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Abstract

In this paper we focus on the finite-horizon optimality for denumerable continuous-time
Markov decision processes, in which the transition and reward/cost rates are allowed to
be unbounded, and the optimality is over the class of all randomized history-dependent
policies. Under mild reasonable conditions, we first establish the existence of a solution
to the finite-horizon optimality equation by designing a technique of approximations from
the bounded transition rates to unbounded ones. Then we prove the existence of (> 0)-
optimal Markov policies and verify that the value function is the unique solution to the
optimality equation by establishing the analog of the 1to—Dynkin formula. Finally, we
provide an example in which the transition rates and the value function are all unbounded
and, thus, obtain solutions to some of the unsolved problems by Yushkevich (1978).
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) have been widely studied due to
their rich applications in telecommunication, queueing systems, population processes, epidemi-
ology, and so on; see, e.g. the survey [11], the monographs [8], [24], the recent works [9], [12],
[20], [21], and [25], and the extensive references therein. As is well known, the commonly used
optimality criteriain CTMDPs are the expected discounted, average, and the finite-horizon. The
former two criteria are on the infinite (time-) horizon case, and have been well studied; see, [3],
[41, [7], [8], [9], [11], [16], [20], [21], [23], [24], and [26] for the infinite-horizon expected
discounted criterion and [8], [10], [11], [12], [17], and [24] for the long run expected average
criterion. In this paper we focus on the finite-horizon criterion for CTMDPs, thus we shall not
pinpoint the earlier literature on the average and discounted CTMDPs with an infinite horizon,
and give emphasis to those on finite-horizon CTMDPs. In fact, only a few works address the
finite-horizon CTMDPs. Miller [19] studied the finite-horizon finite-state CTMDPs with finite
actions and within the class of Markov policies, and gave a necessary and sufficient condition
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for the existence of a piecewise constant optimal policy. Yushkevich [27] studied the finite-
horizon denumerable-state CTMDPs with uniformly bounded transition rates and within the
class of all deterministic history-dependent policies, and established the existence of an optimal
Markov policy for the case of bounded rewards. He suggested that it is an unsolved problem
to do away with the required boundedness of v; in [27, Theorem 5.1, p. 216 and Theorem 5.2,
p. 234], where v; denotes the value function. Pliska [22] studied the finite-horizon general-
state CTMDPs with uniformly bounded transition rates and within Markov policies, and showed
the existence of an optimal Markov policy. Baiierle and Rieder [1] considered finite-horizon
denumerable-state CTMDPs with bounded transition rates and within the class of deterministic
Markov policies. They transformed the finite-horizon CTMDPs to equivalent infinite-horizon
discrete-time Markov decision processes and thereby established the optimality equation and
the existence of an optimal Markov policy using the existing theory on discrete-time Markov
decision processes. Recently, Ghosh and Saha [6] investigated the finite-horizon general-state
CTMDPs with uniformly bounded transition rates and within Markov policies established the
existence of a unique solution of the optimality equation by the Banach fixed point theorem,
and also proved the existence of an optimal Markov policy using the [t6—Dynkin formula. Note
that all existing works [1], [6], [19], [22], and [27] (on finite-horizon CTMDPs) are limited
to the case of uniformly bounded transition/reward rates and the history-independent policies
in [1], [6], [19], and [22]. This boundedness requirement, however, imposes some restrictions
in applications, for instance in queueing control and population processes, where the transition
and reward/cost rates are usually unbounded [8], [11], [20], [21], and [24]. Hence, it is natural
to consider finite-horizon CTMDPs with unbounded transition and reward/cost rates and extend
the main results in [1], [6], [19], [22], and [27] to the case of randomized history-dependent
policies and unbounded transition rates. Furthermore, it is desirable to find some solutions to
the aforementioned unsolved problems in [27].

As indicated above, the finite-horizon CTMDPs with unbounded transition rates and within
randomized history-dependent policies have not been studied yet, and they will be considered in
this paper. More precisely, we will deal with the CTMDPs having the following features:

1. the transition rates may be unbounded and depend on time;

the reward/cost rates may be time-dependent and unbounded from both above and below;

2.
3. the states are denumerable and the action space is a Borel space;
4. the policies can be randomized and history-dependent;

5.

the optimality criterion is the finite-horizon expected rewards/costs.

First, under mild conditions slightly weaker than those in [8], [9], [11], [12], [20], [21], [24],
and [25] on infinite-horizon CTMDPs, from the analog of the forward Kolmogorov equation
developed recently in [9], [12], we establish the analog of the Itd6—Dynkin formula for the
underlying processes induced by the transition rates and randomized history-dependent policies
(see Theorem 3.1 below). This result is a natural extension of the well-known It6—Dynkin
formula of a jump Markov process in [6], [8], [11], [19], and [22] to the case of a ‘non-Markov’
process.

Second, under suitable conditions as in [7]-[9], [11], [12], [20], [21], [24], and [25] on
CTMDPs with infinite horizon, we prove the existence of a solution to the optimality equation
for the finite-horizon CTMDPs in two steps. The first step is to prove the existence of a solution
to the optimality equation for the case of bounded transition rates but unbounded rewards/costs
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by the Banach fixed point theorem; see Proposition 4.1. This step is a generalization of that
in Ghosh and Saha [6] for bounded costs to the case of unbounded rewards/costs. The second
step is as follows. By designing a technique of approximations from bounded transition rates to
unbounded ones, we further establish the existence of a solution to the optimality equation for the
case of unbounded transition and reward/cost rates using the Ascoli theorem; see Theorem 4.1.
The second step is new and crucial for the finite-horizon CTMDPs with unbounded transition
rates.

Third, using the analog of the It6—Dynkin formula developed here, from the optimality
equation for the finite-horizon CTMDPs we prove the existence of e(> 0)-optimal Markov
policies, and also show that the value function of the finite-horizon CTMDPs is the unique
solution to the optimality equation; see Proposition 4.1 and Theorem 4.1. All arguments here
are direct, need no result from the existing theory on discrete-time Markov decision processes
and, thus, are different from those in [1] and [27].

Finally, to illustrate our main results, we present an example in which our conditions are
satisfied and the value function is unbounded. Moreover, the exact forms of an optimal Markov
policy and the unbounded value function are obtained for two special cases of the example. This
implies that the required boundedness of v; (the value function) in [27, Theorem 5.1, p. 216
and Theorem 5.2, p. 234] can be done away with and, thus, some of the unsolved problems by
Yushkevich [27] will have been solved; see Remark 5.1 and Proposition 5.1. Also, the conditions
in this paper are slightly weaker than those in [7]-[9], [11], [12], [21], [20], [24], and [25] (see
Remarks 3.1 and 3.2 below) and, thus, all existing examples therein satisfy the conditions in
this paper. Furthermore, it is easy to provide examples which can verify all conditions in this
paper but do not satisfy some of conditions in [7]-[9], [11], [12], [21], [20], [24], and [25].

The rest of the paper is organized as follows. In Section 2 we introduce the optimality
problem for the finite-horizon CTMDPs. The main results are presented in Section 4 after
giving technical preliminaries in Section 3, and are illustrated with an example in Section 5.

2. The optimal control problems

Notation. For any Borel space X endowed with the Borel o-algebra 8(X), we denote by
U(X) the universal o-algebra on X, i.e. U(X) := ﬂpeP(X) B,(X), where P(X) represents
the set of all probability measures on X and 8,(X) is the completion of 8 (X) with respect
to p € P(X). To discern the ‘measurability’ we will say ‘Borel measurable’ or ‘universally
measurable’ in the following. The nonhomogeneous model of CTMDPs is a six-tuple

{S,A,A(t,i)(t>0,ieS8),r(tia),q(j]|tia),gti)} 2.1)

consisting of the following elements:

(i) a denumerable set S, called the state space, whose elements are referred to as states of a
system,

(ii) a Borel space A, called the action space, whose elements are referred to as actions (or
decisions) of a decision maker (or controller);

(iii) a family {A(¢,i), t > 0, i € S} of nonempty subsets A(¢,i) of A, where each A(¢, i)
denotes the set of actions available to a controller when the system is in state i € S at
time 7, and it is assumed to be Borel measurable, i.e. A(z,i) € B(A) for all + > 0 and
iesS;
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(iv) a Borel measurable function r(t, i, a) on K, called the reward rates, where K := {(¢, i,
a) |tel0,00),i €S, aecAt,i)};

(v) a real-valued function g(z, i) on [0, c0) x S, called the terminal reward at time ¢ (As
r(t,i,a) and g(t,i) are allowed to take positive and negative values they can be inter-
preted as costs rather than ‘rewards’ only.);

(vi) transition rates q(j | ¢, i, a), a Borel measurable signed kernel on S given K, taking
nonnegative values for all j # i with j,i € §, being conservative in the sense of
q(S | t,i,a) = 0 and stable in that of

g (@)= sup q(t,i,a) <oco foralli € S, (2.2)
1>0,aeA(t,i)

where g(¢,i,a) ;== —q(i | t,i,a) > O forall (¢,i,a) € K.

