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PREDICTING THE SUPREMUM: OPTIMALITY
OF ‘STOP AT ONCE OR NOT AT ALL’

PIETER C. ALLAART,∗ University of North Texas

Abstract

Let (Xt )0≤t≤T be a one-dimensional stochastic process with independent and stationary
increments, either in discrete or continuous time. In this paper we consider the problem
of stopping the process (Xt ) ‘as close as possible’ to its eventual supremum MT :=
sup0≤t≤T Xt , when the reward for stopping at time τ ≤ T is a nonincreasing convex
function of MT − Xτ . Under fairly general conditions on the process (Xt ), it is shown
that the optimal stopping time τ takes a trivial form: it is either optimal to stop at time 0
or at time T . For the case of a random walk, the rule τ ≡ T is optimal if the steps of the
walk stochastically dominate their opposites, and the rule τ ≡ 0 is optimal if the reverse
relationship holds. An analogous result is proved for Lévy processes with finite Lévy
measure. The result is then extended to some processes with nonfinite Lévy measure,
including stable processes, CGMY processes, and processes whose jump component is
of finite variation.
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1. Introduction

In recent years there has been a great deal of interest in optimal prediction problems of the
form

sup
τ≤T

E[f (MT − Xτ )], (1.1)

where f is a nonincreasing function, (Xt )t≥0 is a one-dimensional stochastic process, T > 0
is a finite time horizon, and MT := sup{Xt : 0 ≤ t ≤ T }. The supremum in (1.1) is taken over
the set of all stopping times adapted to the process (Xt )t≥0 for which P(τ ≤ T ) = 1. For the
case of Brownian motion, problem (1.1) has been investigated for several reward functions f ,
though it is often formulated as a penalty-minimization problem in the form

inf
τ≤T

E[f̃ (MT − Xτ )], (1.2)

where f̃ := −f . For instance, Graversen et al. [9] solved (1.2) for standard Brownian motion
and f̃ (x) = x2. Their result was generalized to f̃ (x) = xα for arbitrary α > 0 by Pedersen
[12], who also considered the function f = χ[0,ε] for ε > 0 in (1.1). Du Toit and Peskir [7]
were the first to extend these results (for power functions f ) to Brownian motion with arbitrary
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drift, which required an entirely new approach. More recently, Shiryaev et al. [14] considered
problem (1.1) for Brownian motion with drift and f (x) = e−σx , where σ > 0. In that case
the problem has the natural interpretation of maximizing the expected ratio of the selling price
to the eventual maximum price in the Black–Scholes model for stock price movements. They
observed that when the drift parameter lies outside a certain critical interval, the optimal rule τ ∗
becomes trivial, that is, either τ ∗ ≡ 0 or τ ∗ ≡ T . A year later, Du Toit and Peskir [8] managed
to prove that the optimal rule is trivial also in the critical interval. More precisely, their result
was that τ ∗ ≡ 0 when the drift is negative, and τ ∗ ≡ T when the drift is positive. While this
may seem intuitively quite plausible, it is nontrivial to prove. Since the optimal rule changes
abruptly from 0 to T as the drift parameter passes through 0, Du Toit and Peskir [8] called it a
‘bang–bang’ stopping rule. They also showed that, for the (seemingly quite similar) problem
(1.2) with f̃ (x) = eσx , the optimal rule is not of bang–bang form, but transitions from τ ∗ ≡ 0
to τ ∗ ≡ T in a nontrivial way throughout the critical interval.

In the discrete-time setting, an analogous result for a Bernoulli random walk was obtained
later the same year by Yam et al. [15], using ideas from [8]. Here we put T = N , a positive
integer, and writeXn instead ofXt , where {Xn}0≤n≤N is a simple random walk with parameterp.
Yam et al. [15] considered both the function f = χ0, the characteristic function of the set {0} (in
which case the expectation in (1.1) is just the probability of stopping at the ‘top’ of the random
walk), and the function f (x) = e−σx , and concluded that in both cases the optimal rule is of
bang–bang type. More precisely, the optimal rule is τ ≡ N when p > 1

2 ; τ ≡ 0 when p < 1
2 ;

or any stopping rule τ satisfying P(Xτ = Mτ or τ = N) = 1 when p = 1
2 . It is worth noting

that the case f = χ0 had already been considered for general symmetric random walks more
than 20 years earlier by Hlynka and Sheahan [10].

The results for both discrete and continuous times were recently extended in Allaart [1],
where it is shown that the bang–bang principle holds for both a Bernoulli random walk and
Brownian motion with drift whenever f is nonincreasing and convex. Equivalently, it holds
for problem (1.2) when f̃ is nondecreasing and concave, which is the case, for instance, for
the natural penalty function f̃ (x) = xα with 0 < α ≤ 1. Allaart [1] gave simple sufficient
conditions on f for the optimal rules to be unique in the discrete-time case, and necessary and
sufficient conditions for the case of Brownian motion.

