem is as in Figure 14, which is formed
by three kind of orbits, essentially diòerent from each other.

h > 0

h > 0

h = 0

h = 0

h < 0

Ξ '

Ξ
-2 -1 1 2

-2

-1

1

2

Figure 14: Phase portrait of the regularized Kepler problem deûned on H2 with angular mo-
mentum c = 0.

Since θ ∈]0,∞[, ξ2 ∈]0,∞[ and therefore, our change of coordinates (7.33), is well
deûned, and also, the singularity (due to collision) in these variables is represented by
ξ = 0.
(a) For anegative energy level, the orbit is elliptic. _is orbit is periodic and bounded,

and represents an elastic bounce between the free particle and the ûxed body.
(b) For zero energy level, the orbit is parabolic and unbounded. _e particle goes

once to the attraction center with constant velocity in a ûnite time and then it
escapes without return.

(c) For a positive energy level, the orbit is hyperbolic and themotion is similar to the
zero energy.

8 Conclusions

We have studied the Kepler problem on surfaces of constant curvature, both positive
and negative. We ûrst show that it is enough to do the analysis on S2 an H2; then we
get the equations ofmotion and obtain the ûrst integrals of the problem, which allow
us to get the Hill’s regions. We prove that all singularities of this problem occur in
ûnite time, and we have been able to regularize all of them. We show these results
in Cartesian coordinates as well as in spherical and hyperbolic coordinates. For the
case of positive curvature and zero angular momentum, we show that the Levi-Civita
type regularization of the Kepler problem produces a Mathieu equation. By using
the central projection of S2 and H2 we show a nice analogy between the solutions
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(conic orbits) of the classical Newtonian Kepler problem and the solution curves of
the Kepler problem on S2 andH2.
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