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Abstract

In this paper we focus on the finite-horizon optimality for denumerable continuous-time
Markov decision processes, in which the transition and reward/cost rates are allowed to
be unbounded, and the optimality is over the class of all randomized history-dependent
policies. Under mild reasonable conditions, we first establish the existence of a solution
to the finite-horizon optimality equation by designing a technique of approximations from
the bounded transition rates to unbounded ones. Then we prove the existence of ε(≥ 0)-
optimal Markov policies and verify that the value function is the unique solution to the
optimality equation by establishing the analog of the Itô–Dynkin formula. Finally, we
provide an example in which the transition rates and the value function are all unbounded
and, thus, obtain solutions to some of the unsolved problems by Yushkevich (1978).
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) have been widely studied due to
their rich applications in telecommunication, queueing systems, population processes, epidemi-
ology, and so on; see, e.g. the survey [11], the monographs [8], [24], the recent works [9], [12],
[20], [21], and [25], and the extensive references therein. As is well known, the commonly used
optimality criteria in CTMDPs are the expected discounted, average, and the finite-horizon. The
former two criteria are on the infinite (time-) horizon case, and have been well studied; see, [3],
[4], [7], [8], [9], [11], [16], [20], [21], [23], [24], and [26] for the infinite-horizon expected
discounted criterion and [8], [10], [11], [12], [17], and [24] for the long run expected average
criterion. In this paper we focus on the finite-horizon criterion for CTMDPs, thus we shall not
pinpoint the earlier literature on the average and discounted CTMDPs with an infinite horizon,
and give emphasis to those on finite-horizon CTMDPs. In fact, only a few works address the
finite-horizon CTMDPs. Miller [19] studied the finite-horizon finite-state CTMDPs with finite
actions and within the class of Markov policies, and gave a necessary and sufficient condition

Received 1 October 2013; revision received 22 October 2014.
∗ Postal address: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275,
P. R. China.
∗∗ Email address: mcsgxp@mail.sysu.edu.cn
∗∗∗ Email address: hxiangx3@163.com
∗∗∗∗ Email address: hyongh5@mail.sysu.edu.cn

1064

https://doi.org/10.1239/aap/1449859800 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:mcsgxp@mail.sysu.edu.cn?subject=Adv. Appl. Prob.%20paper%2015068
mailto:hxiangx3@163.com?subject=Adv. Appl. Prob.%20paper%2015068
mailto:hyongh5@mail.sysu.edu.cn?subject=Adv. Appl. Prob.%20paper%2015068
https://doi.org/10.1239/aap/1449859800


Continuous-time Markov decision processes 1065

for the existence of a piecewise constant optimal policy. Yushkevich [27] studied the finite-
horizon denumerable-state CTMDPs with uniformly bounded transition rates and within the
class of all deterministic history-dependent policies, and established the existence of an optimal
Markov policy for the case of bounded rewards. He suggested that it is an unsolved problem
to do away with the required boundedness of vt in [27, Theorem 5.1, p. 216 and Theorem 5.2,
p. 234], where vt denotes the value function. Pliska [22] studied the finite-horizon general-
state CTMDPs with uniformly bounded transition rates and within Markov policies, and showed
the existence of an optimal Markov policy. Baüerle and Rieder [1] considered finite-horizon
denumerable-state CTMDPs with bounded transition rates and within the class of deterministic
Markov policies. They transformed the finite-horizon CTMDPs to equivalent infinite-horizon
discrete-time Markov decision processes and thereby established the optimality equation and
the existence of an optimal Markov policy using the existing theory on discrete-time Markov
decision processes. Recently, Ghosh and Saha [6] investigated the finite-horizon general-state
CTMDPs with uniformly bounded transition rates and within Markov policies established the
existence of a unique solution of the optimality equation by the Banach fixed point theorem,
and also proved the existence of an optimal Markov policy using the Itô–Dynkin formula. Note
that all existing works [1], [6], [19], [22], and [27] (on finite-horizon CTMDPs) are limited
to the case of uniformly bounded transition/reward rates and the history-independent policies
in [1], [6], [19], and [22]. This boundedness requirement, however, imposes some restrictions
in applications, for instance in queueing control and population processes, where the transition
and reward/cost rates are usually unbounded [8], [11], [20], [21], and [24]. Hence, it is natural
to consider finite-horizon CTMDPs with unbounded transition and reward/cost rates and extend
the main results in [1], [6], [19], [22], and [27] to the case of randomized history-dependent
policies and unbounded transition rates. Furthermore, it is desirable to find some solutions to
the aforementioned unsolved problems in [27].

As indicated above, the finite-horizon CTMDPs with unbounded transition rates and within
randomized history-dependent policies have not been studied yet, and they will be considered in
this paper. More precisely, we will deal with the CTMDPs having the following features:

1. the transition rates may be unbounded and depend on time;

2. the reward/cost rates may be time-dependent and unbounded from both above and below;

3. the states are denumerable and the action space is a Borel space;

4. the policies can be randomized and history-dependent;

5. the optimality criterion is the finite-horizon expected rewards/costs.

First, under mild conditions slightly weaker than those in [8], [9], [11], [12], [20], [21], [24],
and [25] on infinite-horizon CTMDPs, from the analog of the forward Kolmogorov equation
developed recently in [9], [12], we establish the analog of the Itô–Dynkin formula for the
underlying processes induced by the transition rates and randomized history-dependent policies
(see Theorem 3.1 below). This result is a natural extension of the well-known Itô–Dynkin
formula of a jump Markov process in [6], [8], [11], [19], and [22] to the case of a ‘non-Markov’
process.

Second, under suitable conditions as in [7]–[9], [11], [12], [20], [21], [24], and [25] on
CTMDPs with infinite horizon, we prove the existence of a solution to the optimality equation
for the finite-horizon CTMDPs in two steps. The first step is to prove the existence of a solution
to the optimality equation for the case of bounded transition rates but unbounded rewards/costs
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by the Banach fixed point theorem; see Proposition 4.1. This step is a generalization of that
in Ghosh and Saha [6] for bounded costs to the case of unbounded rewards/costs. The second
step is as follows. By designing a technique of approximations from bounded transition rates to
unbounded ones, we further establish the existence of a solution to the optimality equation for the
case of unbounded transition and reward/cost rates using the Ascoli theorem; see Theorem 4.1.
The second step is new and crucial for the finite-horizon CTMDPs with unbounded transition
rates.

Third, using the analog of the Itô–Dynkin formula developed here, from the optimality
equation for the finite-horizon CTMDPs we prove the existence of ε(≥ 0)-optimal Markov
policies, and also show that the value function of the finite-horizon CTMDPs is the unique
solution to the optimality equation; see Proposition 4.1 and Theorem 4.1. All arguments here
are direct, need no result from the existing theory on discrete-time Markov decision processes
and, thus, are different from those in [1] and [27].

Finally, to illustrate our main results, we present an example in which our conditions are
satisfied and the value function is unbounded. Moreover, the exact forms of an optimal Markov
policy and the unbounded value function are obtained for two special cases of the example. This
implies that the required boundedness of vt (the value function) in [27, Theorem 5.1, p. 216
and Theorem 5.2, p. 234] can be done away with and, thus, some of the unsolved problems by
Yushkevich [27] will have been solved; see Remark 5.1 and Proposition 5.1. Also, the conditions
in this paper are slightly weaker than those in [7]–[9], [11], [12], [21], [20], [24], and [25] (see
Remarks 3.1 and 3.2 below) and, thus, all existing examples therein satisfy the conditions in
this paper. Furthermore, it is easy to provide examples which can verify all conditions in this
paper but do not satisfy some of conditions in [7]–[9], [11], [12], [21], [20], [24], and [25].

The rest of the paper is organized as follows. In Section 2 we introduce the optimality
problem for the finite-horizon CTMDPs. The main results are presented in Section 4 after
giving technical preliminaries in Section 3, and are illustrated with an example in Section 5.

2. The optimal control problems

Notation. For any Borel space X endowed with the Borel σ -algebra B(X), we denote by
U(X) the universal σ -algebra on X, i.e. U(X) := ⋂

p∈P(X)Bp(X), where P(X) represents
the set of all probability measures on X and Bp(X) is the completion of B(X) with respect
to p ∈ P(X). To discern the ‘measurability’ we will say ‘Borel measurable’ or ‘universally
measurable’ in the following. The nonhomogeneous model of CTMDPs is a six-tuple

{S,A,A(t, i)(t ≥ 0, i ∈ S), r(t, i, a), q(j | t, i, a), g(t, i)} (2.1)

consisting of the following elements:

(i) a denumerable set S, called the state space, whose elements are referred to as states of a
system;

(ii) a Borel space A, called the action space, whose elements are referred to as actions (or
decisions) of a decision maker (or controller);

(iii) a family {A(t, i), t ≥ 0, i ∈ S} of nonempty subsets A(t, i) of A, where each A(t, i)
denotes the set of actions available to a controller when the system is in state i ∈ S at
time t , and it is assumed to be Borel measurable, i.e. A(t, i) ∈ B(A) for all t ≥ 0 and
i ∈ S;
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(iv) a Borel measurable function r(t, i, a) on K, called the reward rates, where K := {(t, i,
a) | t ∈ [0,∞), i ∈ S, a ∈ A(t, i)};

(v) a real-valued function g(t, i) on [0,∞) × S, called the terminal reward at time t (As
r(t, i, a) and g(t, i) are allowed to take positive and negative values they can be inter-
preted as costs rather than ‘rewards’ only.);

(vi) transition rates q(j | t, i, a), a Borel measurable signed kernel on S given K, taking
nonnegative values for all j �= i with j, i ∈ S, being conservative in the sense of
q(S | t, i, a) ≡ 0 and stable in that of

q∗(i) := sup
t≥0,a∈A(t,i)

q(t, i, a) < ∞ for all i ∈ S, (2.2)

where q(t, i, a) := −q(i | t, i, a) ≥ 0 for all (t, i, a) ∈ K.