The aim of the present paper is to extend the result further still, to include more general
random walks as well as certain Lévy processes. First, in Section 2, it is shown that the
bang–bang principle holds for any random walk whose increments stochastically dominate
their opposites, or vice versa (see Theorem 2.1). In Section 3 an analogous result is proved
for Lévy processes, first for the case of finite Lévy measure (Theorem 3.1), then for the more
general case (Theorem 3.2). This appears to require some notion of drift, and, therefore, it
seems necessary to impose some additional conditions pertaining to the ‘small jumps’ of the
process. One of these conditions can be omitted in the case when f is continuous and bounded
(Theorem 3.3), but the author does not know whether it is needed in the general case. The extra
conditions may seem restrictive, but they are satisfied by several commonly studied types of
Lévy process, including subordinators, symmetric stable processes, and CGMY processes.

A possible application of this research is in finance. Suppose that you buy a share of stock
on the first day of the month, which you must sell some time by the end of the month. Perhaps
the stock price follows a random walk in discrete time, and your objective is to maximize the
probability of selling the stock at the highest price over the month. In that case, let Xt be
the random walk, and let f = χ0. Or perhaps the stock price follows an exponentiated Lévy
process, such as geometric Brownian motion, and your goal is to maximize the expected ratio

https://doi.org/10.1239/jap/1346955335 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955335


808 P. C. ALLAART

of the price at the time you sell to the eventual maximum price. In that case, let Xt be the Lévy
process, and put f (x) = e−σx , where σ > 0. In both examples the results of this paper imply,
under suitable conditions on the process Xt , that it is either optimal to sell the stock immediately,
or to keep it until the last day of the month. In fact, the result for the second example remains
valid if one takes as the objective function an arbitrary increasing convex function g of the price
ratio, since if g : (0, ∞) → R is increasing and convex, then f (x) = g(e−σx) is decreasing
and convex.

After starting this work, the author learnt that D. Orlov has also extended the bang–bang
principle to certain Lévy processes. Unfortunately, an English version of his paper was not
available at the time the present article was nearing completion. In addition, a paper by Bernyk et
al. [4] appeared in which problem (1.2) was solved for stable Lévy processes of index α ∈ (1, 2)

with no negative jumps, for the penalty function f̃ (x) = xp with p > 1. (We observe that, for
this case, f = −f̃ is not convex, so the results of the present paper do not apply; indeed, the
optimal rule is nontrivial and its determination requires significant analytical tools.) Some of
the preparatory work for this last paper was done in [3].

2. The maximum of a random walk

In this section, let {Xn}n=0,1,... be a random walk with general steps satisfying a form of
skew symmetry as follows: X0 ≡ 0, and, for n ≥ 1, Xn = ∑n

k=1 ξk , where ξ, ξ1, ξ2, . . .

are independent, identically distributed (i.i.d.) random variables for which either ξ ≥st −ξ or
ξ ≤st −ξ . Here, ‘≥st’ denotes the usual stochastic order of random variables, defined by

X ≥st Y ⇐⇒ P(X > t) ≥ P(Y > t) for all t ∈ R.

(See Chapter 17 of [11] for a general treatment of the stochastic order.) Let Mn := max0≤k≤n Xk

for n = 0, 1, . . . , N , where N ∈ N is a finite time horizon. For a nonincreasing function
f : [0, ∞) → R, consider the optimal stopping problem

sup
0≤τ≤N

E[f (MN − Xτ )], (2.1)

where the supremum is over the set of all stopping times τ ≤ N adapted to the natural filtration
{Fn}0≤n≤N of the process {Xn}0≤n≤N . We note that since f is bounded above, the expectation
in (2.1) always exists, though it could take the value −∞.

The above setup includes the Bernoulli random walk with arbitrary parameter p ∈ (0, 1) as
a special case, but is of course much more general.

Theorem 2.1. Assume that either ξ ≥st −ξ or ξ ≤st −ξ , and let f : [0, ∞) → R be non-
increasing and convex. Consider problem (2.1).

(i) If ξ ≥st −ξ , the rule τ ≡ N is optimal.

(ii) If ξ ≤st −ξ , the rule τ ≡ 0 is optimal.

(iii) If ξ
d= −ξ , any rule τ satisfying P(Xτ = Mτ or τ = N) = 1 is optimal.

Remark 2.1. By the assumption of convexity, f must be continuous on (0, ∞), but it may
have a jump discontinuity at x = 0. Thus, in particular, Theorem 2.1 covers the important case
f = χ0, the characteristic function of the set {0}. In that case, the problem comes down to
maximizing the probability of stopping at the highest point of the walk, so it can be thought of
as a random walk version of the secretary (or best-choice) problem.
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Remark 2.2. The condition ξ ≥st −ξ holds for any random variable ξ whose distribution is
symmetric about some point m ≥ 0, as is easy to see. For instance, any normal random variable
ξ with a nonnegative mean satisfies ξ ≥st −ξ . It follows that Theorem 2.1 applies to all ξ with
symmetric distributions.