The model (2.1) is called homogeneous if the data in (2.1) are independent of time ¢.

Next, we provide an informal description of the evolution of CTMDPs with the model (2.1).

Roughly speaking, a continuous-time Markov decision process evolves as follows. A
controller observes states of a system continuously in time. If the system remains at state i
at time ¢, he/she chooses an action a € A(t, i) (possibly dependent on histories) according to
some given policy, as a consequence of which, the following happens:

(i) an immediate reward/cost takes place at the rate r (¢, i, a);

(i1) after a random sojourn time (i.e. the holding time at state i), the system jumps to a
new state j with the transition probability ¢(j | ¢, i, a)/q(¢, i, a). The nonhomogeneous
exponential distribution of sojourn times is (1 — exp(— fot q(s,i,a)ds)) determined by
the transition rates ¢(j | ¢, i, a).

To formalize what is described above, below we describe the construction of CTMDPs
under possibly randomized history-dependent policies. To this end, we introduce some not-
ation. Let S := S U {A} (with some A ¢ S), Q0 := (S x (0,00)®, Q = QU

{Go, 61,01, ...,6k, ik, 00,A,00,...) | ip€ S,iieS, 6 € (0,00)foreach1 <[ <k, k>
1} and let ¥ be the universal o-algebra on 2. Then we obtain the measurable space (2, ).
Foreachk > 0,¢e := (ig, 01, i1, ..., 0k, ik, ...) € Q,let hi(e) := (ip, 01, 11, ..., O, ix) denote

the k-component internal history, and define
To(e) :=0, Tit1(e) =01+ 02+ + Oy, Xi(e) = .

In what follows, the argument e is always omitted. Let T, := limg_, » T}, and define the state
process {x;} by
X; = Z L <i<tiiy ik + Aly>r,y fort >0. 2.3)
k>0
Here and below, 1 stands for the indicator function on any set E.

From (2.3), we see that Ty (k > 1) denotes the kth jump moment of {x;}, ix_; is the
state of the process on [Tx_1, Tx), and 6; plays the role of sojourn times at state iy_;. We
do not intend to consider the controlled process after moment T, and, thus, view it to be
absorbed in the cemetery state A ¢ S. Hence, we write g(- | ¢, A,ap) :=0,r(, A,ap) :=0,
A(t, A) :={aa}, and Ap := A U {ap}, where ax is an isolated point.

Take the right-continuous family of o-algebras {#;};>¢ as the internal history of the marked
point process {7y, Xx, k > 0}, ie. F =0 (T, < s,X;, =i,i € S,5s <t,m > 0). Let P
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be the universal o-algebra of predictable sets on €2 x [0, co) related to {F;};>0, 1.e. P =
o({l' x {0}, T € FolU{l x (s5,00), ' € F_,s > 0}), where F;_ = V,;F;; see [18,
Chapter 4] for details. A real-valued function on € x [0, co) is called predictable if it is
measurable with respect to 8.

To precisely define the optimality criterion, we need to introduce the concept of a policy,
which is a generalization of the policies (on Borel measurability) in [9], [12], [18], [20], and
[21] to the universal measurability.

Definition 2.1. A randomized history-dependent policy is a P -measurable transition probabil-
ity w(da | e, t) from Q x [0, co) onto A, which is concentrated on A(¢, x;_), where x,_ =
limg4, x5. A policy m(da | e, t) is called randomized Markov if it has the form 7 (da | x;, 1),
which is denoted by m¢(da | -) for informational implication. A randomized Markov policy
mi(da | -) is called a (deterministic) Markov policy whenever there exists an A-valued and
universally measurable function f (¢, i) on [0, c0) x S such that 7 (da | i) is a Dirac measure
concentrated at f (¢, i). Such a Markov policy will be denoted by f for simplicity.

We denote by IT the set of all randomized history-dependent policies, by IT}, the set of all
randomized Markov policies, and by TT¢, the set of all deterministic Markov policies.

Due to the predictability of a policy, from [18, Theorems 4.13 and 4.19 or Equation (4.38)]
it can be seen that each policy w(da | e, t) can be characterized by the following expression:

m(da | e, 1) = 1y=0y7°(da | i0,0) + Y Npeci<ri) 7 (da | o, 01, i1, ..., Ok, ik t — Ti)
k>0

+ 1(1>7.) 8an (da), 2.4)

where 7%(da | ip, 0) is a stochastic kernel on A given S, 7% (k > 1) are stochastic kernels on A
given (S x (0, oo))kH, and §,, (da) denotes the Dirac measure at the point an .

Evidently, for any policy w € II, the random measure
m”*(j | e, t)dr := / q(j 1 t,x—,a)n(da | e, t) 1Ly, dt 2.5)
A

is predictable. Note that m”™ (j | e, t) in (2.5) defines the jumps intensity of the process {x;},
which together with (2.4) gives the following representation:

m™(j | e.t) =1y=oymg (j | i0.0) + Y Nppasziprymi (i |io. O1,iv. .., Ok, ik, t — To),
k>0
(2.6)

where m7 (j | io, 61,01, ..., 0k, ik, t — Ti) == [, q(j | t i, a)r*(da | io, 01, ..., 0k ix, t —
Ti)1yjzigy for Ty < t < Ty, m (j | 0, 0) == [,q(j | 0,0, @)w°(da | ig, 0)1(jip): see[15]
for details.

For any initial distribution y on S and policy = € II, let us recall the structure of the
measure }P”}f on the measurable space (€2, #) given in [9], [12], [20], and [21]. Let Hp := S
and Hy ;= S x ((0, 00] x S))5, k=1,2, ... .Themeasure]P’j; on Hy is givenby]P’;f(i) =y(@)
foralli € S. Suppose that measure P} on Hy has been constructed. Actually, P7 will be a
measure on (€2, ¥), but here we deal with its marginal projection onto the space of k-component
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histories Hy. Then ]P”)f on Hy, is determined by the following expressions:
t
PY (T x (dt, j)) == /I;P;Z(dhk)l{ek<oo} my (j | he, 1) eXp<—/0 my (S | g, v) dv> dr,

IP”;(F x (00, A)) 1= /FIP’;f(dhk){l{gk:oo} + 15, <0} exp(—/o mg (S | hi, v) dv)},
2.7

where I' € U(Hy) and m7 (S | hy, 1) = Z#ikmf(j | hi, 1).

According to the extension of the well-known Ionescu Tulcea theorem (see, e.g. [2, Propo-
sition 7.45]), there exists a unique probability measure IP”; on (€2, ) which has a projection
onto Hy satisfying (2.7). Let EY be its corresponding expectation operator. In particular, E7
and IP7 will be respectively written as ET and PT when y is the Dirac measure located at state
iinS.

Fix a constant T > 0, which denotes the finite horizon of the CTMDPs and is different
from the variables 7} in (2.3) above. We now state the 7-horizon optimality problem of the
CTMDPs we are concerned with. For each policy 7 € II and initial state i € S, the expected
T -horizon criterion V; (0, i) is defined by

T
V2 (0,0) ;== E} [/ / r(t, x;, a)n(da | e, t)dr + g(T, xT)i|,
0 A

provided that the integral is well defined. The T-horizon value function of the CTMDPs is

V*(0,i) := sup V;(0,i) fori € S.
mell
Note that the process {x;,¢ > 0} on (€2, ¥, IP”;) may not be Markovian since the policy
7 can depend on histories. However, for each 7 := m(da | -) € II},, it is well known that
{x;,t = 0} is a jump Markov process; see, e.g. [5, Theorem 2.2]. Thus, for eachi € § and
t € [0, T], the following expressions are well defined (when the integral exists):

EF:8(T, xr) :=EJ[g(T, x7) | x; = 1],
T T
Efz[/ r(s, xs, 75) ds + g (T, xT)] =EJ |:/ r(s, xg, w5) ds + g(T, x7) | x; = i],
t t

where (s, i, 5) = fA(M)r(s, i,a)ms(da | i).
The value of a policy 7 € I}, from the horizon ¢ to T, V (¢, i), is defined by

T
Vet i) = IEZi [/ r(s, xg, ws) ds + g(T, xT)].
t

Let
V*(t,i) ;= sup Vp(t,i) for(z,i) € (0,T] x S.
mellf,
The function V*(¢,i) (r € [0,T], i € S) is called the value function of the finite-horizon
CTMDPs from the horizonz to T.
Concerning the value function V*(t, i), we state the unsolved problems in Yushkevich [27,
p- 216, p. 234].
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‘Unsolved problems. In analogy to the discrete time case it would be desirable to
extend Theorems 4.1 and 4.2 to arbitrary summable models and in Theorems 5.1
and 5.2 to do away with the required boundedness of v;.’