The model (2.1) is called homogeneous if the data in (2.1) are independent of time t .
Next, we provide an informal description of the evolution of CTMDPs with the model (2.1).
Roughly speaking, a continuous-time Markov decision process evolves as follows. A

controller observes states of a system continuously in time. If the system remains at state i
at time t , he/she chooses an action a ∈ A(t, i) (possibly dependent on histories) according to
some given policy, as a consequence of which, the following happens:

(i) an immediate reward/cost takes place at the rate r(t, i, a);

(ii) after a random sojourn time (i.e. the holding time at state i), the system jumps to a
new state j with the transition probability q(j | t, i, a)/q(t, i, a). The nonhomogeneous
exponential distribution of sojourn times is (1 − exp(−∫ t

0 q(s, i, a) ds)) determined by
the transition rates q(j | t, i, a).

To formalize what is described above, below we describe the construction of CTMDPs
under possibly randomized history-dependent policies. To this end, we introduce some not-
ation. Let S� := S ∪ {�} (with some � �∈ S), �0 := (S × (0,∞))∞, � := �0 ∪
{(i0, θ1, i1, . . . , θk, ik,∞,�,∞, . . .) | i0 ∈ S, il ∈ S, θl ∈ (0,∞) for each 1 ≤ l ≤ k, k ≥
1} and let F be the universal σ -algebra on �. Then we obtain the measurable space (�,F ).
For each k ≥ 0, e := (i0, θ1, i1, . . . , θk, ik, . . .) ∈ �, let hk(e) := (i0, θ1, i1, . . . , θk, ik) denote
the k-component internal history, and define

T0(e) := 0, Tk+1(e) := θ1 + θ2 + · · · + θk+1, Xk(e) := ik.

In what follows, the argument e is always omitted. Let T∞ := limk→∞ Tk , and define the state
process {xt } by

xt :=
∑
k≥0

1{Tk≤t<Tk+1} ik +� 1{t≥T∞} for t ≥ 0. (2.3)

Here and below, 1E stands for the indicator function on any set E.
From (2.3), we see that Tk (k ≥ 1) denotes the kth jump moment of {xt }, ik−1 is the

state of the process on [Tk−1, Tk), and θk plays the role of sojourn times at state ik−1. We
do not intend to consider the controlled process after moment T∞ and, thus, view it to be
absorbed in the cemetery state� �∈ S. Hence, we write q(· | t, �, a�) :≡ 0, r(t,�, a�) :≡ 0,
A(t,�) := {a�}, and A� := A ∪ {a�}, where a� is an isolated point.

Take the right-continuous family of σ -algebras {Ft }t≥0 as the internal history of the marked
point process {Tk,Xk, k ≥ 0}, i.e. Ft := σ(Tm ≤ s,Xm = i, i ∈ S, s ≤ t, m ≥ 0). Let P
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be the universal σ -algebra of predictable sets on � × [0,∞) related to {Ft }t≥0, i.e. P :=
σ({� × {0}, � ∈ F0} ∪ {� × (s,∞), � ∈ Fs−, s > 0}), where Fs− := ∨t<sFt ; see [18,
Chapter 4] for details. A real-valued function on � × [0,∞) is called predictable if it is
measurable with respect to P .

To precisely define the optimality criterion, we need to introduce the concept of a policy,
which is a generalization of the policies (on Borel measurability) in [9], [12], [18], [20], and
[21] to the universal measurability.

Definition 2.1. A randomized history-dependent policy is a P -measurable transition probabil-
ity π(da | e, t) from � × [0,∞) onto A�, which is concentrated on A(t, xt−), where xt− =
lims↑t xs .A policy π(da | e, t) is called randomized Markov if it has the form π(da | xt−, t),
which is denoted by πt(da | ·) for informational implication. A randomized Markov policy
πt(da | ·) is called a (deterministic) Markov policy whenever there exists an A-valued and
universally measurable function f (t, i) on [0,∞)× S such that πt(da | i) is a Dirac measure
concentrated at f (t, i). Such a Markov policy will be denoted by f for simplicity.

We denote by 	 the set of all randomized history-dependent policies, by 	r
m the set of all

randomized Markov policies, and by 	d
m the set of all deterministic Markov policies.

Due to the predictability of a policy, from [18, Theorems 4.13 and 4.19 or Equation (4.38)]
it can be seen that each policy π(da | e, t) can be characterized by the following expression:

π(da | e, t) = 1{t=0} π0(da | i0, 0)+
∑
k≥0

1{Tk<t≤Tk+1} πk(da | i0, θ1, i1, . . . , θk, ik, t − Tk)

+ 1{t≥T∞} δa�(da), (2.4)

where π0(da | i0, 0) is a stochastic kernel onA given S, πk(k ≥ 1) are stochastic kernels onA
given (S × (0,∞))k+1, and δa�(da) denotes the Dirac measure at the point a�.

Evidently, for any policy π ∈ 	, the random measure

mπ(j | e, t) dt :=
∫
A

q(j | t, xt−, a)π(da | e, t) 1{j �=xt−} dt (2.5)

is predictable. Note that mπ(j | e, t) in (2.5) defines the jumps intensity of the process {xt },
which together with (2.4) gives the following representation:

mπ(j | e, t) = 1{t=0}mπ0 (j | i0, 0)+
∑
k≥0

1{Tk<t≤Tk+1}mπk (j | i0, θ1, i1, . . . , θk, ik, t − Tk),

(2.6)
where mπk (j | i0, θ1, i1, . . . , θk, ik, t − Tk) := ∫

A
q(j | t, ik, a)πk(da | i0, θ1, . . . , θk, ik, t −

Tk)1{j �=ik} for Tk < t ≤ Tk+1,mπ0 (j | i0, 0) := ∫
A
q(j | 0, i0, a)π0(da | i0, 0)1{j �=i0}; see [15]

for details.
For any initial distribution γ on S and policy π ∈ 	, let us recall the structure of the

measure P
π
γ on the measurable space (�,F ) given in [9], [12], [20], and [21]. Let H0 := S

andHk := S× ((0,∞]×S�)k, k = 1, 2, . . . .The measure P
π
γ onH0 is given by P

π
γ (i) = γ (i)

for all i ∈ S. Suppose that measure P
π
γ on Hk has been constructed. Actually, P

π
γ will be a

measure on (�,F ), but here we deal with its marginal projection onto the space of k-component
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histories Hk . Then P
π
γ on Hk+1 is determined by the following expressions:

P
π
γ (� × (dt, j)) :=

∫
�

P
π
γ (dhk) 1{θk<∞}mπk (j | hk, t) exp

(
−

∫ t

0
mπk (S | hk, v) dv

)
dt,

P
π
γ (� × (∞,�)) :=

∫
�

P
π
γ (dhk)

{
1{θk=∞} + 1{θk<∞} exp

(
−

∫ ∞

0
mπk (S | hk, v) dv

)}
,

(2.7)

where � ∈ U(Hk) and mπk (S | hk, t) = ∑
j �=ikm

π
k (j | hk, t).

According to the extension of the well-known Ionescu Tulcea theorem (see, e.g. [2, Propo-
sition 7.45]), there exists a unique probability measure P

π
γ on (�,F ) which has a projection

onto Hk satisfying (2.7). Let E
π
γ be its corresponding expectation operator. In particular, E

π
γ

and P
π
γ will be respectively written as E

π
i and P

π
i when γ is the Dirac measure located at state

i in S.
Fix a constant T > 0, which denotes the finite horizon of the CTMDPs and is different

from the variables Tk in (2.3) above. We now state the T -horizon optimality problem of the
CTMDPs we are concerned with. For each policy π ∈ 	 and initial state i ∈ S, the expected
T -horizon criterion Vπ(0, i) is defined by

Vπ(0, i) := E
π
i

[∫ T

0

∫
A

r(t, xt , a)π(da | e, t) dt + g(T , xT )

]
,

provided that the integral is well defined. The T -horizon value function of the CTMDPs is

V ∗(0, i) := sup
π∈	

Vπ(0, i) for i ∈ S.

Note that the process {xt , t ≥ 0} on (�,F ,Pπγ ) may not be Markovian since the policy
π can depend on histories. However, for each π := πt(da | ·) ∈ 	r

m, it is well known that
{xt , t ≥ 0} is a jump Markov process; see, e.g. [5, Theorem 2.2]. Thus, for each i ∈ S and
t ∈ [0, T ], the following expressions are well defined (when the integral exists):

E
π
t,ig(T , xT ) := E

π
γ [g(T , xT ) | xt = i],

E
π
t,i

[∫ T

t

r(s, xs, πs) ds + g(T , xT )

]
:= E

π
γ

[∫ T

t

r(s, xs, πs) ds + g(T , xT ) | xt = i

]
,

where r(s, i, πs) := ∫
A(s,i)

r(s, i, a)πs(da | i).
The value of a policy π ∈ 	r

m from the horizon t to T , Vπ(t, i), is defined by

Vπ(t, i) := E
π
t,i

[∫ T

t

r(s, xs, πs) ds + g(T , xT )

]
.