Example 2.1. An example of a nonsymmetric distribution for which ξ ≥st −ξ is the Gumbel
extreme value distribution, with distribution function F(x) = exp(−e−x), x ∈ R. To see this,
let g(x) = exp(−ex) + exp(−e−x). Then

g′(x) = exp(−ex + x)[exp(ex − e−x − 2x) − 1].
Since it is easy to see (for instance, by using a series expansion) that ex − e−x − 2x ≥ 0 for
x ≥ 0, it follows that g is increasing on [0, ∞). Also, since limx→∞ g(x) = 1, this means that
g(x) < 1 for x ≥ 0. Hence,

1 − F(x) ≥ F(−x), x ≥ 0.

So if ξ ∼ F then ξ ≥st −ξ .

Example 2.2. The condition ξ ≥st −ξ in Theorem 2.1(i) cannot be replaced by the condition
E(ξ) ≥ 0. For instance, let P(ξ = 3) = 1

3 = 1 − P(ξ = −1), let f = χ0, and take n = 2.
Even though E(ξ) = 1

3 > 0, the optimal rule is easily seen to be τ ≡ 0 rather than τ ≡ 2.

In the case of a Bernoulli random walk, simple sufficient conditions on the function f such
that the optimal rules given above be unique are given in [1]. There an example is also given
to show that, without the convexity of f , the conclusion of Theorem 2.1 may fail in general.

The proof of Theorem 2.1 uses the following generalization of Lemma 2.1 of [1]. Note that,
compared to that lemma, a somewhat different method of proof is needed here.

Lemma 2.1. Let f be as in Theorem 2.1, and suppose that ξ ≥st −ξ . Then

E[f (z ∨ Mn − Xn)] ≥ E[f (z ∨ (Mn − Xn))] (2.2)

for all n ≤ N and all z ≥ 0.

Since the statement of Lemma 2.1 involves only expectations, we may construct the random
walk on a convenient probability space. Recall first that if X ≥st Y then X and Y can be
defined on a common probability space (�, F , P) so that X(ω) ≥ Y (ω) for all ω ∈ �.
(See, for instance, [11, Theorem 17.B.1].) Thus, on a sufficiently large probability space, we
can construct the random variables ξ1, . . . , ξN together with another set of random variables
ξ̃1, . . . , ξ̃N such that the random vectors (ξ1, ξ̃1), . . . , (ξN , ξ̃N ) are independent, ξ̃i

d= −ξ1 for
each i, and ξi ≥ ξ̃i for each i. Let X̃0 ≡ 0 and X̃n = ∑n

k=1 ξ̃k for n = 1, 2, . . . , N . Finally,
define M̃n := max0≤k≤n X̃k, n = 0, 1, . . . , N . Clearly, Xn ≥ X̃n and Mn ≥ M̃n for every n.

It is also useful to define

Zn := Mn − Xn and Z̃n := M̃n − X̃n, n = 0, 1, . . . , N.

We easily check that
Zn ≤ Z̃n, n = 0, 1, . . . , N. (2.3)

The key to the proof of Lemma 2.1 is that, for each fixed n,

(Mn − Xn, Xn)
d= (M̃n, −X̃n), (2.4)

as follows from an easy time-reversal argument.
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Proof of Lemma 2.1. The lemma holds trivially (with equality) when z = 0, so assume that
z > 0. We must first deal separately with the case when E[f (z ∨ Mn − Xn)] = −∞. Let
α := [f (z) − f (0)]/z. Then the convexity of f implies that, for all u ≥ 0,

f (u + z) − f (u) ≥ αz. (2.5)

Using the algebraic inequality z ∨ m − x ≤ z ∨ (m − x) + z (valid for z ≥ 0 and m ≥ 0) and
the fact that f is nonincreasing, we obtain

f (z ∨ m − x) ≥ f (z ∨ (m − x) + z) ≥ f (z ∨ (m − x)) + αz,

in view of (2.5). Thus, if E[f (z ∨ Mn − Xn)] = −∞ then E[f (z ∨ (Mn − Xn))] = −∞ as
well, and the lemma holds in this case.

Assume for the remainder of the proof that E[f (z ∨ Mn − Xn)] > −∞. Since n is fixed,
we omit the subscripts and write M = Mn, X = Xn, and Z = Zn, and similarly for their tilded
counterparts. Let

h(z, m, x) := f (z ∨ m − x) − f (z ∨ (m − x)),

so that it is to be shown that
E[h(z, M, X)] ≥ 0. (2.6)

The above expectation exists and is finite, because αz ≤ h(z, m, x) ≤ |α|z. We begin by
writing

E[h(z, M, X)] = E[h(z, M, X); X > 0] + E[h(z, M, X); X < 0].
Using (2.4), we can write the second expectation as

E[h(z, M, X); X < 0] = E[h(z, M̃ − X̃, −X̃); X̃ > 0]. (2.7)

On the other hand, we claim that

E[h(z, M, X); X > 0] ≥ E[h(z, M̃, X̃); X̃ > 0]. (2.8)

To see this, note that h(z, M, X) = 0 on {X > 0, M − X > z}, and, hence,

h(z, M, X) 1(X > 0) = (f (z ∨ M − X) − f (z)) 1(X > 0, M − X ≤ z)

= (f (max{z − X, Z}) − f (z)) 1(X > 0, Z ≤ z)

≥ (f (max{z − X, Z}) − f (z)) 1(X̃ > 0, Z̃ ≤ z)

≥ (f (max{z − X̃, Z̃}) − f (z)) 1(X̃ > 0, Z̃ ≤ z)

= h(z, M̃, X̃) 1(X̃ > 0).