Note that v; is the value function here.

Definition 2.2. For any given ¢ > 0, a policy 7* € IT is said to be g-optimal if V;«(0,i) >
V*(0,i) — e forall i € §. A 0-optimal policy is called an optimal policy.

The main goal of this paper is to provide conditions for the existence of e-optimal Markov
policies and also for the existence of solutions to the above unsolved problems [27, Theorem 5.1,
p- 216 and Theorem 5.2, p. 234] for the finite-horizon CTMDPs.

3. Preliminaries

In this section we state some basic assumptions and preliminary facts that are needed to
prove our main results. In particular, the analog of the Itd6—Dynkin formula for the process
{x;, t > 0} on the probability space (2, ¥, }P”; ) associated with the unbounded transition rates
and randomized history-dependent policies is derived.

Since the transition rates g (j | ¢, i, a) and the reward function r (¢, i, @) may be unbounded,
we need to establish the nonexplosion of {x;, t > 0} (i.e. P7 (Too = 00) = 1 or P7 (x; € §)
= 1) and the finiteness of the value function V*(¢,7). To do so, we provide the following
condition.

Assumption 3.1. There exist a function w > 1 on S and constants ¢ > 0, b > 0, and M| > 0
such that:

1) Zjesq(j | t,i,a)w(j) < cw(@)+bforall (t,i,a) € K;

(i) there exists a sequence {Sy,, m > 1} of subsets of S such that S, 1 S, sup;cg, q* (i)
< 00, and limy,_, « inf j¢5, @ (j) = 400, with g*(i) as in (2.2) and inf @ := 400,

(i) |r(t,i,a)| < Miw(i)and|g(T,i)| < Miw(i)foreacht € [0,T],i € S,anda € A(t,i).

Remark 3.1. (i) Assumption 3.1 is the extension of [9, Condition 3.1] and [21, Condition 1]
for the homogeneous model to the nonhomogeneous case of g (j | ¢, i, a) andr (¢, i, a). Thus, it
is satisfied for the examples in [8], [9], [11], [20], [21], and [24]. Moreover, when the transition
rates are bounded (i.e. sup;.g¢* (i) < oo) [3], [6], [19], [22], and [27], Assumptions 3.1(i)
and 3.1(ii) are satisfied by taking w (i) = 1 and S;;, = S. Assumption 3.1(iii) is required for the
finiteness of V*(z, i).

(ii) If the number ¢ in Assumption 3.1(i) is not positive, then Assumption 3.1(i) still holds when
c is replaced with the positive number ‘1 + |c|’. Thus, for simplicity and convenience, we will
assume that ¢ > 0. However, the corresponding number is assumed to be negative in [8], [11],
[12], [24], and [25] or less than the discount factor in [7]-[9], [20], and [21].

The following lemma from [9] and [21] establishes the nonexplosion of {x;,t > 0}. We
present it here for ease of reference.

Lemma 3.1. Under Assumptions 3.1(i) and 3.1(ii) for each w € 1, the following assertions
hold:

(i) Ef[w(x)] < e“[w(i) +b/cl foreacht = 0and i € S;
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(i) PF(x; = j) = &j + Ef[fot Saa( | s, xs—,a)n(da | e,s)ds] for each t > 0 and
i, j €S, where §;j is the Kronecker delta (i.e. 8;; = 1 for alli € S and §;; = 0 for all
i #Jj)

(iii) ZjeSP?(xf =j)=1foreacht > 0andi € S.

Proof. Replacing the A(j | w, t) from the [fAn(da | 0, )q(j | & (@), a)1{jze_y]1dt =
A(j | w,t)dt in [9, Equation (3)] (for the ‘g(j | i,a)’) with m™ (j | e, t) = qu(j | ¢, x—,
a)m(da | e, )1{jxx,_y in (2.5) for the time-dependent ¢(j | ¢, i, a), we see that the repre-
sentation of m”™(j | e, t) in (2.6) is the same as that of A(j | w,t) of [9, Equation (4)]
with the obvious change of the symbols. Since the rest of the proof of [9, Theorem 3.1]
depends only on A™(j | xo, 01, X1, -+, 0m, Xm,t — Tp) in [9, Equation (4)], replacing the
A™(j | x0,601, X1, ., Om,y X, t — Tpy) With mZ(j | ig, 61,101, ..., 60k, ik, t — Ty) in (2.6) and
using the same arguments as in the proof of [9, Theorem 3.1], we see that this lemma holds.

The following result guarantees the finiteness of V; (s, i)(7w € IT},) and V, (0, i)(;w € II).
Lemma 3.2. Under Assumption 3.1, the following assertions hold:

() Ve (0, D) < (T + DMeT[w(i) + b/cl foralli € S, & € T1;

(i) |V (t, )] < (T + DM e“TD[w(@) + b/c] forall (t,i) € [0, T] x S, 7w € II%,.

Proof of Lemma 3.2(i). Foreachm € ITandi € S, by Lemma 3.1(i) and Assumption 3.1(iii),
we have

[Vz(0,0)] =

T
E7 |:/0 /r(t,xt,a)n(da | e, t)dt + g(T, XT)]'
A
T
5/ M\ET w(x;)dt + M\ET w(x7)
0
g ct . b ct cT . b cT
< M e“w()+ —e [dt + Mi|e“ w(i) + —e
0 C C
cT . b
< T+ DM |ow@)+ - |,
c

which implies Lemma 3.2(i).
Proof of Lemma 3.2(ii). The second statement follows from [8, Lemma 6.3].

Lemma 3.2 gives conditions for the finiteness of V (s, i)(w € I} and V (0, i)(wr € II).
Lemma 3.1(i) gives the analog of the forward Kolmogorov equation, which will be used to derive
the analog of the It6—Dynkin formula for the process {x;, + > 0}. To do so, it is necessary to
introduce some further notation and conditions.

Assumption 3.2. With o as in Assumption 3.1, there exists a function @ > 1 on S and constants
¢ >0,b >0, and My > 0 such that

g (D) < Mo (i), Za)/(j)q(j | t,i,a) <&'(@)+b forall (t,i,a) €K,
jes

where q*(i) is as in (2.2).
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Remark 3.2. Note that Assumption 3.2 is similar to [9, Condition 4.1] and [21, Condition 4],
but compared with those in [9] and [21], the roles of w and @’ here have been switched. In
addition, Assumption 3.2 is for the nonhomogeneous case of ¢(j | t, i, a), while [9, Con-
dition 4.1] and [21, Condition 4] are for the homogeneous case, and neither the first part
of [9, Condition 4.1(c)] nor [21, Condition 4(c)] is required here. Moreover, when the
transition rates or the reward rates are bounded (i.e. sup ; ,ex|r(t,i,a)| < oo; see, for
instance, [6]), Assumption 3.2 is not required. The role of Assumption 3.2 is for the finiteness
of ]Ef [w(x)g*(x;)] for t > 0; see the assertions in (3.2) and (3.4) in proving Theorem 3.1
below.

Let I := [0, T]. Given any function w > 1 on S, a real-valued function ¢ on I x S is called
w-bounded if the w-weighted norm of ¢, [l¢lls = sup jyerxs (@, D)|/w(@)), is finite. We
denote by By (I x §) the Banach space of all w-bounded Borel measurable functions on 7 x S.
Moreover, a function A(z, i) defined on I x § is called essentially w-bounded if there exists
a Borel subset Z of I such that m(Z) = m(I) and ||h||fu-S = Supsez.ies (1A, D]/w()) < oo,
where m is the Lebesgue measure on [0, 00).

For any ¢ € B,(I x S) and i € S, if there is a set of Lebesgue-measure 0 (denoted by
Ly (i) C I) such that ¢(z, i) is differentiable in every ¢ € L;(i) =1\ Ly(i), we call (¢, i)
differentiable almost everywhere, and denote by ¢’ (¢, i) the partial derivative of ¢(z, i). Since S
is denumerable, UieSL<ﬂ(i) is also a set of Lebesgue-measure O (i.e. m(UieSL¢(i)) = 0).
From the point of view of Lebesgue-integration theory, functions that differ only on a set of
Lebesgue-measure 0 are viewed as identified. Thus, since ¢’(z, i) is well defined at every
t € I'\UjegLy(i) andi € S, in what follows, we can extend ¢’ (¢, ) on (I \ J;csLy (i) x S
to a real-valued function on I x S by defining ¢'(z, i) to be 0 on | J; gL, (i) x S, and such an
extension of ¢’ (¢, i) makes no loss of generalization for the study on the criterion V, (¢, i).