Let
V ∗(t, i) := sup

π∈	r
m

Vπ(t, i) for (t, i) ∈ (0, T ] × S.

The function V ∗(t, i) (t ∈ [0, T ], i ∈ S) is called the value function of the finite-horizon
CTMDPs from the horizon t to T .

Concerning the value function V ∗(t, i), we state the unsolved problems in Yushkevich [27,
p. 216, p. 234].
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‘Unsolved problems. In analogy to the discrete time case it would be desirable to
extend Theorems 4.1 and 4.2 to arbitrary summable models and in Theorems 5.1
and 5.2 to do away with the required boundedness of vt .’

Note that vt is the value function here.

Definition 2.2. For any given ε ≥ 0, a policy π∗ ∈ 	 is said to be ε-optimal if Vπ∗(0, i) ≥
V ∗(0, i)− ε for all i ∈ S. A 0-optimal policy is called an optimal policy.

The main goal of this paper is to provide conditions for the existence of ε-optimal Markov
policies and also for the existence of solutions to the above unsolved problems [27, Theorem 5.1,
p. 216 and Theorem 5.2, p. 234] for the finite-horizon CTMDPs.

3. Preliminaries

In this section we state some basic assumptions and preliminary facts that are needed to
prove our main results. In particular, the analog of the Itô–Dynkin formula for the process
{xt , t ≥ 0} on the probability space (�,F ,Pπγ ) associated with the unbounded transition rates
and randomized history-dependent policies is derived.

Since the transition rates q(j | t, i, a) and the reward function r(t, i, a)may be unbounded,
we need to establish the nonexplosion of {xt , t ≥ 0} (i.e. P

π
i (T∞ = ∞) = 1 or P

π
i (xt ∈ S)

≡ 1) and the finiteness of the value function V ∗(t, i). To do so, we provide the following
condition.

Assumption 3.1. There exist a function ω ≥ 1 on S and constants c > 0, b ≥ 0, and M1 > 0
such that:

(i)
∑
j∈Sq(j | t, i, a)ω(j) ≤ cω(i)+ b for all (t, i, a) ∈ K;

(ii) there exists a sequence {Sm, m ≥ 1} of subsets of S such that Sm ↑ S, supi∈Sm q
∗(i)

< ∞, and limm→∞ infj �∈Smω(j) = +∞, with q∗(i) as in (2.2) and inf ∅ := +∞;

(iii) |r(t, i, a)| ≤ M1ω(i)and |g(T , i)| ≤ M1ω(i) for each t ∈ [0, T ], i ∈ S, anda ∈ A(t, i).
Remark 3.1. (i) Assumption 3.1 is the extension of [9, Condition 3.1] and [21, Condition 1]
for the homogeneous model to the nonhomogeneous case of q(j | t, i, a) and r(t, i, a). Thus, it
is satisfied for the examples in [8], [9], [11], [20], [21], and [24]. Moreover, when the transition
rates are bounded (i.e. supi∈S q∗(i) < ∞) [3], [6], [19], [22], and [27], Assumptions 3.1(i)
and 3.1(ii) are satisfied by taking ω(i) ≡ 1 and Sm ≡ S. Assumption 3.1(iii) is required for the
finiteness of V ∗(t, i).

(ii) If the number c in Assumption 3.1(i) is not positive, then Assumption 3.1(i) still holds when
c is replaced with the positive number ‘1 + |c|’. Thus, for simplicity and convenience, we will
assume that c > 0. However, the corresponding number is assumed to be negative in [8], [11],
[12], [24], and [25] or less than the discount factor in [7]–[9], [20], and [21].

The following lemma from [9] and [21] establishes the nonexplosion of {xt , t ≥ 0}. We
present it here for ease of reference.

Lemma 3.1. Under Assumptions 3.1(i) and 3.1(ii) for each π ∈ 	, the following assertions
hold:

(i) E
π
i [ω(xt )] ≤ ect [ω(i)+ b/c] for each t ≥ 0 and i ∈ S;
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(ii) P
π
i (xt = j) = δij + E

π
i [∫ t0 ∫

A
q(j | s, xs−, a)π(da | e, s) ds] for each t ≥ 0 and

i, j ∈ S, where δij is the Kronecker delta (i.e. δii = 1 for all i ∈ S and δij = 0 for all
i �= j );

(iii)
∑
j∈S P

π
i (xt = j) = 1 for each t ≥ 0 and i ∈ S.

Proof. Replacing the (j | ω, t) from the [∫
A
π(da | ω, t)q(j | ξt−(ω), a)1{j �=ξt−}] dt =

(j | ω, t) dt in [9, Equation (3)] (for the ‘q(j | i, a)’) with mπ(j | e, t) = ∫
A
q(j | t, xt−,

a)π(da | e, t)1{j �=xt−} in (2.5) for the time-dependent q(j | t, i, a), we see that the repre-
sentation of mπ(j | e, t) in (2.6) is the same as that of (j | ω, t) of [9, Equation (4)]
with the obvious change of the symbols. Since the rest of the proof of [9, Theorem 3.1]
depends only on m(j | x0, θ1, x1, . . . , θm, xm, t − Tm) in [9, Equation (4)], replacing the
m(j | x0, θ1, x1, . . . , θm, xm, t − Tm) with mπk (j | i0, θ1, i1, . . . , θk, ik, t − Tk) in (2.6) and
using the same arguments as in the proof of [9, Theorem 3.1], we see that this lemma holds.

The following result guarantees the finiteness of Vπ(s, i)(π ∈ 	r
m) and Vπ(0, i)(π ∈ 	).

Lemma 3.2. Under Assumption 3.1, the following assertions hold:

(i) |Vπ(0, i)| ≤ (T + 1)M1ecT [ω(i)+ b/c] for all i ∈ S, π ∈ 	;

(ii) |Vπ(t, i)| ≤ (T + 1)M1ec(T−t)[ω(i)+ b/c] for all (t, i) ∈ [0, T ] × S, π ∈ 	r
m.

Proof of Lemma 3.2(i). For each π ∈	 and i ∈ S, by Lemma 3.1(i) and Assumption 3.1(iii),
we have

|Vπ(0, i)| =
∣∣∣∣Eπi

[∫ T

0

∫
A

r(t, xt , a)π(da | e, t) dt + g(T , xT )

]∣∣∣∣
≤

∫ T

0
M1E

π
i ω(xt ) dt +M1E

π
i ω(xT )

≤ M1

∫ T

0

[
ectω(i)+ b

c
ect

]
dt +M1

[
ecT ω(i)+ b

c
ecT

]

≤ (T + 1)M1ecT
[
ω(i)+ b

c

]
,

which implies Lemma 3.2(i).

Proof of Lemma 3.2(ii). The second statement follows from [8, Lemma 6.3].

Lemma 3.2 gives conditions for the finiteness of Vπ(s, i)(π ∈ 	r
m) and Vπ(0, i)(π ∈ 	).

Lemma 3.1(i) gives the analog of the forward Kolmogorov equation, which will be used to derive
the analog of the Itô–Dynkin formula for the process {xt , t ≥ 0}. To do so, it is necessary to
introduce some further notation and conditions.

Assumption 3.2. Withω as in Assumption 3.1, there exists a functionω′ ≥ 1 on S and constants
c′ > 0, b′ ≥ 0, and M2 > 0 such that

q∗(i)ω(i) ≤ M2ω
′(i),

∑
j∈S

ω′(j)q(j | t, i, a) ≤ c′ω′(i)+ b′ for all (t, i, a) ∈ K,

where q∗(i) is as in (2.2).
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Remark 3.2. Note that Assumption 3.2 is similar to [9, Condition 4.1] and [21, Condition 4],
but compared with those in [9] and [21], the roles of ω and ω′ here have been switched. In
addition, Assumption 3.2 is for the nonhomogeneous case of q(j | t, i, a), while [9, Con-
dition 4.1] and [21, Condition 4] are for the homogeneous case, and neither the first part
of [9, Condition 4.1(c)] nor [21, Condition 4(c)] is required here. Moreover, when the
transition rates or the reward rates are bounded (i.e. sup(t,i,a)∈K|r(t, i, a)| < ∞; see, for
instance, [6]), Assumption 3.2 is not required. The role of Assumption 3.2 is for the finiteness
of E

π
i [ω(xt )q∗(xt )] for t ≥ 0; see the assertions in (3.2) and (3.4) in proving Theorem 3.1

below.

Let I := [0, T ]. Given any function w̄ ≥ 1 on S, a real-valued function ϕ on I × S is called
w̄-bounded if the w̄-weighted norm of ϕ, ‖ϕ‖w̄ := sup(t,i)∈I×S(|ϕ(t, i)|/w̄(i)), is finite. We
denote by Bw̄(I ×S) the Banach space of all w̄-bounded Borel measurable functions on I ×S.
Moreover, a function h(t, i) defined on I × S is called essentially w̄-bounded if there exists
a Borel subset Z of I such that m(Z) = m(I) and ‖h‖es

w̄ := supt∈Z,i∈S(|h(t, i)|/w̄(i)) < ∞,
where m is the Lebesgue measure on [0,∞).