Here the first inequality follows since {X̃ > 0, Z̃ ≤ z} ⊂ {X > 0, Z ≤ z} by (2.3), max{z−X,

Z} ≤ z on {X > 0, Z ≤ z}, and f is nonincreasing. The second inequality follows since f is
nonincreasing and max{z − X, Z} ≤ max{z − X̃, Z̃}.

Combining (2.7) and (2.8), we obtain

E[h(z, M, X)] ≥ E[h(z, M̃, X̃) + h(z, M̃ − X̃, −X̃); X̃ > 0]. (2.9)

Next, the convexity of f implies that, for all 0 ≤ x < y and all d > 0,

f (x) − f (x + d) ≥ f (y) − f (y + d), (2.10)
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as is easily checked. Thus, for z ≥ 0 and 0 < x ≤ m, we have

h(z, m, x) + h(z, m − x, −x) = [f (z ∨ m − x) − f (z ∨ (m − x))]
+ [f (z ∨ (m − x) + x) − f (z ∨ m)]

= [f (z ∨ m − x) − f (z ∨ m)]
− [f (z ∨ (m − x)) − f (z ∨ (m − x) + x)]

≥ 0,

where the inequality follows by (2.10) with d = x, since x > 0 implies that z ∨ m − x ≤
z ∨ (m − x). This, together with (2.9), yields (2.6).

Corollary 2.1. Under the hypotheses of Lemma 2.1,

E[f (z ∨ Mn − Xn)] ≥ E[f (z ∨ Mn)] (2.11)

for all n ≤ N and all z ≥ 0.

Proof. By (2.4), inequality (2.2) can be expressed alternatively as

E[f (z ∨ Mn − Xn)] ≥ E[f (z ∨ M̃n)]. (2.12)

But, E[f (z ∨ M̃n)] ≥ E[f (z ∨ Mn)], since M̃n ≤st Mn and f is nonincreasing. Thus, (2.11)
follows.

Proof of Theorem 2.1. The main idea in the proof below is essentially due to Du Toit and
Peskir [8]; see Yam et al. [15] for the discrete-time case.

(i) Suppose first that ξ1 ≥st −ξ1. Construct the random variables ξk , Xk , Mk , Zk and ξ̃k ,
X̃k , M̃k , Z̃k on a common probability space as in the discussion following the statement of
Lemma 2.1. Define the σ -algebras

Gk := σ({ξ1, . . . , ξk, ξ̃1, . . . , ξ̃k}), k = 0, 1, . . . , N.

It will be important later in the proof that the increments Xk −Xj and X̃k − X̃j are independent
of Gj for all 0 ≤ j ≤ k. Note further that if the stopping time τ ≡ N is optimal among the
set of all stopping times relative to the filtration {Gk} then it is certainly optimal among the
stopping times relative to {Fk}. Thus, it is sufficient to show that

E[f (MN − Xτ )] ≤ E[f (MN − XN)] (2.13)

for any stopping time τ relative to {Gk}. Define the functions

G(k, z) := E[f (z ∨ Mk)], D(k, z) := E[f (z ∨ Mk − Xk)],
for z ≥ 0 and k = 0, 1, . . . , N . Note that G(k, z) and D(k, z) can possibly take the value −∞.
Let τ ≤ N be any stopping time. An easy exercise using the independent and stationary
increments of the random walk {Xk} leads to

E[f (MN − Xτ ) | Gτ ] = G(N − τ, Zτ ) (2.14)

and
E[f (MN − XN) | Gτ ] = D(N − τ, Zτ ). (2.15)
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Now Corollary 2.1 says that D(k, z) ≥ G(k, z), and, hence,

E[f (MN − Xτ ) | Gτ ] ≤ E[f (MN − XN) | Gτ ].
Taking expectations on both sides gives (2.13), as desired.

(ii) Suppose next that ξ1 ≤st −ξ1. Apply again the construction following the statement of
Lemma 2.1, but this time with ξi ≤ ξ̃i for all i. Observe that all the other relationships between
random variables and their tilded counterparts are now reversed as well, i.e.