With & and o' as in Assumption 3.2, let ) (I x ) = {p € B,(I x §): ¢(t.i) is
absolutely continuous, and ¢’ (¢, i) is universally measurable in ¢ € I (for each fixedi € S) and
essentially (w + «’)-bounded on I x S}.

To prove the existence of an optimal policy, we need to introduce the It6—Dynkin formula
and derive its analog, which are given in the following theorem.

Theorem 3.1. Suppose Assumptions 3.1(i), 3.1(ii), and 3.2 are satisfied. Then, for each ¢ €
C(L’(;,(I x §), the following assertions hold.

(1) (The analog of the Ito—Dynkin formula.) For everyi € S, w € I],

T
Er U <¢’(s, ) + Zf 0, g | 5 x5, ayn(da | e, s)) ds]
0 o5 A
=ETo(T, x1) — ¢(0, 1),
where {x;, t > 0} may not be Markovian since the policy m may depend on histories.

(ii) (The It6—Dynkin formula.) For each (t,i) € I x S, 7 = m(da | -) € I},

T
E?:i [/ (w/(s7 xS) + ZQD(S, J)Q(J | S, xS’ T[.S)) ds] = EZ,(P(T, .X:T) - @(f, l)y
t

jes

where q(j | s, k, wg) := fA(S’k)q(j | s,k,a)wg(da | k) forallk, j € S, and s > 0.
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Proof of Theorem 3.1(i). Sinceg € CM (I x ), from the definition of C% (I x §) above,
it follows that

es

lp(s, DI < llellww (), 19" (s, DI = 19 llgy4 0y (@) + ' (j)) foralls € LL(j), j € S.
3.1

Thus, by Assumptions 3.1(i), 3.1(ii), and 3.2, we have
Zf q(i | 5, k. a)(da | e, 5)p(s, j)|
jes A

< Ilwllw[Zwa(j)q(j |'s,k,a)m(da | e, s) +w(k)q*(k)]
J#k

< ||<p||w[2 /A w()q(j | s.k.a)r(da | e,s) ~|—2a)(k)q*(k)]
jes
< @llwlcw (k) + 2Maw’ (k) + b] forall (s,k) € I x S. 3.2)

Moreover, since |_J je sLy(j) is a set of Lebesgue-measure 0, by (3.1), we have

T T
fo ¢’ (s, x5)|ds < |I¢/|Iff+w//o (w(x5) + &' (xg)) ds,

from which, together with Lemma 3.1(i) (with w being replaced with (@ + ’) here), we obtain

ro, , ererr| . Lo bt
E?[/O lp"(s, xs)ds | < (19l T w(l)+w(l)+c+c/ < oo. (3.3)

Thus, from (3.2) and Lemma 3.1(i), we obtain

T
/ ZE?/AW(j | s, x5, a)mw(da | e, s)p(s, j)|ds
t

jes

T
= |I§0IIw/ Ef [ew(x5) + b + 2Ma0' (x5)] ds
0

/

/ b
< T||<p||w[(c + b)eTw(i) + b 4+ 2Mae€ T(a/(i) + —,)} <oo forallt el. (3.4)
c
On the other hand, by Lemma 3.1(ii) for almost every ¢ € I, we obtain

dP? (x; = j) = ET |:/Aq(j | t,x—,a)n(da | e, t):| dr, (3.5)

]P’?(xo =j)=4¢; foralli, jeS.
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Thus, using Fubini’s theorem, by (3.3)—(3.5), we have

T
E7 / [Z f q(j | 5, %, a)m(da | e,sw(s,j)} ds
0 LicgJa
T
=Z/0 E;’[/Aqms,xs_,a)n(da | as)]go(s,j)ds

jes
T
=y / ¢(s, j) dPY (x; = j)
jes 0
T
=Y (T, DB (x7 = j) —9(0,i) = ) /0 ¢/ (s, PT (x5 = j)ds
JES jes

T
=Efo(T, x) — ¢(0,i) — Ef [/ @' (s, x5) dS},
0
which implies Theorem 3.1(i).
Proof of Theorem 3.1(ii). Forany mi(da | -) € I}, s >t >0and i, j € S, let
PG, s) = PT e = | i = ).
Thus, by [8, Proposition C.4], for almost every s > ¢,
B]P’fj (t,s)

s =) PG | s k), B0 =8 (3.6)
keS

Therefore, using Fubini’s theorem, by (3.3), (3.4), and (3.6), we have

T
EZZ[Z/}; (p(s7 ])CI(] |S7x31ﬂ5)ds]

jes
T
=Y [ o) Y B0 sk ds
jes ! keS
T
= / ¢(s. ) AP (1. 5)
jes !
T
=Y (T, PR T) — gt i) = Y / ¢/ (s, )P (2, 5) ds
jes jes !

=E7,0(T, x1) — (t,i) — Ef)i[/t‘T @' (s, x5) ds],
which completes the proof.
Theorem 3.2. Under Assumptions 3.1 and 3.2, the following assertions hold.
(1) If there exists ¢ € C;”(L)U,(I x §) such that

@' (t, i) +r(t, i, a) +Zg0(t,j)q(j | t,i,a) <0 forallt e L;(i), a € A(,i),
jes

o(T,i)=g(T,1i), 3.7)
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then
(ia) Vz(0,7i) < @(0,i) forallm € MMandi € S;
(ib) Vx(t,i) < @(t,i) forallw € IT] and (t,i) € [ x S.
(i1) For any Markov policy f € l'[?n, Vi (-, ) is a unique solution in Cal)”(;,(l x S) of the
following equation:
'@, 1) +rt,i, f(t,0) + Z(p(t, Da( 1t i, f(t,i))=0 forallt e Lé(i),
jes
(T, i) =g(T,i). (3.8)

Proof of Theorem 3.2(i). Since | J; gL (i) is aset of Lebesgue-measure 0, by the conditions
for Theorem 3.2(i) and Theorem 3.1(i), we have
E7g(T, x1) — ¢(0,i) = Ef (T, x1) — ¢(0, i)

T
=E} UO (¢ (s, x5) +Z/A<p(s,j>q(j | s, x5, @) (da | e, s))ds}

jes

T
< -Ef [/ / r(s, x5, a)m(da | e, s)dsi|,
0o Ja

T
ET |:/ / r(s, xg,a)mw(da | e, s) ds] +E7 g(T, x1) < ¢(0,10),
0 A

and so

which implies Theorem 3.2(ia).
Similarly, by Theorem 3.1(ii) we see that Theorem 3.2(ib) also holds.

Proof of Theorem 3.2(ii). Since this proof needs similar arguments as in the proof of Theo-
rem 4.1 below, we postpone this proof until the end of the proof of Theorem 4.1 in Section 4.

The existence of ¢ € C(L’_?u,(l x S) satisfying (3.7) will be shown in Proposition 4.1 and
Theorem 4.1, the proofs of which are based on some facts in Lemma 3.3 below. To state the
lemma, we need some concepts. First, recall that the projection of a Borel set may not be Borel
measurable but is an analytic set. Here, a subset of the Borel space X is said to be analytic (by [2,
Proposition 7.41]) if it is a projection into X of a Borel subset of X x Y for some uncountable
Borel space Y. Then a function u(-) on X is called upper semianalytic if {x € X: u(x) > &} is
an analytic set for each § € (—o0, 00). It is known that each Bore measurable function is upper
semianalytic; see [2, Chapter 7] for more details. Hence, r (¢, i, a) is upper semianalytic on K.

Lemma 3.3. Suppose that Assumption 3.1 holds. For anyu € By, (I x S), define a correspond-
ing functionu™: I x § — (—00, 00) by

w (i) == sup {r(t,i,a)—i—Zu(t,j)q(j | t,i,a)}.

acA(t,i) ies

Then the following assertions hold.
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(1) The function u™* is upper semianalytic (and hence universally measurable).

(i1) For every ¢ > 0, there exists a Markov policy f € an (depending on &) such that

r(t, i, f(¢,1)) +Zu(t,j)q(j | t,i, f(t,0)) > u*(¢,i) —e forall (t,i) el x S.

jes

Proof. Let Q(j | t,i,a) == (q(j | t,i,a)/q*(i) + 1) + §;; with ¢g*(i) as in (2.2). Obvi-
ously, it is a Borel measurable stochastic kernel on S given K. Then, by [2, Proposition 7.29],
we see that Zjesu(t, J)Q(j | t,i,a) is Borel measurable. Also, from

D oult, PGl isa) = ult, NOG | 1,i,a@) (@ () + 1) —ult, )(g* @) + 1),

jes jes

we can conclude that Zjesu(t, Jj)g(j | t,i,a) is Borel measurable and, hence, r(¢, i, a) +
Zjesu(t, J)q(j | t,i,a) is upper semianalytic. Since u*(z,) is real-valued (by Assump-
tion 3.1), the statements in (i) and (ii) follow from [2, Propositions 7.47 and 7.50], respectively.