For any ϕ ∈ Bω(I × S) and i ∈ S, if there is a set of Lebesgue-measure 0 (denoted by
Lϕ(i) ⊂ I ) such that ϕ(t, i) is differentiable in every t ∈ Lcϕ(i) := I \ Lϕ(i), we call ϕ(t, i)
differentiable almost everywhere, and denote by ϕ′(t, i) the partial derivative of ϕ(t, i). Since S
is denumerable,

⋃
i∈SLϕ(i) is also a set of Lebesgue-measure 0 (i.e. m(

⋃
i∈SLϕ(i)) = 0).

From the point of view of Lebesgue-integration theory, functions that differ only on a set of
Lebesgue-measure 0 are viewed as identified. Thus, since ϕ′(t, i) is well defined at every
t ∈ I \ ⋃

i∈SLϕ(i) and i ∈ S, in what follows, we can extend ϕ′(t, i) on (I \ ⋃
i∈SLϕ(i))× S

to a real-valued function on I × S by defining ϕ′(t, i) to be 0 on
⋃
i∈SLϕ(i)× S, and such an

extension of ϕ′(t, i) makes no loss of generalization for the study on the criterion Vπ(t, i).
With ω and ω′ as in Assumption 3.2, let C1,0

ω,ω′(I × S) := {ϕ ∈ Bω(I × S) : ϕ(t, i) is
absolutely continuous, and ϕ′(t, i) is universally measurable in t ∈ I (for each fixed i ∈ S) and
essentially (ω + ω′)-bounded on I × S}.

To prove the existence of an optimal policy, we need to introduce the Itô–Dynkin formula
and derive its analog, which are given in the following theorem.

Theorem 3.1. Suppose Assumptions 3.1(i), 3.1(ii), and 3.2 are satisfied. Then, for each ϕ ∈
C

1,0
ω,ω′(I × S), the following assertions hold.

(i) (The analog of the Itô–Dynkin formula.) For every i ∈ S, π ∈ 	,

E
π
i

[∫ T

0

(
ϕ′(s, xs)+

∑
j∈S

∫
A

ϕ(s, j)q(j | s, xs, a)π(da | e, s)
)

ds

]

= E
π
i ϕ(T , xT )− ϕ(0, i),

where {xt , t ≥ 0} may not be Markovian since the policy π may depend on histories.

(ii) (The Itô–Dynkin formula.) For each (t, i) ∈ I × S, π = πt(da | ·) ∈ 	r
m,

E
π
t,i

[∫ T

t

(
ϕ′(s, xs)+

∑
j∈S

ϕ(s, j)q(j | s, xs, πs)
)

ds

]
= E

π
t,iϕ(T , xT )− ϕ(t, i),

where q(j | s, k, πs) := ∫
A(s,k)

q(j | s, k, a)πs(da | k) for all k, j ∈ S, and s ≥ 0.
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Proof of Theorem 3.1(i). Since ϕ ∈ C1,0
ω,ω′(I×S), from the definition ofC1,0

ω,ω′(I×S) above,
it follows that

|ϕ(s, j)| ≤ ‖ϕ‖ωω(j), |ϕ′(s, j)| ≤ ‖ϕ′‖es
ω+ω′(ω(j)+ ω′(j)) for all s ∈ Lcϕ(j), j ∈ S.

(3.1)

Thus, by Assumptions 3.1(i), 3.1(ii), and 3.2, we have

∑
j∈S

∫
A

|q(j | s, k, a)π(da | e, s)ϕ(s, j)|

≤ ‖ϕ‖ω
[∑
j �=k

∫
A

ω(j)q(j | s, k, a)π(da | e, s)+ ω(k)q∗(k)
]

≤ ‖ϕ‖ω
[∑
j∈S

∫
A

ω(j)q(j | s, k, a)π(da | e, s)+ 2ω(k)q∗(k)
]

≤ ‖ϕ‖ω[cω(k)+ 2M2ω
′(k)+ b] for all (s, k) ∈ I × S. (3.2)

Moreover, since
⋃
j∈SLϕ(j) is a set of Lebesgue-measure 0, by (3.1), we have

∫ T

0
|ϕ′(s, xs)| ds ≤ ‖ϕ′‖es

ω+ω′

∫ T

0
(ω(xs)+ ω′(xs)) ds,

from which, together with Lemma 3.1(i) (with ω being replaced with (ω+ω′) here), we obtain

E
π
i

[∫ T

0
|ϕ′(s, xs)| ds

]
≤ ‖ϕ′‖es

ω+ω′T e(c+c′)T
[
ω(i)+ ω′(i)+ b + b′

c + c′

]
< ∞. (3.3)

Thus, from (3.2) and Lemma 3.1(i), we obtain

∫ T

t

∑
j∈S

E
π
i

∫
A

|q(j | s, xs, a)π(da | e, s)ϕ(s, j)| ds

≤ ‖ϕ‖ω
∫ T

0
E
π
i [cw(xs)+ b + 2M2ω

′(xs)] ds

≤ T ‖ϕ‖ω
[
(c + b)ecT w(i)+ b + 2M2ec

′T
(
ω′(i)+ b′

c′

)]
< ∞ for all t ∈ I. (3.4)

On the other hand, by Lemma 3.1(ii) for almost every t ∈ I , we obtain

dP
π
i (xt = j) = E

π
i

[∫
A

q(j | t, xt−, a)π(da | e, t)
]

dt,

P
π
i (x0 = j) = δij for all i, j ∈ S.

(3.5)
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Thus, using Fubini’s theorem, by (3.3)–(3.5), we have

E
π
i

∫ T

0

[∑
j∈S

∫
A

q(j | s, xs, a)π(da | e, s)ϕ(s, j)
]

ds

=
∑
j∈S

∫ T

0
E
π
i

[∫
A

q(j | s, xs−, a)π(da | e, s)
]
ϕ(s, j) ds

=
∑
j∈S

∫ T

0
ϕ(s, j) dP

π
i (xs = j)

=
∑
j∈S

ϕ(T , j)Pπi (xT = j)− ϕ(0, i)−
∑
j∈S

∫ T

0
ϕ′(s, j)Pπi (xs = j) ds

= E
π
i ϕ(T , xT )− ϕ(0, i)− E

π
i

[∫ T

0
ϕ′(s, xs) ds

]
,

which implies Theorem 3.1(i).

Proof of Theorem 3.1(ii). For any πt(da | ·) ∈ 	r
m, s ≥ t ≥ 0 and i, j ∈ S, let

P
π
ij (t, s) := P

π
γ (xs = j | xt = i).

Thus, by [8, Proposition C.4], for almost every s > t ,

∂Pπij (t, s)

∂s
=

∑
k∈S

P
π
ik(t, s)q(j | s, k, πs), P

π
ij (t, t) = δij . (3.6)

Therefore, using Fubini’s theorem, by (3.3), (3.4), and (3.6), we have

E
π
t,i

[∑
j∈S

∫ T

t

ϕ(s, j)q(j | s, xs, πs) ds

]

=
∑
j∈S

∫ T

t

ϕ(s, j)
∑
k∈S

P
π
ik(t, s)q(j | s, k, πs) ds

=
∑
j∈S

∫ T

t

ϕ(s, j) dP
π
ij (t, s)

=
∑
j∈S

ϕ(T , j)Pπij (t, T )− ϕ(t, i)−
∑
j∈S

∫ T

t

ϕ′(s, j)Pπij (t, s) ds

= E
π
t,iϕ(T , xT )− ϕ(t, i)− E

π
t,i

[∫ T

t

ϕ′(s, xs) ds

]
,

which completes the proof.

Theorem 3.2. Under Assumptions 3.1 and 3.2, the following assertions hold.

(i) If there exists ϕ ∈ C1,0
ω,ω′(I × S) such that

ϕ′(t, i)+ r(t, i, a)+
∑
j∈S

ϕ(t, j)q(j | t, i, a) ≤ 0 for all t ∈ Lcϕ(i), a ∈ A(t, i),

ϕ(T , i) = g(T , i), (3.7)
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then

(ia) Vπ(0, i) ≤ ϕ(0, i) for all π ∈ 	 and i ∈ S;

(ib) Vπ(t, i) ≤ ϕ(t, i) for all π ∈ 	r
m and (t, i) ∈ I × S.

(ii) For any Markov policy f ∈ 	d
m, Vf (·, ·) is a unique solution in C1,0

ω,ω′(I × S) of the
following equation:

ϕ′(t, i)+ r(t, i, f (t, i))+
∑
j∈S

ϕ(t, j)q(j | t, i, f (t, i)) = 0 for all t ∈ Lcϕ(i),

ϕ(T , i) = g(T , i). (3.8)

Proof of Theorem 3.2(i). Since
⋃
i∈SLϕ(i) is a set of Lebesgue-measure 0, by the conditions

for Theorem 3.2(i) and Theorem 3.1(i), we have

E
π
i g(T , xT )− ϕ(0, i) = E

π
i ϕ(T , xT )− ϕ(0, i)

= E
π
i

[∫ T

0
(ϕ′(s, xs)+

∑
j∈S

∫
A

ϕ(s, j)q(j | s, xs, a)π(da | e, s)) ds

]

≤ −E
π
i

[∫ T

0

∫
A

r(s, xs, a)π(da | e, s) ds

]
,

and so

E
π
i

[∫ T

0

∫
A

r(s, xs, a)π(da | e, s) ds

]
+ E

π
i g(T , xT ) ≤ ϕ(0, i),

which implies Theorem 3.2(ia).