Xk ≤ X̃k, Mk ≤ M̃k, Zk ≥ Z̃k,

for k = 0, 1, . . . , N . Define the filtration {Gk} and the function G(k, z) as in the proof of part (i)
above, and let

D̃(k, z) := E[f (z ∨ M̃k − X̃k)].
In place of (2.12), we now have the inequality

E[f (z ∨ M̃k − X̃k)] ≥ E[f (z ∨ Mk)],
or, in other words, D̃(k, z) ≥ G(k, z). Furthermore, the fact that f is nonincreasing implies
that G(k, z) is nonincreasing in z, and, therefore,

G(N − j, Zj ) ≤ G(N − j, Z̃j )

for each j . By (2.4), E[f (MN)] = E[f (Z̃N)]. Putting these facts together, we obtain, for any
stopping time τ relative to {Gk}, by the same kind of reasoning as in the proof of part (i),

E[f (MN − Xτ )] = E[G(N − τ, Zτ )]
≤ E[G(N − τ, Z̃τ )]
≤ E[D̃(N − τ, Z̃τ )]
= E[f (Z̃N)]
= E[f (MN)]. (2.16)

Hence, the rule τ ≡ 0 is optimal.
(iii) Suppose finally that ξ1

d= −ξ1. This is a special case of part (i), so the rule τ ≡ N is
optimal. Now let τ be any stopping time such that, with probability 1, Xτ = Mτ or τ = N .
Since G(0, z) = f (z) = D(0, z) for all z ≥ 0 and G(k, 0) = E[f (Mk)] = E[f (Z̃k)] =
E[f (Zk)] = D(k, 0) for all k, (2.14) and (2.15) give equality in (2.13). Hence, τ is optimal.

3. The maximum of a Lévy process

A careful study of the proofs in the previous section reveals that the essential property of the
random walk is its independent and stationary increments. Furthermore, in order to construct
the random walk {Xn} and its dual {X̃n} on a common probability space in such a way that the
increments of {Xn} uniformly dominate those of {X̃n} (or vice versa), the step-size distribution
had to satisfy a type of skew symmetry. With this in mind, we can now extend the result to a
much larger class of stochastic processes.

The general continuous-time analog of a random walk is a Lévy process, which is defined as
a stochastic process on [0, ∞) with independent and stationary increments which starts at 0 and
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is continuous in probability. Following standard practice, we assume also that the process has
almost surely right-continuous sample paths with left-hand limits everywhere. If X = (Xt )t≥0
is a (one-dimensional) Lévy process, it is uniquely determined by the Lévy–Khintchine formula

E[eiuXt ] = etη(u),

where

η(u) = iγ u − σ 2u2

2
+

∫
R\{0}

[eiuy − 1 − iuyχ(−1,1)(y)]ν(dy). (3.1)

In this expression, the Lévy measure ν satisfies
∫

R\{0}(y
2 ∧ 1)ν(dy) < ∞, but ν need not

be finite. We say that X is generated by the triplet (γ, σ 2, ν).
Define the supremum process M = (Mt)t≥0 by

Mt := sup
0≤s≤t

Xs, t ≥ 0.

If ν is finite then X is simply the sum of a Brownian motion with drift and a compound
Poisson process, and it is straightforward to adapt the result of the previous section. This
is done in Subsection 3.1. If ν is not finite, however, complications arise in attempting to
couple the process X with its dual, and some additional conditions appear to be needed to
overcome these difficulties. This is made precise in Subsection 3.2. Finally, in Subsection 3.3,
we eliminate one of the extra conditions in the case when f is continuous and bounded.

3.1. The case of finite ν

We consider first the case when ν is finite. Then we may set

b := γ −
∫

0<|y|<1
yν(dy),

and express Xt pathwise in the form

Xt = bt + σBt +
N(t)∑
i=1

ξi, (3.2)

where Bt is a standard Brownian motion, ξ1, ξ2, . . . are i.i.d. random variables with distribution
ν/|ν|, and (N(t))t≥0 is a Poisson process with intensity |ν|. In this representation, the Poisson
process, the Brownian motion, and the ξis are all independent of one another.

Definition 3.1. Let X = (Xt )t≥0 be a Lévy process of the form (3.2), with finite Lévy
measure ν.

(i) X is right skew symmetric (RSS) if b ≥ 0 and ν((a, ∞)) ≥ ν((−∞, −a)) for all a > 0.

(ii) X is left skew symmetric (LSS) if b ≤ 0 and ν((a, ∞)) ≤ ν((−∞, −a)) for all a > 0.

(iii) X is symmetric if b = 0 and ν((a, ∞)) = ν((−∞, −a)) for all a > 0.

Note that the condition regarding ν in the definition of RSS is equivalent to ξ1 ≥st −ξ1,
because if the inequality holds for all a > 0, it holds for all a ∈ R. The following result is the
analog of Theorem 2.1 for a Lévy process with finite Lévy measure ν.
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Theorem 3.1. Let X = (Xt )t≥0 be a Lévy process with finite Lévy measure ν, adapted to a
filtration {Ft }, such that Xt − Xs is independent of Fs for all 0 ≤ s ≤ t . Assume that X is
either RSS or LSS, and let f be as in Theorem 2.1. For fixed T > 0, consider the problem

sup
0≤τ≤T

E[f (MT − Xτ )], (3.3)

where the supremum is over all stopping times τ relative to the filtration {Ft } with P(τ ≤
T ) = 1.