4. The existence of optimal Markov policies

In this section we prove the existence of e-optimal Markov policies and of a solution to the
optimality (dynamic programming) equation (4.1) for the finite-horizon CTMDPs. The proofs
are shown in two steps as follows. We first consider the case of bounded transition rates and then
deal with the case of unbounded transition rates by approximations from bounded transition
rates to unbounded transition rates.

The result for the case of bounded transition rates is given in the following proposition.

Proposition 4.1. Suppose that the transition rates are bounded (i.e. sup; g q* (i) < oo) and
Assumption 3.1 is satisfied. Then the following assertions hold.

(1) There exists a unique ¢ in C (};2)(1 x 8) satisfying the following optimality equation for
the finite-horizon CTMDPs:

o't Q)+ sup |:r(t, i,a) + Z(p(t, Ng(|t,i, a)i| =0 forallt e L;(i),
acA(t,i) ies

o(T,i)=g(T,i). 4.1)
(i) @(t,i) = V*(t,i) forall (t,i) € I x S with ¢(t,i) as in (i) above.
(iii) For each ¢ > 0, there exists an g-optimal Markov policy.

Proof of Proposition 4.1(i). For any given ¢ € C(f;g)(l x 8), let ¥ (t,i) := ePlo(r, i) for
every (t,i) € I x Swith 8 := 2L + b+ c+ 1 and L := sup;.5¢g*(i). Then (4.1) can be
written as

e Py (t,i) — Be Pyr(r,i) + sup [r(t,i,a) +e P e i, a):| =0,

acAl(t.i) oS

W(T.i)=eTg(T i) forteLi(i). i€sS.

https://doi.org/10.1239/aap/1449859800 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1449859800

Continuous-time Markov decision processes 1077

Since supaeA(S’i)[r(s, i a)—i—e_ﬂszjest//(s, J)q(j | s,1,a)]isuniversally measurableon I x S
(by Lemma 3.3(i)), the equations above are equivalent to the integral equation

T
Y(t, i) =eﬁfg(T,i)+eﬂ’/ sup [r(s,i,a)+e—f“2w(s,j)q(j | 5., a):| ds.
t

acA(s,i) jes

Define the following operator G on B, (I x S). Foreach ¢ € B, (I x S) and (t,i) € I x S,

T
Gy (t,i) = ePlg(T, i)+ef"/ sup [r(s,i, a)—l—e_ﬂSZI//(s,j)q(j | s,i,a)i| ds.
t

acA(s,i) jes
4.2)
Note that sup,ca.i)[r(s, i, a) + e_ﬁszjesw(s, J)q(j | s,i,a)] is upper semianalytic (and
hence universally measurable) on / x S (by Lemma 3.3) and, thus, Gy (¢, i) is well defined.
On the other hand, since L = sup; g g* (i) < oo, from Assumption 3.1, it follows that

T
Gy (t, )] < [eP'g(T, i) +eﬁ’/ [Ir(s,i, f(s, )+ ZIW(S,j)Ilq(j s, 14, f(s,i))l} ds
! jes

<ePT M+ MT + |¥llwT(c+b+20)w@) forall (t,i)el xS,  (43)
which implies that |G{/ ||, < oco. Furthermore, from (4.2) we see that Gy (¢, i) (with any
fixed i € S) is absolutely continuous in ¢ € I, and so it is Borel measurable. Hence, G is in
B,(I x §),i.e.G: B,(I x §) — B, x ).

For any ¥1, Y € B,(I x §), from (4.2) and ¢(S | s, i, a) = 0, we obtain

|Gy, i) — Gya(t, 0)]
T
=< eﬂf/ e B sup lelfl(s,j) — (s, DG | s,i,a)|ds
t

a€A(s,i) jes

T
geﬂ’/ e Py — Yollo  sup [Zw(j)q(j | s,i,a)+Lw(i)] ds
1

acA(s,i) i

T
<o / e P Y1 — Wallwlcw (@) + b+ 2Lw ()] ds
t

2L+b+c¢ AT .
s =g li-e PA=DY 1y — Y2l o (i)
2L+b+c )
< ———¥1 — Y2llow(@).
B
Hence, we obtain
2L+ b+c
1GY¥1 — GY2llw < 5 Y1 — V2l = ol — ¥2llw

withp :=QRL+b+c¢)/=QRL+b+c)/RL+b+c+1) < 1.
Therefore, G is a contraction operator on the Banach space B,,(I x S). Let * € B, (I x S)
be the fixed point of G, i.e.

T
(e, i) =eﬁ’g(T,i)+eﬁ’/ sup |:r(s,i,a)+e_ﬂsZiﬂ*(s,j)q(j | s,i,a)] ds. (4.4)

t  acA(s,i) jes
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Let ¢(¢,1) := e_ﬂtl//*(t, i) for all (z,i) € I x S. Then, ¢ is in B,(I x S), and ¢(¢,1) is
differentiable almost everywhere and satisfies (4.1) (by (4.4)). By (4.1) and Lemma 3.3(i) we see
that ¢’ (¢, i) is universally measurable in (foreachi € S). Moreover, since L = sup; g g™ (i) <
0o, it follows from the same argument of (4.3) that ||¢||SS < [M + |l¢llw(c + b + 2L)].
Therefore, ¢ is in C(L’EU(I x §). Thus, we complete the proof of Proposition 4.1(i).

Proof of Propositions 4.1(ii) and 4.1(iii). Since L = sup;.5¢*(i) < oo, Assumption 3.1
implies Assumption 3.2 (by taking @’ := w). Thus, from (4.1) and Theorem 3.2(i), it follows
that

V2(0,i) < ¢(0,i) foreachm €II, Ve(t,i) < @(t,i) foranyrm € IT},. 4.5)

Moreover, since ¢ € B, (I x S), Lemma 3.3 gives the existence of f, € Hﬂ[1 such that
o . . NPT . & o
@0 i St i) + Y@ g | 1, fole. D) = = forallt € L),
jes
(T, i) =g(T, i),
which, together with Theorem 3.1(ii) and a direct calculation, leads to
Vi, i) > @(t,i) —¢ forall (z,i) eI x S. 4.6)

Therefore, since ¢ can be arbitrary, by (4.5) and (4.6), we have

Sup Vﬂ(0’1)=(p(()vl)’ Sup Vﬂ(t’l)=(p(t9l)’ pr(fal)iﬁﬁ(f,l)—g

mell mellf,

for all (¢,7) € I x S, and so Propositions 4.1(ii) and 4.1(iii) follow.

Proposition 4.1 shows the existence of ¢(> 0)-optimal Markov policies for the case of
bounded transition rates. To further establish the existence of an optimal Markov policy for
possibly unbounded transition rates, we need the following conditions.

Assumption 4.1. (i) For each (t,i) € I x S, A(t, i) is compact;
(ii) foreacht € 1,i, j € S, the function q(j | t, i, a) is continuous ina € A(t, 1),

(iii) for each (t,i) € I x S, the functions r(t,i,a) and Ziesa)(j)q(j | t,1,a) are upper
semicontinuous (u.s.c.) ina € A(t, i) with w as in Assumption 3.1.

Remark 4.1. Assumption 4.1 is the extension of [9, Conditions 6.1 and 6.2] and [21, Condi-
tion 5] for the homogeneous model to the nonhomogeneous case of ¢(j | ¢, i, a) and r(¢, i, a),
and it is satisfied for the examples in [8], [9], [11], [20], [21], and [24]. Assumption 4.1 is used
to find the existence of the maximum points in (4.1).

Lemma 4.1. Under Assumptions 4.1(ii) and 4.1(iii), the function Zjesq (G|t i,a)u(t,j)is
u.s.c. ina € A(t, i) for every fixed (t,i) € I x Sandu € B,(I x S).

Proof. Following the proof of [ 14, Lemma 8.3.7(a)] and the argument of [ 7, Theorem 3.3(c)],
under Assumption 4.1 we see that Lemma 4.1 holds.

We next provide the main result of this paper.

Theorem 4.1. Under Assumptions 3.1, 3.2, and 4.1, the following assertions hold.
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(1) There exists a unique ¢ in Ci}”?v,(l x §) satisfying (4.1).
(i) @(t,i) = V*(,i) forall (t,i) € I x S with ¢(t, i) as in Proposition 4.1(i).
(iii) There exists a Markov policy f* € Hdm such that
o', D) +rt, i, £, i))+Z<p(t, g |t i, f5t,i)=0 forallte Ly@i), i €S,
jes
and the Markov policy [* is optimal.