Similarly, by Theorem 3.1(ii) we see that Theorem 3.2(ib) also holds.

Proof of Theorem 3.2(ii). Since this proof needs similar arguments as in the proof of Theo-
rem 4.1 below, we postpone this proof until the end of the proof of Theorem 4.1 in Section 4.

The existence of ϕ ∈ C
1,0
ω,ω′(I × S) satisfying (3.7) will be shown in Proposition 4.1 and

Theorem 4.1, the proofs of which are based on some facts in Lemma 3.3 below. To state the
lemma, we need some concepts. First, recall that the projection of a Borel set may not be Borel
measurable but is an analytic set. Here, a subset of the Borel spaceX is said to be analytic (by [2,
Proposition 7.41]) if it is a projection into X of a Borel subset of X × Y for some uncountable
Borel space Y . Then a function u(·) on X is called upper semianalytic if {x ∈ X : u(x) > δ} is
an analytic set for each δ ∈ (−∞,∞). It is known that each Bore measurable function is upper
semianalytic; see [2, Chapter 7] for more details. Hence, r(t, i, a) is upper semianalytic on K.

Lemma 3.3. Suppose that Assumption 3.1 holds. For any u ∈ Bω(I×S), define a correspond-
ing function u∗ : I × S −→ (−∞,∞) by

u∗(t, i) := sup
a∈A(t,i)

{
r(t, i, a)+

∑
j∈S

u(t, j)q(j | t, i, a)
}
.

Then the following assertions hold.
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(i) The function u∗ is upper semianalytic (and hence universally measurable).

(ii) For every ε > 0, there exists a Markov policy f ∈ 	d
m (depending on ε) such that

r(t, i, f (t, i))+
∑
j∈S

u(t, j)q(j | t, i, f (t, i)) ≥ u∗(t, i)− ε for all (t, i) ∈ I × S.

Proof. Let Q(j | t, i, a) := (q(j | t, i, a)/q∗(i)+ 1) + δij with q∗(i) as in (2.2). Obvi-
ously, it is a Borel measurable stochastic kernel on S given K. Then, by [2, Proposition 7.29],
we see that

∑
j∈Su(t, j)Q(j | t, i, a) is Borel measurable. Also, from

∑
j∈S

u(t, j)q(j | t, i, a) =
∑
j∈S

u(t, j)Q(j | t, i, a)(q∗(i)+ 1)− u(t, i)(q∗(i)+ 1),

we can conclude that
∑
j∈Su(t, j)q(j | t, i, a) is Borel measurable and, hence, r(t, i, a) +∑

j∈Su(t, j)q(j | t, i, a) is upper semianalytic. Since u∗(t, i) is real-valued (by Assump-
tion 3.1), the statements in (i) and (ii) follow from [2, Propositions 7.47 and 7.50], respectively.

4. The existence of optimal Markov policies

In this section we prove the existence of ε-optimal Markov policies and of a solution to the
optimality (dynamic programming) equation (4.1) for the finite-horizon CTMDPs. The proofs
are shown in two steps as follows. We first consider the case of bounded transition rates and then
deal with the case of unbounded transition rates by approximations from bounded transition
rates to unbounded transition rates.

The result for the case of bounded transition rates is given in the following proposition.

Proposition 4.1. Suppose that the transition rates are bounded (i.e. supi∈S q∗(i) < ∞) and
Assumption 3.1 is satisfied. Then the following assertions hold.

(i) There exists a unique ϕ in C1,0
ω,ω(I × S) satisfying the following optimality equation for

the finite-horizon CTMDPs:

ϕ′(t, i)+ sup
a∈A(t,i)

[
r(t, i, a)+

∑
j∈S

ϕ(t, j)q(j | t, i, a)
]

= 0 for all t ∈ Lcϕ(i),

ϕ(T , i) = g(T , i). (4.1)

(ii) ϕ(t, i) = V ∗(t, i) for all (t, i) ∈ I × S with ϕ(t, i) as in (i) above.

(iii) For each ε > 0, there exists an ε-optimal Markov policy.

Proof of Proposition 4.1(i). For any given ϕ ∈ C1,0
ω,ω(I × S), let ψ(t, i) := eβtϕ(t, i) for

every (t, i) ∈ I × S with β := 2L + b + c + 1 and L := supi∈S q∗(i). Then (4.1) can be
written as

e−βtψ ′(t, i)− βe−βtψ(t, i)+ sup
a∈A(t,i)

[
r(t, i, a)+ e−βt ∑

j∈S
ψ(t, j)q(j | t, i, a)

]
= 0,

ψ(T , i) = eβT g(T , i) for t ∈ Lcϕ(i), i ∈ S.
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Since supa∈A(s,i)[r(s, i, a)+e−βs∑
j∈Sψ(s, j)q(j | s, i, a)] is universally measurable on I×S

(by Lemma 3.3(i)), the equations above are equivalent to the integral equation

ψ(t, i) = eβtg(T , i)+ eβt
∫ T

t

sup
a∈A(s,i)

[
r(s, i, a)+ e−βs ∑

j∈S
ψ(s, j)q(j | s, i, a)

]
ds.

Define the following operator G on Bω(I × S). For each ψ ∈ Bω(I × S) and (t, i) ∈ I × S,

Gψ(t, i) := eβtg(T , i)+ eβt
∫ T

t

sup
a∈A(s,i)

[
r(s, i, a)+ e−βs ∑

j∈S
ψ(s, j)q(j | s, i, a)

]
ds.

(4.2)
Note that supa∈A(s,i)[r(s, i, a) + e−βs∑

j∈Sψ(s, j)q(j | s, i, a)] is upper semianalytic (and
hence universally measurable) on I × S (by Lemma 3.3) and, thus, Gψ(t, i) is well defined.

On the other hand, since L = supi∈S q∗(i) < ∞, from Assumption 3.1, it follows that

|Gψ(t, i)| ≤ |eβtg(T , i)| + eβt
∫ T

t

[
|r(s, i, f (s, i))| +

∑
j∈S

|ψ(s, j)||q(j | s, i, f (s, i))|
]

ds

≤ eβT [M1 +M1T + ‖ψ‖wT (c + b + 2L)]w(i) for all (t, i) ∈ I × S, (4.3)

which implies that ‖Gψ‖w < ∞. Furthermore, from (4.2) we see that Gψ(t, i) (with any
fixed i ∈ S) is absolutely continuous in t ∈ I , and so it is Borel measurable. Hence, Gψ is in
Bω(I × S), i.e. G : Bω(I × S) −→ Bω(I × S).

For any ψ1, ψ2 ∈ Bω(I × S), from (4.2) and q(S | s, i, a) ≡ 0, we obtain

|Gψ1(t, i)−Gψ2(t, i)|

≤ eβt
∫ T

t

e−βs sup
a∈A(s,i)

∑
j∈S

|ψ1(s, j)− ψ2(s, j)||q(j | s, i, a)| ds

≤ eβt
∫ T

t

e−βs‖ψ1 − ψ2‖ω sup
a∈A(s,i)

[∑
j �=i

ω(j)q(j | s, i, a)+ Lω(i)

]
ds

≤ eβt
∫ T

t

e−βs‖ψ1 − ψ2‖ω[cω(i)+ b + 2Lω(i)] ds

≤ 2L+ b + c

β
[1 − e−β(T−t)]‖ψ1 − ψ2‖ωω(i)

≤ 2L+ b + c

β
‖ψ1 − ψ2‖ωω(i).

Hence, we obtain

‖Gψ1 −Gψ2‖ω ≤ 2L+ b + c

β
‖ψ1 − ψ2‖ω = ρ‖ψ1 − ψ2‖ω

with ρ := (2L+ b + c)/β = (2L+ b + c)/(2L+ b + c + 1) < 1.
Therefore,G is a contraction operator on the Banach space Bω(I ×S). Letψ∗ ∈ Bω(I ×S)

be the fixed point of G, i.e.

ψ∗(t, i) = eβtg(T , i)+eβt
∫ T

t

sup
a∈A(s,i)

[
r(s, i, a)+e−βs ∑

j∈S
ψ∗(s, j)q(j | s, i, a)

]
ds. (4.4)
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Let ϕ(t, i) := e−βtψ∗(t, i) for all (t, i) ∈ I × S. Then, ϕ is in Bω(I × S), and ϕ(t, i) is
differentiable almost everywhere and satisfies (4.1) (by (4.4)). By (4.1) and Lemma 3.3(i) we see
thatϕ′(t, i) is universally measurable in t (for each i ∈ S). Moreover, sinceL = supi∈S q∗(i) <
∞, it follows from the same argument of (4.3) that ‖ϕ′‖es

w ≤ [M1 + ‖ϕ‖w(c + b + 2L)].
Therefore, ϕ is in C1,0

ω,ω(I × S). Thus, we complete the proof of Proposition 4.1(i).