(i) If X is RSS, the rule τ ≡ T is optimal.

(ii) If X is LSS, the rule τ ≡ 0 is optimal.

(iii) If X is symmetric, any rule τ satisfying P(Xτ = Mτ or τ = T ) = 1 is optimal.

If ν = 0 then X is a Brownian motion with drift. Thus, the above theorem generalizes recent
results of Shiryaev et al. [14], Du Toit and Peskir [8, Section 4], and Allaart [1].

Definition 3.2. Let X = (Xt )t≥0 be a Lévy process. The dual process of X, denoted by X̃, is

a process such that (X̃t )t≥0
d= (−Xt)t≥0. The dual supremum process, denoted by M̃ , is the

process defined by M̃t := sup0≤s≤t X̃s for t ≥ 0.

If X is a Lévy process generated by the triplet (γ, σ 2, ν) then X̃ is a Lévy process with triplet
(−γ, σ 2, ν̃), where ν̃(A) = ν(−A) for any Borel set A ⊂ R. Note that if X is RSS then X̃ is
LSS and vice versa.

Lemma 3.1. Let X be any Lévy process. Then, for each fixed t ≥ 0,

(Mt − Xt, Xt )
d= (M̃t , −X̃t ).

Proof. This is essentially a known fact. Let It := inf{Xs : 0 ≤ s ≤ t}. Then, plainly,

(M̃t , −X̃t )
d= (−It , Xt ).

According to Proposition 3 of [5, p. 158],

(−It , Xt − It )
d= (Mt − Xt, Mt),

which is equivalent to

(−It , Xt )
d= (Mt − Xt, Xt ).

Thus, the lemma follows.

Proof of Theorem 3.1. Assume for the moment that X is RSS. Recall representation (3.2).
On the same probability space on which the process X is defined, we construct the dual X̃

as follows. For each i ∈ N, we can construct out of ξi (using an external randomization if
necessary) a random variable ξ̃i such that ξ̃i

d= −ξi , and ξi ≥ ξ̃i pointwise. Now set

X̃t := −bt + σBt +
N(t)∑
i=1

ξ̃i , t ≥ 0.
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Then it is easy to see that (X̃t )t≥0
d= (−Xt)t≥0, and, moreover, the processes X and X̃ satisfy

the property that, for all 0 ≤ s < t and all ω ∈ �,

Xt(ω) − Xs(ω) ≥ X̃t (ω) − X̃s(ω). (3.4)

For t ≥ 0, define
Zt := Mt − Xt, Z̃t := M̃t − X̃t .

As in Section 2, it follows from (3.4) that

Mt ≥ M̃t and Zt ≤ Z̃t for all t ≥ 0.

Using these relationships and Lemma 3.1, we can show in exactly the same way as in the proof
of Lemma 2.1 that

E[f (z ∨ Mt − Xt)] ≥ E[f (z ∨ (Mt − Xt))]
for all t ≥ 0 and all z ≥ 0.

Next, for t ≥ 0, let Gt be the smallest σ -algebra containing both Ft and σ({X̃s : 0 ≤ s ≤ t}).
Then {Gt }t≥0 is a filtration with respect to which both X and X̃ are adapted, and, for each
0 ≤ s ≤ t , both Xt − Xs and X̃t − X̃s are independent of Gs . The rest of the proof is now the
same (modulo subscript notation) as the proof of Theorem 2.1, where the analogs of (2.14) and
(2.15) follow, since X, being a Lévy process, obeys the strong Markov property.

Question 3.1. It is clear that when X is RSS, we have Xt ≥st X̃t for all t ≥ 0. Does the
converse of this statement hold?

3.2. The general case

For a general Lévy process with nonfinite Lévy measure ν, the construction in the previous
subsection is no longer possible because the jump times are dense in the time interval [0, T ].
Here we will use the fact that a general Lévy process on [0, T ] can always be obtained as
the almost-sure uniform limit of a sequence of processes of the form (3.2). However, in
order to ensure that this can be done while preserving the uniform domination of increments
(i.e. (3.4)), some extra conditions appear to be needed. Let the Lévy–Khintchine representation
of X = (X(t))t≥0 be given by (3.1). (In what follows, it will be notationally more convenient
to write X(t) instead of Xt .)