Proof of Theorem 4.1(i). We prove Theorem 4.1(i) by an approximation technique and Theo-
rem 3.2(i). Since S is denumerable, without loss of generality, we define S := {0, 1,...,n,...}.
Foreachn >1,je S,tel,letS, :={0,1,...,n}and

o (|t ia) ifi €S, aeA,i),
4G | t,iya) = {1V " 4.7)
0 otherwise.

Thus, we obtain a sequence of models {:M,,} of CTMDPs as
My ={S, A, (A, i), (t, i) el xS),rt,i,a),q,(j|t i a),g,i)} n=12,....

Obviously, Assumptions 3.1, 3.2, and 4.1 still hold for the data in each model M,,. Moreover,
from (2.2) and (4.7), it follows that sup; . g, (i) = max{g*(0), ..., g*(n)} < oo. Then foreach
n > 1, by Proposition 4.1, there exists u, € C i;’?u(l x §) satisfying (4.1) for the corresponding
M, i.e.

u,(t, i)+ sup [r(t,i,a) + ) un(t, Hgn(j | t,i,a)] =0 forallte L (i),
acA(t,i) ies

u, (T, i) =g(T,i). (4.8)

Thus, under Assumptions 3.1 and 4.1, [13, Proposition D.5] together with Lemma 4.1 gives
the existence of a Markov policy f, € Hgl such that

u(t, i) +rt, i, folt, i)+ Zun(t, Dan(G | 1,0, fut, )] =0 forallt € Ly, (i),
jes
up(T,i) =g(T,1). 4.9

Hence, using an argument of Theorem 3.2(i) and Lemma 3.2(ii), from (4.8) and (4.9), we have
. . T by . .
lun(t, )] = V5, @&, D) < (T +1)Me 1+ - )w@) =: Dw(i) foralln>1 (4.10)
c

for every (t,i) € I x S, where D := (T 4+ 1)MeT (1 +b/c).
Next, we prove that {u,, n > 1} is equicontinuous on I x S. To do so, let H, (s, i) :=
supaeA(S,i)[r(s,i,a) + Zjesu,,(s,j)qn(j | s,i,a)] for every (s,i) € I x S. Then, from
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Assumptions 3.1, 3.2, and (4.10), we have

|Hy(s, )] < sup [If”(s,i,a)l+Z|Mn(s,j)||qn(j | S,i,a)l}

acA(s,i) jes

< sup E[Mwo(i) +DY (gl | s, i,a>|}

acA(s,i) jes

= sup [le(l)+DZw(J)CI(J | Sﬂiva)_ZDq(i | S7i5a)w(i):|
acA(s,i) jes

< Miw(@i) + Dlcw@i) + b+ 2Ma'(i)]
=: L@{) forall (s,i)el x S. 4.11)

On the other hand, note that (4.8) is equivalent to the following integral equation:

T
(1, 1) =g(T,i)+f sup [r(s,i, a)+ Y (s, )gn(J | s,i,a)i| ds
t

acA(s,i) jes

T
=g(T,i) —I—/ H,(s,i)ds forall (r,i) e I x S. 4.12)
t

Thus, given any (fg, ip) € I x S and ¢ > 0, take § := min{e/L(ip), %}. For every (¢, i) in the
openset {(f,i) € I x S: |t — 19| <6, |i —ip| < 8}, we have i = iy, and so (by (4.12))

lun (2, i) — uy(to, io)| = |un (2, io) — un(to, io)|

T T
= ‘f H, (s, ip)ds —/ H, (s, ip)ds
t fo

< L(ig)|t —ty]| <& foralln > 1.

0]
= ‘/ H, (s, ip)ds
t

Hence, {u,, n > 1} is equicontinuous at (fy, ip), which, together with the arbitrariness of
(to,i0) € I x S, yields that {u,, n > 1} is equicontinuous on / x S. Thus, the Ascoli theorem
(see, e.g. [13, p. 96]) gives the existence of a subsequence {u,,, k > 1} of {u,,n > 1} and a
continuous function ¢ on I x § such that

lim u,, (¢t,i) = @(t, i), lp(t,i)| < Dw(i) forall (¢,i) € I x S. 4.13)
k— 00

Let H(s,i) := supaeA(S’l-)[r(s, i,a)+ Zjes(p(s, g |s,i,a)] forall (s,i) € I x S. We
next show that limy_, oo Hy, (s,i) = H(s,1) foreach (s,i) € I x §.

Indeed, for any fixed (s, i) € I x S, since g5, (j | s,i,a) — q(j | s,i,a) forall j € § and
a € A(s,i)ask — oo (by (4.7)), by [14, Lemma 8.3.7] and (4.10), we have

lim inf H,, (s, i) > liminf|:r(s, ia)+ Y un (s, an (G | s, i,a):|
k—o00 k—o00 s
J

= r(s.i,a)+ ) ¢(s.)q( | s.i.a) foralla € AGs.i).
jes
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Hence,
llmll‘lank(S i)> sup [r(s i a)+Z<p(s Dag(j|s,i, a)] 4.14)
acA(s,i) jes
On the other hand, note that limsupy_, ., Hy, (s,i) = lim;—co Hy,, (s, i) for some sub-

sequence {n,, m > 1} of {ny, k > 1}. Foreachm > 1, under Assumption 4.1, the measurable
selection theorem (see, e.g. [13, Proposition D.5 ]) together with Lemma 4.1 ensures the
existence of f,, € 1< such that

Hy, (s.1) = sup [r(s L)+ Y g, (52 g, (] 5.1, a)}

acA(s,i) jes
=7 (5,0 Sy (5 D) Dty (2 gy, (G 1 804 fog,, (5.1). (4.15)
jes

Since fy,,, (s,i) € A(s,i) for all m > 1 and A(s, i) is compact, there exists a subsequence
{fni,, (s i), | > 1} of { fy, (s,i),m > 1} and a(s, i) € A(s, i) (depending on (s, i)) such that
fnA (s i) —> a(s,i)as! — oo and lim,,;_, o H, iy (S5 i) = lim;_, o H, o, (s, i). Thus, using
Assumpt1on 4.1, by [14, Lemma 8.3.7] and (4.15), we have

lim sup H,, (s, i) = 11m anm (s, )

k— 00

= lgrgo[r(s’ ia fl’lkml (S, l)) + Zunkml (Sv j)anm[ (.] | S? ia fnkml (sv l))i|

jes
=r(s,i,a(s,0))+ Y o(s, NG | s,i,als, i)
jes
< sup [r(s i)+ e, Nal | s i, a)]
acA(s,i) jes

which, together with (4.14), implies that limy_, oo Hy, (s, i) = H(s, i) and, thus, from (4.11)—
(4.13), it follows that

p(t,i) = g(T, i)

T
+/ sup [r(s,z,a)+2<p(s NaG| s, i, a)] s forall (r,i) € I x S.
t

acA(s,i) jes
(4.16)

This implies that (¢, i) is differentiable almost everywhere in ¢ € I and satisfies (4.1). By
(4.1) and Lemma 3 3(i) we see that ¢’(z, i) is universally measurable in ¢ (for each i € S). To
show that ¢ € C ,(I x §), since ¢ € By, (I x S) (just proved in (4.13)), the rest of the proof
verifies that ¢’ is essent1ally (w + w’)-bounded on I x S. Indeed, as the arguments in (4.11),
from (4.1), we have

@' (1, )] < Miw(Q) + [|¢llwlcw (@) + b + 2Mrw'(i)]
< [M1 + [[9llo(c + b +2M)](@() + @'(i)) forallr € L) i € S.

Hence, we have || ¢’ ||w+w < M+ ||¢llw(c+b+2M3) < oco. Therefore, ¢ is in C (1 x S)
and, thus, we complete the proof of Theorem 4.1(i).
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Proof of Theorems 4.1(ii) and 4.1(iii). From (4.1), it follows that

o't ) +rt,i,a)+ Z(p(t, g lti,a) <0 forallr e L;(i), a € A(t,i),
jes
(T, i) = g(T,i). (4.17)
Using Theorem 3.2(i), by (4.17), we have foreachr € I,i € S,
Vz(0,i) < ¢(0,i) foreachw € II, Ve(t,i) <e,i) foranymw € IT},. (4.18)

Moreover, since ¢ € B, (I x §), the measurable selection theorem (see, e.g. [13, Proposi-
tion D.5]) together with Lemma 4.1 gives the existence of f* € an such that

@'t D)+, i, 5t 0) + Z(p(t, Dl i, f¥(t,i)) =0 forallr € L,(i),
Jjes

o(T,i) =g(T,i),
which, together with an argument of Theorem 3.2(i), gives Vy«(t,i) = @(t, i) for all (z,i) €
I x §. Therefore, by (4.18), we have
Sup VN(O’ l) = Vf*(()’ l) = (P(Oa l)a Sup V?T(t’ l) = Vf*(t’ l) = (p(tv l)

mell mell},
forall (¢,i) € I x §, and so Theorems 4.1(ii) and 4.1(iii) follow.