Proof of Propositions 4.1(ii) and 4.1(iii). Since L = supi∈S q∗(i) < ∞, Assumption 3.1
implies Assumption 3.2 (by taking ω′ := ω). Thus, from (4.1) and Theorem 3.2(i), it follows
that

Vπ(0, i) ≤ ϕ(0, i) for each π ∈ 	, Vπ(t, i) ≤ ϕ(t, i) for any π ∈ 	r
m. (4.5)

Moreover, since ϕ ∈ Bω(I × S), Lemma 3.3 gives the existence of fε ∈ 	d
m such that

ϕ′(t, i)+ r(t, i, fε(t, i))+
∑
j∈S

ϕ(t, j)q(j | t, i, fε(t, i)) ≥ − ε

T
for all t ∈ Lcϕ(i),

ϕ(T , i) = g(T , i),

which, together with Theorem 3.1(ii) and a direct calculation, leads to

Vfε (t, i) ≥ ϕ(t, i)− ε for all (t, i) ∈ I × S. (4.6)

Therefore, since ε can be arbitrary, by (4.5) and (4.6), we have

sup
π∈	

Vπ(0, i) = ϕ(0, i), sup
π∈	r

m

Vπ(t, i) = ϕ(t, i), Vfε (t, i) ≥ ϕ(t, i)− ε

for all (t, i) ∈ I × S, and so Propositions 4.1(ii) and 4.1(iii) follow.

Proposition 4.1 shows the existence of ε(> 0)-optimal Markov policies for the case of
bounded transition rates. To further establish the existence of an optimal Markov policy for
possibly unbounded transition rates, we need the following conditions.

Assumption 4.1. (i) For each (t, i) ∈ I × S, A(t, i) is compact;

(ii) for each t ∈ I, i, j ∈ S, the function q(j | t, i, a) is continuous in a ∈ A(t, i);
(iii) for each (t, i) ∈ I × S, the functions r(t, i, a) and

∑
j∈Sω(j)q(j | t, i, a) are upper

semicontinuous (u.s.c.) in a ∈ A(t, i) with ω as in Assumption 3.1.

Remark 4.1. Assumption 4.1 is the extension of [9, Conditions 6.1 and 6.2] and [21, Condi-
tion 5] for the homogeneous model to the nonhomogeneous case of q(j | t, i, a) and r(t, i, a),
and it is satisfied for the examples in [8], [9], [11], [20], [21], and [24]. Assumption 4.1 is used
to find the existence of the maximum points in (4.1).

Lemma 4.1. Under Assumptions 4.1(ii) and 4.1(iii), the function
∑
j∈Sq(j | t, i, a)u(t, j) is

u.s.c. in a ∈ A(t, i) for every fixed (t, i) ∈ I × S and u ∈ Bω(I × S).

Proof. Following the proof of [14, Lemma 8.3.7(a)] and the argument of [7, Theorem 3.3(c)],
under Assumption 4.1 we see that Lemma 4.1 holds.

We next provide the main result of this paper.

Theorem 4.1. Under Assumptions 3.1, 3.2, and 4.1, the following assertions hold.

https://doi.org/10.1239/aap/1449859800 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859800


Continuous-time Markov decision processes 1079

(i) There exists a unique ϕ in C1,0
ω,ω′(I × S) satisfying (4.1).

(ii) ϕ(t, i) = V ∗(t, i) for all (t, i) ∈ I × S with ϕ(t, i) as in Proposition 4.1(i).

(iii) There exists a Markov policy f ∗ ∈ 	d
m such that

ϕ′(t, i)+r(t, i, f ∗(t, i))+
∑
j∈S

ϕ(t, j)q(j | t, i, f ∗(t, i)) = 0 for all t ∈ Lcϕ(i), i ∈ S,

and the Markov policy f ∗ is optimal.

Proof of Theorem 4.1(i). We prove Theorem 4.1(i) by an approximation technique and Theo-
rem 3.2(i). Since S is denumerable, without loss of generality, we define S := {0, 1, . . . , n, . . .}.
For each n ≥ 1, j ∈ S, t ∈ I , let Sn := {0, 1, . . . , n} and

qn(j | t, i, a) :=
{
q(j | t, i, a) if i ∈ Sn, a ∈ A(t, i),
0 otherwise.

(4.7)

Thus, we obtain a sequence of models {Mn} of CTMDPs as

Mn := {S,A, (A(t, i), (t, i) ∈ I × S), r(t, i, a), qn(j | t, i, a), g(t, i)} n = 1, 2, . . . .

Obviously, Assumptions 3.1, 3.2, and 4.1 still hold for the data in each model Mn. Moreover,
from (2.2) and (4.7), it follows that supi∈S q∗

n(i) = max{q∗(0), . . . , q∗(n)} < ∞. Then for each
n ≥ 1, by Proposition 4.1, there exists un ∈ C1,0

ω,ω(I ×S) satisfying (4.1) for the corresponding
Mn, i.e.

u′
n(t, i)+ sup

a∈A(t,i)

[
r(t, i, a)+

∑
j∈S

un(t, j)qn(j | t, i, a)
]

= 0 for all t ∈ Lcun(i),

un(T , i) = g(T , i). (4.8)

Thus, under Assumptions 3.1 and 4.1, [13, Proposition D.5] together with Lemma 4.1 gives
the existence of a Markov policy fn ∈ 	d

m such that

u′
n(t, i)+ r(t, i, fn(t, i)+

∑
j∈S

un(t, j)qn(j | t, i, fn(t, i)] = 0 for all t ∈ Lcun(i),

un(T , i) = g(T , i). (4.9)

Hence, using an argument of Theorem 3.2(i) and Lemma 3.2(ii), from (4.8) and (4.9), we have

|un(t, i)| = |Vfn(t, i)| ≤ (T + 1)M1ecT
(

1 + b

c

)
ω(i) =: Dω(i) for all n ≥ 1 (4.10)

for every (t, i) ∈ I × S, where D := (T + 1)M1ecT (1 + b/c).
Next, we prove that {un, n ≥ 1} is equicontinuous on I × S. To do so, let Hn(s, i) :=

supa∈A(s,i)[r(s, i, a) + ∑
j∈Sun(s, j)qn(j | s, i, a)] for every (s, i) ∈ I × S. Then, from
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Assumptions 3.1, 3.2, and (4.10), we have

|Hn(s, i)| ≤ sup
a∈A(s,i)

[
|r(s, i, a)| +

∑
j∈S

|un(s, j)||qn(j | s, i, a)|
]

≤ sup
a∈A(s,i)

e

[
M1ω(i)+D

∑
j∈S

ω(j)|q(j | s, i, a)|
]

= sup
a∈A(s,i)

[
M1ω(i)+D

∑
j∈S

ω(j)q(j | s, i, a)− 2Dq(i | s, i, a)ω(i)
]

≤ M1ω(i)+D[cω(i)+ b + 2M2ω
′(i)]

=: L(i) for all (s, i) ∈ I × S. (4.11)

On the other hand, note that (4.8) is equivalent to the following integral equation:

un(t, i) = g(T , i)+
∫ T

t

sup
a∈A(s,i)

[
r(s, i, a)+

∑
j∈S

un(s, j)qn(j | s, i, a)
]

ds

= g(T , i)+
∫ T

t

Hn(s, i) ds for all (t, i) ∈ I × S. (4.12)

Thus, given any (t0, i0) ∈ I × S and ε > 0, take δ := min{ε/L(i0), 1
2 }. For every (t, i) in the

open set {(t, i) ∈ I × S : |t − t0| < δ, |i − i0| < δ}, we have i = i0, and so (by (4.12))

|un(t, i)− un(t0, i0)| = |un(t, i0)− un(t0, i0)|

=
∣∣∣∣
∫ T

t

Hn(s, i0) ds −
∫ T

t0

Hn(s, i0) ds

∣∣∣∣
=

∣∣∣∣
∫ t0

t

Hn(s, i0) ds

∣∣∣∣ ≤ L(i0)|t − t0| < ε for all n ≥ 1.

Hence, {un, n ≥ 1} is equicontinuous at (t0, i0), which, together with the arbitrariness of
(t0, i0) ∈ I × S, yields that {un, n ≥ 1} is equicontinuous on I × S. Thus, the Ascoli theorem
(see, e.g. [13, p. 96]) gives the existence of a subsequence {unk , k ≥ 1} of {un, n ≥ 1} and a
continuous function ϕ on I × S such that

lim
k→∞ unk (t, i) = ϕ(t, i), |ϕ(t, i)| ≤ Dω(i) for all (t, i) ∈ I × S. (4.13)

Let H(s, i) := supa∈A(s,i)[r(s, i, a) + ∑
j∈Sϕ(s, j)q(j | s, i, a)] for all (s, i) ∈ I × S. We

next show that limk→∞Hnk (s, i) = H(s, i) for each (s, i) ∈ I × S.
Indeed, for any fixed (s, i) ∈ I × S, since qnk (j | s, i, a) → q(j | s, i, a) for all j ∈ S and

a ∈ A(s, i) as k → ∞ (by (4.7)), by [14, Lemma 8.3.7] and (4.10), we have

lim inf
k→∞ Hnk (s, i) ≥ lim inf

k→∞

[
r(s, i, a)+

∑
j∈S

unk (s, j)qnk (j | s, i, a)
]

≥ r(s, i, a)+
∑
j∈S

ϕ(s, j)q(j | s, i, a) for all a ∈ A(s, i).
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Hence,

lim inf
k→∞ Hnk (s, i) ≥ sup

a∈A(s,i)

[
r(s, i, a)+

∑
j∈S

ϕ(s, j)q(j | s, i, a)
]
. (4.14)