Definition 3.3. We say that X is balanced in its small jumps (BSJ) if

L := lim
ε↓0

∫
ε≤|y|<1

yν(dy) exists and is finite. (3.5)

This condition is always satisfied when ν is symmetric on a sufficiently small interval (−ε, ε),
where ε > 0, or when

∫
0<|y|<1 |y|ν(dy) < ∞. (In the latter case, the non-Gaussian part of

X has finite variation.) In the case when
∫

0<|y|<1 |y|ν(dy) = ∞, (3.5) may be interpreted as
saying that ν is almost symmetric in a sufficiently small neighborhood of the origin. Roughly
speaking, this means that we allow the small jumps of the process to be dense in time, provided
that the positive and negative jumps more or less balance each other. It allows us to still think
of the number γ − L as the ‘drift’ of the process.

It is clear that if X is BSJ then so is its dual X̃.
Denote by ν̃ the dual measure of ν, so that ν̃(A) = ν(−A) for A ⊂ R. If µ and ν are

measures on R and E ⊂ R, we say that µ majorizes ν on E if µ(F) ≥ ν(F ) for every F ⊂ E.
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Definition 3.4. Let X = (X(t))t≥0 be a Lévy process.

(i) X is strongly right skew symmetric (SRSS) if all of the following statements hold:

(a) X is BSJ;

(b) γ ≥ L, where L is the limit in (3.5);

(c) ν((a, ∞)) ≥ ν((−∞, −a)) for all a > 0;

(d) there exists ε > 0 such that ν majorizes ν̃ on (0, ε).

(ii) X is strongly left skew symmetric (SLSS) if X̃ is SRSS.

(iii) X is symmetric if γ = 0 and ν = ν̃.

Remark 3.1. (i) If X is symmetric then it is both SRSS and SLSS, since (3.5) holds with L = 0.

(ii) If X is SRSS or SLSS, and ν is finite, then X is RSS or, respectively, LSS, since b = γ −L.
The undesirable fourth condition in the definition of SRSS seems to be needed in order to carry
out the pathwise construction of X and its dual, below. At this point, the author does not see
how to get around this technical difficulty, except in the special case when f is bounded and
continuous (see Subsection 3.3).

(iii) The SRSS and SLSS conditions can be made more concrete in the case when ν has a
density. Let f, g : (0, ∞) → [0, ∞), and suppose that

ν(dx) = (f (x)χ(0,∞)(x) + g(−x)χ(−∞,0)(x)) dx.

Then ν is a Lévy measure if and only if
∫ ∞

0 (x2 ∧ 1)[f (x) + g(x)] dx < ∞. The BSJ condition
is now equivalent to convergence of the integral

∫ 1
0 x[f (x) − g(x)] dx. Conditions (c) and (d)

in the definition of SRSS respectively become

(c′)
∫ ∞
a

[f (x) − g(x)] dx ≥ 0 for all a > 0;

(d′) there exists ε > 0 such that f (x) ≥ g(x) for all x ∈ (0, ε).

The easiest way to satisfy both (c′) and (d′) is, of course, to take f ≥ g everywhere. This way,
we may obtain nontrivial examples of nonsymmetric Lévy processes that are SRSS (or SLSS).
For instance, let

f (x) = c

xp
, g(x) = c

xp + xr
, where c > 0, 2 ≤ p < 3, r > 2p − 2.

Then r > p, and ν satisfies (3.5) with

L =
∫ 1

0
x[f (x) − g(x)] dx =

∫ 1

0

cxr−2p+1

1 + xr−p
dx,

a convergent integral. Since (c′) and (d′) are obviously satisfied, the process will be SRSS if
γ ≥ L. Since r > p, the ‘large’ positive jumps of X(t) tend to be greater in magnitude (and
occur more frequently) than the ‘large’ negative jumps. On the other hand, the small jumps of
the process in either direction are comparable in size.
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Example 3.1. (Stable processes.) Let X be a stable Lévy process with index of stability α

(0 < α ≤ 2). If α = 2 then X is just a Brownian motion with drift, and the optimal rule is
already specified by Theorem 3.1. (In fact, in this case the optimal rules are unique except for
some trivial cases; see [1].)

If α < 2 then σ = 0 and the Lévy measure ν is of the form

ν(dx) =
(

c1

x1+α
χ(0,∞)(x) + c2

|x|1+α
χ(−∞,0)(x)

)
dx,

where c1 ≥ 0, c2 ≥ 0, and c1 + c2 > 0 (see, e.g. [13, p. 80]). It follows that if 1 ≤ α < 2
then X is BSJ if and only if c1 = c2, in which case ν is symmetric. In that case, X is SRSS if
γ ≥ 0, and X is SLSS if γ ≤ 0. On the other hand, if 0 < α < 1 then the BSJ condition (3.5)
is always satisfied, with

L =
∫

0<|x|<1
xν(dx) = c1 − c2

1 − α
,

and X is SRSS if γ ≥ L ≥ 0, or, similarly, X is SLSS if γ ≤ L ≤ 0.
Note that in the stable case, condition (d) of Definition 3.4(i) is satisfied whenever conditions

(a)–(c) are.