Proof of Theorem 3.2(ii). For any given Markov policy f, we first show the existence of a
(NS C;)”(i),(l x §) satisfying (3.8) in the following two steps.

Step 1. (On the assumption that sup; ¢ ¢*(i) < 00.) We modify the operator G in (4.2) as
the following G/

Gly(r,i):=ePg(T, i)

T
+ e / [r(s, i, [, D) +e Y (s, Dl s.d, s, i))] ds
! jes

for all (¢#,i) € I x S. Then a similar argument as in the proof of Proposition 4.1 gives the
existence of ¢ € Ci;g)(l x 8) satisfying (3.8).

Step 2. (The approximation technique.) Foreachn > 1, j € §,t € I, from (4.7), it follows
that
q(lt,i, f(t,0) if0=<i=<n,
0 otherwise.

an(j 1 1.0, f(1,0) = {

Thus, foreachn > 1, by step 1 above, there exists v, € Cﬁlu’g)(l % §) (depending on f') satisfying
(B.8) with g(j | t,1, f(t,i) := qn(j | t,i, f(t,i)). As in the arguments for Theorem 4.1(i),
{vn, n = 1} is equicontinuous on I x §. Thus, there exists a subsequence {v,,, k > 1} of
{vs, n > 1} and a continuous function ¢ on I x S such that limy_, o0 vy, (¢, i) = @(z, i) for all
(t,i) € I x S. Furthermore, as in the proof of (4.16), we have

@@, i) =g(T,i)

T
+/ |:r(s,i, Fe D)+ @G, gl | s.i, f(s,i))} ds forall (r,i) eI xS,
1

jes

which implies that ¢ is in Ci)’(z)/(l x S) and satisfies (3.8).
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‘We now prove the uniqueness of a solution to (3.8). Suppose that a function ¢ € Ci}’?ﬂ, (IxS)
satisfies (3.8). For each (¢,i) € I x S, since UieSLw (i) is a set of Lebesgue-measure 0, by
Theorem 3.1(ii), we have

E/ g(T.x1) — p(t.i) = B ,p(T. x7) — 0(1.1)

T
= Et]fl |:[ (go/(s,xs) + Z@(sv .])Q(.] | S, Xs, f(S,X_y))) dS:|

Jjes
i T
= -E/, [ / s, xs, f (5. %)) ds]
t

and so .
(i) =E/, [/ r (s, Xs, f(s,xs))ds:| +E/ (T xp) = V(2. i),
t
which implies the uniqueness. Thus, the proof of Theorem 3.2(ii) is completed.

Remark 4.2. Theorem 4.1 and Proposition 4.1 establish the existence of an optimal Markov
policy and an e-optimal Markov policy, respectively. Moreover, they allow the value function
V*(t, i) to be unbounded; see Proposition 5.1 and Remark 5.1 below for more details. This
shows that the required boundedness of the value function in [27, Theorems 5.1 and 5.2] with
bounded transition rates can be done away with and, thus, the corresponding unsolved problems
in [27, Theorems 5.1 and 5.2, p. 234] have been solved for the case of finite-horizon CTMDPs.

5. An example

Recall that Assumptions 3.1, 3.2, and 4.1 above are generalizations of those in [8], [11],
[20], [21], and [24]. Hence, all examples in these references satisfy these assumptions. To
further illustrate the main results here, we provide an example.

Example 5.1. (A controlled birth—death system.) Consider a birth and death system in which
the state variable denotes the population size at time 7. The ‘natural’ birth and death rates at
time ¢ > 0 are denoted by A(7) and 1(z), respectively. Suppose that there are additional birth
and death parameters denoted by a; and ay, respectively, which are assumed to be controlled
by a decision maker. When the state of the system is i > 0, the decision maker takes an action
(a1, ap) from a given set A1 (i) x A;(i), which may increase (i.e. aj, ap > 0) or decrease (i.e.
ai, ap < 0) the birth (death) rate. The action results in a reward r(t, i, ay, a»), and also affects
the birth—death rates given by (5.1) and (5.2) below.

The model for this birth—death system is as follows:
e the state spaceis S = {0, 1,...,i,...};
e the action A equalsto | ;. gA(t, 1) with A(zr, i) := A1(i) x Az(i) forallz > Oandi € S;

e the transition rates ¢ (j | ¢, i, a) (with a := (ay, a2)) are given by (5.1) and (5.2) below,
and the reward is r(¢,i,a) := r(t,i,a1,az) forevery t > 0,i € S,a = (a;,a) €
A(t, Q).

When i = 0, there is no population in the system, and so it is natural to set A>(0) := {0}.
Thus, for each ¢ > 0, we have

q(11¢,0,a)=—q0]1,0,a):=A)+a; foralla:=(aj,a) € A1(0) x A2(0), (5.1)
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where a; is explained as an immigration parameter. For eacht > 0,i > 1,and a = (a1, a2) €
A1 (i) x Az2(i),

At)i +a; if j=i+1,
: . =[O +p@®))i—a —ay ifj =i,
LTRSS B 1 N (5.2)
w(t)i 4+ az ifj=i—1,
0 otherwise.

The aim here is to find conditions under which there exists an optimal Markov policy for the
CTMDPs with any given horizon T > 0 and the terminal reward g. To do so, we consider the
following hypotheses.

(C1) A(?) and u(r) are continuous, nonnegative, and bounded in # > 0. (Hence, the constants
Ay i=infr> A(1), Ap 1= sup;5o A(2), 1 = infy>0 (1), and py = sup,( u(1) are all
nonnegative and finite.)

(C2) Aq1(i) is a closed subset of [—X1i, (kK + A2)(1 + i)] for each i > 0 with some integer
k > 1;and A, (i) is a closed subset of [—u1i, (2 + u2)(1 +i)] foreachi > 1.

(C3) Foreach (¢,i) € I x S, the function r(¢,i,a) isu.s.c.ina € A(t, i) and there exists a
constant M > 0 such that |g(T,i)| < M(@" 4+ 1) and |r(¢,i,a)] < M@ " + 1) for all
tel,ieSanda € A(t,i), where n > 1 is some integer.

Under these conditions, we obtain the following proposition.
Proposition 5.1. Under (Cl), (C2), and (C3), the following assertions hold (for Example 5.1).

(i) The controlled birth—death system satisfies Assumptions 3.1, 3.2, and 4.1. Therefore (by
Theorem 4.1), there exists an optimal Markov policy.

(ii) (Special case 1.) Suppose that, in addition, M(t) = u(t) = 0forallt > 0, A1(i) = [0, ],
Ay(i) = [0,2i] for alli € S; the reward functions r(t,i, a1, az) and g(t,i) are given by
r(tii,ar,a) = =2i + (T +3 —3e"1/2)a; + 3e' =12 = 3 — T)ay for t € [0, T/2) and
r(t,i,ay,ar) = =2i + (5T /2 — 3t)a; + (t — 3T /2)ay fort € [T/2, T), where a; € [0,i],
ap € [0,2i], and g(T,i) = 0 foralli > 0. Then, for every i > 0, the value function V*(t, i)
and an optimal Markov policy f*(t,i) are given as

Vi i) = —iQ2+T —=2e7T/%), 1t€[0,T/2), 5.3)
T 22ir — o, te[T/2,T1, '

o a@2n, e, 1),
f(t”)_{(o,O), te[T/2,T). S

(>iii) (Special case 2.) Suppose that, in addition, A(t) = u() = 0 forallt > 0, A1(0) =
[0, k], A2(0) = {0}, and A1(i) = [0,i], A2(i) = [0, 2i] for all i > 1; the reward functions
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r(t,i,a1,ar) and g(T,i) are defined by

(=2e"T2 — kt)ay, i=0,tel0, T/2),
(T —2—2t —kt)ay, i=0,tre[T/2,T],
—44+ 2+ T)a; + B+ kt)ay, i=1,1tel[0,T/2),
r(t.isay, ay) = -2, \ \ i=1,te[T/2,T],
—2i —Ta; + <§e’_T2 -5 T)(az —2ay), i>1,t€[0,T/2),
. 5T 3T .
—2i + 7—3t ay + I_T a, i>1,telT/2,T],

and g(T,i) = 0 for alli > 0. Then the value function V*(t, i) and an optimal Markov policy
f*(¢t, i) are given as

—kt —3-—-T, i=0,rel0,7),
Ve, i) =1 —i@+T —2¢"T/2), i>1,1t€e[0,T/2), (5.5)
—2i(T — 1), i>1,tel[T/2,T],
and
k,0), i=0,1r€]0,T),
fra i) =1G2), i>1,1€l[0,T/2), (5.6)
0,0, i>1,1te([T/2,T),
respectively.