On the other hand, note that lim supk→∞Hnk (s, i) = limm→∞Hnkm (s, i) for some sub-
sequence {nkm, m ≥ 1} of {nk, k ≥ 1}. For eachm ≥ 1, under Assumption 4.1, the measurable
selection theorem (see, e.g. [13, Proposition D.5 ]) together with Lemma 4.1 ensures the
existence of fnkm ∈ 	d

m such that

Hnkm (s, i) = sup
a∈A(s,i)

[
r(s, i, a)+

∑
j∈S

unkm (s, j)qnkm (j | s, i, a)
]

= r(s, i, fnkm (s, i))+
∑
j∈S

unkm (s, j)qnkm (j | s, i, fnkm (s, i)). (4.15)

Since fnkm (s, i) ∈ A(s, i) for all m ≥ 1 and A(s, i) is compact, there exists a subsequence
{fnkml (s, i), l ≥ 1} of {fnkm (s, i),m ≥ 1} and a(s, i) ∈ A(s, i) (depending on (s, i)) such that
fnkml

(s, i) → a(s, i) as l → ∞ and limm→∞Hnkm (s, i) = liml→∞Hnkml
(s, i). Thus, using

Assumption 4.1, by [14, Lemma 8.3.7] and (4.15), we have

lim sup
k→∞

Hnk (s, i) = lim
l→∞Hnkml (s, i)

= lim
l→∞

[
r(s, i, fnkml

(s, i))+
∑
j∈S

unkml
(s, j)qnkml

(j | s, i, fnkml (s, i))
]

= r(s, i, a(s, i))+
∑
j∈S

ϕ(s, j)q(j | s, i, a(s, i))

≤ sup
a∈A(s,i)

[
r(s, i, a)+

∑
j∈S

ϕ(s, j)q(j | s, i, a)
]
,

which, together with (4.14), implies that limk→∞Hnk (s, i) = H(s, i) and, thus, from (4.11)–
(4.13), it follows that

ϕ(t, i) = g(T , i)

+
∫ T

t

sup
a∈A(s,i)

[
r(s, i, a)+

∑
j∈S

ϕ(s, j)q(j | s, i, a)
]

ds for all (t, i) ∈ I × S.

(4.16)

This implies that ϕ(t, i) is differentiable almost everywhere in t ∈ I and satisfies (4.1). By
(4.1) and Lemma 3.3(i) we see that ϕ′(t, i) is universally measurable in t (for each i ∈ S). To
show that ϕ ∈ C1,0

ω,ω′(I × S), since ϕ ∈ Bω(I × S) (just proved in (4.13)), the rest of the proof
verifies that ϕ′ is essentially (w + w′)-bounded on I × S. Indeed, as the arguments in (4.11),
from (4.1), we have

|ϕ′(t, i)| ≤ M1ω(i)+ ‖ϕ‖ω[cω(i)+ b + 2M2ω
′(i)]

≤ [M1 + ‖ϕ‖ω(c + b + 2M2)](ω(i)+ ω′(i)) for all t ∈ Lcϕ(i) i ∈ S.

Hence, we have ‖ϕ′‖es
w+w′ ≤ M1 + ‖ϕ‖ω(c+ b+ 2M2) < ∞. Therefore, ϕ is in C1,0

ω,ω′(I × S)
and, thus, we complete the proof of Theorem 4.1(i).
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Proof of Theorems 4.1(ii) and 4.1(iii). From (4.1), it follows that

ϕ′(t, i)+ r(t, i, a)+
∑
j∈S

ϕ(t, j)q(j | t, i, a) ≤ 0 for all t ∈ Lcϕ(i), a ∈ A(t, i),

ϕ(T , i) = g(T , i). (4.17)

Using Theorem 3.2(i), by (4.17), we have for each t ∈ I, i ∈ S,

Vπ(0, i) ≤ ϕ(0, i) for each π ∈ 	, Vπ(t, i) ≤ ϕ(t, i) for any π ∈ 	r
m. (4.18)

Moreover, since ϕ ∈ Bω(I × S), the measurable selection theorem (see, e.g. [13, Proposi-
tion D.5]) together with Lemma 4.1 gives the existence of f ∗ ∈ 	d

m such that

ϕ′(t, i)+ r(t, i, f ∗(t, i))+
∑
j∈S

ϕ(t, j)q(j | t, i, f ∗(t, i)) = 0 for all t ∈ Lϕ(i),

ϕ(T , i) = g(T , i),

which, together with an argument of Theorem 3.2(i), gives Vf ∗(t, i) = ϕ(t, i) for all (t, i) ∈
I × S. Therefore, by (4.18), we have

sup
π∈	

Vπ(0, i) = Vf ∗(0, i) = ϕ(0, i), sup
π∈	r

m

Vπ(t, i) = Vf ∗(t, i) = ϕ(t, i)

for all (t, i) ∈ I × S, and so Theorems 4.1(ii) and 4.1(iii) follow.

Proof of Theorem 3.2(ii). For any given Markov policy f , we first show the existence of a
ϕ ∈ C1,0

ω,ω′(I × S) satisfying (3.8) in the following two steps.
Step 1. (On the assumption that supi∈S q∗(i) < ∞.) We modify the operator G in (4.2) as

the following Gf :

Gfψ(t, i) := eβtg(T , i)

+ eβt
∫ T

t

[
r(s, i, f (s, i))+ e−βs ∑

j∈S
ψ(s, j)q(j | s, i, f (s, i))

]
ds

for all (t, i) ∈ I × S. Then a similar argument as in the proof of Proposition 4.1 gives the
existence of ϕ ∈ C1,0

ω,ω(I × S) satisfying (3.8).
Step 2. (The approximation technique.) For each n ≥ 1, j ∈ S, t ∈ I , from (4.7), it follows

that

qn(j | t, i, f (t, i)) =
{
q(j | t, i, f (t, i)) if 0 ≤ i ≤ n,

0 otherwise.

Thus, for eachn ≥ 1, by step 1 above, there exists vn ∈ C1,0
ω,ω(I×S) (depending on f ) satisfying

(3.8) with q(j | t, i, f (t, i) := qn(j | t, i, f (t, i)). As in the arguments for Theorem 4.1(i),
{vn, n ≥ 1} is equicontinuous on I × S. Thus, there exists a subsequence {vnk , k ≥ 1} of
{vn, n ≥ 1} and a continuous function ϕ̂ on I × S such that limk→∞ vnk (t, i) = ϕ̂(t, i) for all
(t, i) ∈ I × S. Furthermore, as in the proof of (4.16), we have

ϕ̂(t, i) = g(T , i)

+
∫ T

t

[
r(s, i, f (s, i))+

∑
j∈S

ϕ̂(s, j)q(j | s, i, f (s, i))
]

ds for all (t, i) ∈ I × S,

which implies that ϕ̂ is in C1,0
ω,ω′(I × S) and satisfies (3.8).
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We now prove the uniqueness of a solution to (3.8). Suppose that a functionϕ ∈ C1,0
ω,ω′(I×S)

satisfies (3.8). For each (t, i) ∈ I × S, since
⋃
i∈SLϕ(i) is a set of Lebesgue-measure 0, by

Theorem 3.1(ii), we have

E
f
t,ig(T , xT )− ϕ(t, i) = E

f
t,iϕ(T , xT )− ϕ(t, i)

= E
f
t,i

[∫ T

t

(
ϕ′(s, xs)+

∑
j∈S

ϕ(s, j)q(j | s, xs, f (s, xs))
)

ds

]

= −E
f
t,i

[∫ T

t

r(s, xs, f (s, xs)) ds

]
,

and so

ϕ(t, i) = E
f
t,i

[∫ T

t

r(s, xs, f (s, xs)) ds

]
+ E

f
t,ig(T , xT ) = Vf (t, i),

which implies the uniqueness. Thus, the proof of Theorem 3.2(ii) is completed.

Remark 4.2. Theorem 4.1 and Proposition 4.1 establish the existence of an optimal Markov
policy and an ε-optimal Markov policy, respectively. Moreover, they allow the value function
V ∗(t, i) to be unbounded; see Proposition 5.1 and Remark 5.1 below for more details. This
shows that the required boundedness of the value function in [27, Theorems 5.1 and 5.2] with
bounded transition rates can be done away with and, thus, the corresponding unsolved problems
in [27, Theorems 5.1 and 5.2, p. 234] have been solved for the case of finite-horizon CTMDPs.

5. An example

Recall that Assumptions 3.1, 3.2, and 4.1 above are generalizations of those in [8], [11],
[20], [21], and [24]. Hence, all examples in these references satisfy these assumptions. To
further illustrate the main results here, we provide an example.

Example 5.1. (A controlled birth–death system.) Consider a birth and death system in which
the state variable denotes the population size at time t . The ‘natural’ birth and death rates at
time t ≥ 0 are denoted by λ(t) and μ(t), respectively. Suppose that there are additional birth
and death parameters denoted by a1 and a2, respectively, which are assumed to be controlled
by a decision maker. When the state of the system is i ≥ 0, the decision maker takes an action
(a1, a2) from a given set A1(i)× A2(i), which may increase (i.e. a1, a2 ≥ 0) or decrease (i.e.
a1, a2 ≤ 0) the birth (death) rate. The action results in a reward r(t, i, a1, a2), and also affects
the birth–death rates given by (5.1) and (5.2) below.

The model for this birth–death system is as follows:

• the state space is S = {0, 1, . . . , i, . . .};
• the actionA equals to

⋃
i∈SA(t, i)withA(t, i) := A1(i)×A2(i) for all t ≥ 0 and i ∈ S;

• the transition rates q(j | t, i, a) (with a := (a1, a2)) are given by (5.1) and (5.2) below,
and the reward is r(t, i, a) := r(t, i, a1, a2) for every t ≥ 0, i ∈ S, a = (a1, a2) ∈
A(t, i).

When i = 0, there is no population in the system, and so it is natural to set A2(0) := {0}.
Thus, for each t ≥ 0, we have

q(1 | t, 0, a) = −q(0 | t, 0, a) := λ(t)+ a1 for all a := (a1, a2) ∈ A1(0)× A2(0), (5.1)
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where a1 is explained as an immigration parameter. For each t ≥ 0, i ≥ 1, and a = (a1, a2) ∈
A1(i)× A2(i),

q(j | t, i, a) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ(t)i + a1 if j = i + 1,

−[λ(t)+ μ(t)]i − a1 − a2 if j = i,

μ(t)i + a2 if j = i − 1,

0 otherwise.

(5.2)

The aim here is to find conditions under which there exists an optimal Markov policy for the
CTMDPs with any given horizon T > 0 and the terminal reward g. To do so, we consider the
following hypotheses.

(C1) λ(t) and μ(t) are continuous, nonnegative, and bounded in t ≥ 0. (Hence, the constants
λ1 := inf t≥0 λ(t), λ2 := supt≥0 λ(t), μ1 := inf t≥0 μ(t), and μ2 := supt≥0 μ(t) are all
nonnegative and finite.)

(C2) A1(i) is a closed subset of [−λ1i, (k + λ2)(1 + i)] for each i ≥ 0 with some integer
k ≥ 1; and A2(i) is a closed subset of [−μ1i, (2 + μ2)(1 + i)] for each i ≥ 1.

(C3) For each (t, i) ∈ I × S, the function r(t, i, a) is u.s.c. in a ∈ A(t, i) and there exists a
constant M > 0 such that |g(T , i)| ≤ M(in + 1) and |r(t, i, a)| ≤ M(in + 1) for all
t ∈ I, i ∈ S and a ∈ A(t, i), where n ≥ 1 is some integer.

Under these conditions, we obtain the following proposition.

Proposition 5.1. Under (C1), (C2), and (C3), the following assertions hold (for Example 5.1).

(i) The controlled birth–death system satisfies Assumptions 3.1, 3.2, and 4.1. Therefore (by
Theorem 4.1), there exists an optimal Markov policy.

(ii) (Special case 1.) Suppose that, in addition, λ(t) = μ(t) = 0 for all t ≥ 0, A1(i) = [0, i],
A2(i) = [0, 2i] for all i ∈ S; the reward functions r(t, i, a1, a2) and g(t, i) are given by
r(t, i, a1, a2) = −2i + (T + 3 − 3et−T/2)a1 + ( 3

2 et−T/2 − 3
2 − T )a2 for t ∈ [0, T /2) and

r(t, i, a1, a2) = −2i + (5T /2 − 3t)a1 + (t − 3T /2)a2 for t ∈ [T/2, T ], where a1 ∈ [0, i],
a2 ∈ [0, 2i], and g(T , i) = 0 for all i ≥ 0. Then, for every i ≥ 0, the value function V ∗(t, i)
and an optimal Markov policy f ∗(t, i) are given as

V ∗(t, i) =
{

−i(2 + T − 2et−T/2), t ∈ [0, T /2),
−2i(T − t), t ∈ [T/2, T ], (5.3)

f ∗(t, i) =
{
(i, 2i), t ∈ [0, T /2),
(0, 0), t ∈ [T/2, T ]. (5.4)

(iii) (Special case 2.) Suppose that, in addition, λ(t) = μ(t) = 0 for all t ≥ 0, A1(0) =
[0, k], A2(0) = {0}, and A1(i) = [0, i], A2(i) = [0, 2i] for all i ≥ 1; the reward functions
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r(t, i, a1, a2) and g(T , i) are defined by

r(t, i, a1, a2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2et−T/2 − kt)a1, i = 0, t ∈ [0, T /2),
(T − 2 − 2t − kt)a1, i = 0, t ∈ [T/2, T ],
−4 + (2 + T )a1 + (3 + kt)a2, i = 1, t ∈ [0, T /2),
−2, i = 1, t ∈ [T/2, T ],
−2i − T a1 +

(
3

2
et−T 2 − 3

2
− T

)
(a2 − 2a1), i > 1, t ∈ [0, T /2),

−2i +
(

5T

2
− 3t

)
a1 +

(
t − 3T

2

)
a2, i > 1, t ∈ [T/2, T ],

and g(T , i) = 0 for all i ≥ 0. Then the value function V ∗(t, i) and an optimal Markov policy
f ∗(t, i) are given as

V ∗(t, i) =

⎧⎪⎨
⎪⎩

−kt − 3 − T , i = 0, t ∈ [0, T ),
−i(2 + T − 2et−T/2), i ≥ 1, t ∈ [0, T /2),
−2i(T − t), i ≥ 1, t ∈ [T/2, T ],

(5.5)

and

f ∗(t, i) =

⎧⎪⎨
⎪⎩
(k, 0), i = 0, t ∈ [0, T ),
(i, 2i), i ≥ 1, t ∈ [0, T /2),
(0, 0), i ≥ 1, t ∈ [T/2, T ),

(5.6)

respectively.

Proof of Proposition 5.1(i). We shall first verify Assumption 3.1. Let ω(i) := in + 1 for
each i ∈ S, and Sm := {0, 1, . . . , m} for allm ≥ 1, where n is the same as in (C3). It is obvious
that Sm ↑ S, supi∈Sm q

∗(i) < ∞ and limm→∞ infj �∈Sm ω(j) = limm→∞[(m+1)n+1] = +∞.
Moreover, for each i ≥ 1 and a = (a1, a2) ∈ A(t, i), using (C1) and (C2), by (5.2), we have∑

j∈S
q(j | t, i, a)ω(j) = [a2 + μ(t)i](i − 1)n − [a1 + a2 + μ(t)i + λ(t)i]in

+ (a1 + λ(t)i)(i + 1)n

≤ 2n(λ(t)i + a1)i
n−1

≤ 2n[λ2 + 2(k + λ2)]ω(i) for all t ≥ 0. (5.7)

For i = 0, we have∑
j∈S

q(j | t, 0, a)ω(j) = λ(t)+ a1 ≤ 2n[λ2 + 2(k + λ2)]ω(0). (5.8)

From (5.7) and (5.8) we conclude that Assumption 3.1 holds under (C1)–(C3).
By (C1)–(C3) and (5.2), Assumption 4.1 is obviously satisfied. Moreover, take ω′(i) :=

in+1 + 1 for all i ∈ S. Then, as in the proofs of (5.7) and (5.8), we can derive that Assumption
3.2 also holds. Hence, Assumptions 3.1, 3.2, and 4.1 are verified.

Proof of Proposition 5.1(ii). Under the conditions in Proposition 5.1(ii), by modifying
ϕ′(t, i) on Lϕ(i) in obvious ways, (4.1) can be expressed as

ϕ′(t, 0) = 0, ϕ(T , 0) = 0, (5.9)
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and
sup

a∈A(t,i)
[r(t, i, a)+ a2ϕ(t, i − 1)− (a1 + a2)ϕ(t, i)+ a1ϕ(t, i + 1)] = −ϕ′(t, i),

ϕ(T , i) = 0 for every i ≥ 1, t ∈ [0, T ], (5.10)

where a = (a1, a2) and A(t, i) = [0, i] × [0, 2i].
By solving (5.9) and (5.10), we obtain the value function V ∗(t, i) as in (5.3). Furthermore,

from (5.10) we derive an optimal policy f ∗(t, i) as in (5.4).

Proof of Proposition 5.1(iii). Under the conditions in Proposition 5.1(iii), by modifying
ϕ′(t, i) on Lϕ(i) in obvious ways, (4.1) can be expressed as

ϕ′(t, 0)+ sup
a∈[0,k]×{0}

[r(t, 0, a)− a1ϕ(t, 0)+ a1ϕ(t, 1)] = 0, ϕ(T , 0) = 0, (5.11)

and
sup

a∈A(t,i)
[r(t, i, a)+ a2ϕ(t, i − 1)− (a1 + a2)ϕ(t, i)+ a1ϕ(t, i + 1)] = −ϕ′(t, i),

ϕ(T , i) = 0 for every i ≥ 1, t ∈ [0, T ], (5.12)

where a = (a1, a2) and A(t, i) = [0, i] × [0, 2i].
By solving (5.11) and (5.12), we obtain the value function V ∗(t, i) as in (5.5). Furthermore,

using the value function and (5.11) and (5.12), we obtain an optimal policy f ∗(t, i) as in (5.6).

Remark 5.1. Although the value function V ∗(t, i) in Example 5.1 is finite (by Theorem 4.1),
from (5.3) (or (5.5)) we see that it can be unbounded since inf i∈S V ∗(t, i) = −∞ for each
t ∈ [0, T ). This implies that the required boundedness of the value function in [27, Theorems
5.1 and 5.2] can be done away with and, thus, we have obtained solutions to the unsolved
problems for the finite-horizon CTMDPs in [27, Theorems 5.1 and 5.2, p. 234].
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