Proof of Proposition 5.1(i). We shall first verify Assumption 3.1. Let w(i) := i" 4+ 1 for
eachi € S,and S, := {0, 1, ..., m} forallm > 1, where n is the same as in (C3). It is obvious
that S, 1 S, sup;cg, ¢*(i) < ooandlimy,— o infjgs, @ (j) = limy— oo[(m+1)" +1] = +o0.
Moreover, for eachi > 1 and a = (a1, a2) € A(t, i), using (C1) and (C2), by (5.2), we have

Zq(j | 1,0, a)w(j) = [ar + n(@®)ili — )" —[a1 + a2 + pn(0)i + A(2)i]i"
jes + (a1 + A0 (i + 1)"
< 2"\ ()i +ap)i""!
< 2"y +2(k + M) ]w() forallt > 0. (5.7)
For i = 0, we have
Zq(j | 1,0, )w(j) = A(t) + a1 <2"[A2 + 2(k + 12)]w(0). (5.8
jes

From (5.7) and (5.8) we conclude that Assumption 3.1 holds under (C1)—(C3).

By (C1)—~(C3) and (5.2), Assumption 4.1 is obviously satisfied. Moreover, take o’'(i) :=
i"t! 4 1foralli € S. Then, as in the proofs of (5.7) and (5.8), we can derive that Assumption
3.2 also holds. Hence, Assumptions 3.1, 3.2, and 4.1 are verified.

Proof of Proposition 5.1(ii). Under the conditions in Proposition 5.1(ii), by modifying
@'(t,i) on L, (i) in obvious ways, (4.1) can be expressed as

@' (t,0) =0, o(T,0) =0, (5.9)
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and

sup [r(t,i,a) + arp(t,i — 1) — (a1 + a)o(t, i) + arp(t, i + 1)1 = —¢'(t, ),
acA(t,i)

o(T,i)=0 foreveryi >1,1t¢e[0,T], (5.10)

where a = (ay, ap) and A(¢,i) = [0, i] x [0, 2i].
By solving (5.9) and (5.10), we obtain the value function V*(z, i) as in (5.3). Furthermore,
from (5.10) we derive an optimal policy f*(¢, i) as in (5.4).

Proof of Proposition 5.1(iii). Under the conditions in Proposition 5.1(iii), by modifying
@'(t, i) on Ly(i) in obvious ways, (4.1) can be expressed as

o', 0+ sup [r(,0,a) —aie(,0) +ae 1)] =0, o(T,0) =0, (5.11)
a€l0,k]x{0}

and

sup [r(t,i,a) + arp(t,i — 1) — (a1 + a2)p(t, i) + ar9(t, i + )] = —¢'(t, i),
acA(t,i)

o(T,i)=0 foreveryi >1,1t€[0,T], (5.12)

where a = (a1,az) and A(¢,i) = [0, i] x [0, 2i].
By solving (5.11) and (5.12), we obtain the value function V*(¢, i) as in (5.5). Furthermore,
using the value function and (5.11) and (5.12), we obtain an optimal policy f*(z, i) as in (5.6).

Remark 5.1. Although the value function V*(z, i) in Example 5.1 is finite (by Theorem 4.1),
from (5.3) (or (5.5)) we see that it can be unbounded since inf;cg V*(t,i) = —oo for each
t € [0, T). This implies that the required boundedness of the value function in [27, Theorems
5.1 and 5.2] can be done away with and, thus, we have obtained solutions to the unsolved
problems for the finite-horizon CTMDPs in [27, Theorems 5.1 and 5.2, p. 234].

Acknowledgements

The authors thank the AE and the anonymous referee for their numerous valuable comments
and suggestions which have improved this paper. This research was partially supported by the
National Natural Science Foundation of China and the Guangdong Province Universities and
Colleges Pearl River Scholar Funded Scheme.

References

[1] BAUERLE, N. AND RIEDER, U. (2011). Markov Decision Processes with Applications to Finance. Springer,
Heidelberg.

[2] BERTSEKAS, D. P. AND SHREVE, S. E. (1978). Stochastic Optimal Control. The Discrete Time Case. Academic
Press, New York.

[3] FEINBERG,E. A.(2004). Continuous time discounted jump Markov decision processes: a discrete-event approach.
Math. Operat. Res. 29, 492-524.

[4] FEINBERG, E. A. (2012). Reduction of discounted continuous-time MDPs with unbounded jump and reward
rates to discrete-time total-reward MDPs. In Optimization, Control, and Applications of Stochastic Systems.
Birkhauser, New York, pp. 77-97.

[S] FEINBERG, E. A., MANDAVA, M. AND SHIRYAEV, A. N. (2014). On solutions of Kolmogorov’s equations for
nonhomogeneous jump Markov processes. J. Math. Anal. Appl. 411, 261-270.

[6] GHOSH, M. K. AND SAHA, S. (2012). Continuous-time controlled jump Markov processes on the finite horizon.
In Optimization, Control, and Applications of Stochastic Systems. Birkhduser, New York, pp. 99-109.

[7]1 Guo, X. (2007). Continuous-time Markov decision processes with discounted rewards: the case of Polish spaces.
Math. Operat. Res. 32, 73-87.

https://doi.org/10.1239/aap/1449859800 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1449859800

Continuous-time Markov decision processes 1087

(8]
(91

[10]
(1]

[12]

[13]
[14]
[15]
[16]
[17]

(18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]
[26]

[27]

Guo, X. AND HERNANDEZ-LERMA, O. (2009). Continuous-Time Markov Decision Processes. Springer, Berlin.
Guo, X. AND PIuNoOVsK1y, A. (2011). Discounted continuous-time Markov decision processes with constraints:
unbounded transition and loss rates. Math. Operat. Res. 36, 105-132.

Guo, X. AND YE, L. (2010). New discount and average optimality conditions for continuous-time Markov
decision processes. Adv. Appl. Prob. 42, 953-985.

Guo, X., HERNANDEZ-LERMA, O. AND PRIETO-RUMEAU, T. (2006). A survey of recent results on continuous-time
Markov decision processes. Top 14, 177-261.

Guo, X., HUANG, Y. AND SONG, X. (2012). Linear programming and constrained average optimality for general
continuous-time Markov decision processes in history-dependent policies. SIAM J. Control Optimization 50,
23-47.

HERNANDEZ-LERMA, O. AND LASSERRE, J. B. (1996). Discrete-Time Markov Control Processes. Basic Optimality
Criteria. Springer, New York.

HERNANDEZ-LERMA, O. AND LASSERRE, J. B. (1999). Further Topics on Discrete-Time Markov Control
Processes. Springer, New York.

Jacop, J. (1975). Multivariate point processes: predictable projection, Radon—-Nikodym derivatives, represen-
tation of martingales. Z. Wahrscheinlichkeitsth. 31, 235-253.

KAkUMANU, P. (1971). Continuously discounted Markov decision model with countable state and action space.
Ann. Math. Statist. 42,919-926.

Kakumanu, P. (1975). Continuous time Markovian decision processes average return criterion. J. Math. Anal.
Appl. 52, 173-188.

KiTAEV, M. Y. AND RYKOV, V. V. (1995). Controlled Queueing Systems. CRC Press, Boca Raton, FL.

MILLER, B. L. (1968). Finite state continuous time Markov decision processes with a finite planning horizon.
SIAM. J. Control 6, 266-280.

PIUNOVSKIY, A. AND ZHANG, Y. (2011). Accuracy of fluid approximations to controlled birth-and-death
processes: absorbing case. Math. Meth. Operat. Res. 73, 159-187.

PIUNOVSKIY, A. AND ZHANG, Y. (2011). Discounted continuous-time Markov decision processes with unbounded
rates: the convex analytic approach. SIAM J. Control Optimization 49, 2032-2061.

PLISKA, S. R. (1975). Controlled jump processes. Stoch. Process. Appl. 3,259-282.

PRIETO-RUMEAU, T. AND HERNANDEZ-LERMA, O. (2012). Discounted continuous-time controlled Markov
chains: convergence of control models. J. Appl. Prob. 49, 1072—1090.

PRIETO-RUMEAU, T. AND HERNANDEZ-LERMA, O. (2012). Selected Topics on Continuous-Time Controlled
Markov Chains and Markov Games. Imperial College Press, London.

PrIETO-RUMEAU, T. AND LORENZO, J. M. (2010). Approximating ergodic average reward continuous-time
controlled Markov chains. IEEE Trans. Automatic Control 55,201-207.

YE, L. AND Guo, X. (2012). Continuous-time Markov decision processes with state-dependent discount factors.
Acta Appl. Math. 121, 5-27.

YUSHKEVICH, A. A. (1978). Controlled Markov models with countable state space and continuous time. Theory
Prob. Appl. 22,215-235.

https://doi.org/10.1239/aap/1449859800 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1449859800