Example 3.2. (CGMY processes.) Another example of nonsymmetric processes that are SRSS
or SLSS is given by the CGMY processes, which are frequently used in financial modeling.
The CGMY process, named after Carr, Geman, Madan andYor (see [6]), is a Lévy process with
Lévy measure

ν(dx) = C
e−G|x|χ(−∞,0)(x) + e−Mxχ(0,∞)(x)

|x|1+Y
,

where C > 0, G ≥ 0, M ≥ 0, and Y < 2, and it is assumed that G > 0 and M > 0 if
Y ≤ 0. The CGMY processes include the symmetric stable processes (take G = M = 0) and
are sometimes called tempered stable processes. The CGMY process with Y = 0 is known
as the variance gamma process. The very small jumps of a CGMY process behave essentially
as in the symmetric stable case, and it is easy to check that all CGMY processes have the BSJ
property. Furthermore, conditions (c) and (d) of Definition 3.4(i) are satisfied if and only if
M ≤ G. Hence, the CGMY process is SRSS if M ≤ G and γ ≥ L, with L as in (3.5), and it
is SLSS if M ≥ G and γ ≤ L.

We can now state the result for the most general case.

Theorem 3.2. Let X = (X(t))t≥0 be a Lévy process, and let f be as in Theorem 2.1. For fixed
T > 0, consider problem (3.3).

(i) If X is SRSS, the rule τ ≡ T is optimal.

(ii) If X is SLSS, the rule τ ≡ 0 is optimal.

(iii) If X is symmetric, any rule τ satisfying P(X(τ) = M(τ) or τ = T ) = 1 is optimal.

The proof of Theorem 3.2 hinges on the following construction. Once this is accomplished,
the rest of the proof is the same as before.

Lemma 3.2. Let X be an SRSS Lévy process. Then, on a suitable probability space (�, F , P),
we can construct X and its dual X̃ in such a way that there exists a set �0 ⊂ � with P(�0) = 1
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such that, for all 0 ≤ s < t and all ω ∈ �0,

X(t; ω) − X(s; ω) ≥ X̃(t; ω) − X̃(s; ω). (3.6)

Proof. Let ε > 0 be as in the definition of SRSS. Then X(t) can be expressed by the Lévy–Itô
decomposition

X(t) = γ ′t + σB(t) +
∫

|y|<ε

yN ′(t, dy) +
∫

|y|≥ε

yN(t, dy),

where B(t) is a standard Brownian motion on R, γ ′ := γ − ∫
ε≤|y|<1 yν(dy), (N(t, ·))t≥0 is

a Poisson random measure with intensity measure ν which is independent of the Brownian
motion, and N ′(t, ·) is defined by

N ′(t, dy) = N(t, dy) − tν(dy), t ≥ 0.

In general, the integrals
∫
|y|<ε

yN(t, dy) and
∫
|y|<ε

yν(dy) need not converge, but the
‘compensated sum of small jumps’,

∫
|y|<ε

yN ′(t, dy), always does.

Now we will construct a sequence of Lévy processes Y1, Y2, . . . and their duals Ỹ1, Ỹ2, . . . ,
as follows. Let ε = ε1 > ε2 > · · · be a sequence of numbers decreasing to 0. Define first

Y1(t) := (γ − L)t + σB(t) +
∫

|y|≥ε

yN(t, dy).

Then Y1 has finite Lévy measure ν1, where ν1 is the restriction of ν to the set {y : |y| ≥ ε}.
Clearly, ν1((a, ∞)) ≥ ν1((−∞, −a)) for all a > 0, since ν1 simply inherits this property
from ν. Since γ ≥ L, we can construct Y1 and its dual Ỹ1 on the same probability space so that
these processes satisfy the increment property (3.4). Next, for n ≥ 2, let

Yn(t) =
∫

εn≤|y|<εn−1

yN(t, dy),

and note that, by the usual independence property of Poisson point processes, the processes
Yn, n ∈ N, may be constructed independently of each other. Now, for each n ≥ 2, Yn is a
compound Poisson process with (finite) Lévy measure νn, where νn is the restriction of ν to
the set {y : εn ≤ |y| < εn−1}. Since ν majorizes ν̃ on (0, ε), it follows that νn((a, ∞)) ≥
ν̃n((a, ∞)) for all n ≥ 2. (Note that this fact would not be guaranteed without the fourth
condition in the definition of SRSS.) Thus, we can construct Yn and its dual Ỹn together as in
the previous subsection in such a way that these processes satisfy (3.4).

Finally, set

Xn(t) := Y1(t) + · · · + Yn(t), X̃n(t) := Ỹ1(t) + · · · + Ỹn(t),

for n ∈ N, so that X̃n is the dual of Xn. Since property (3.4) is clearly preserved under addition
of two or more processes, we have, for all 0 ≤ s < t ,

Xn(t) − Xn(s) ≥ X̃n(t) − X̃n(s) (3.7)

pointwise on �. Finally, note that Xn(t) can be written as

Xn(t) = (γ − L)t + σB(t) +
∫

|y|≥εn

yN(t, dy)

= γnt + σB(t) +
∫

εn≤|y|<ε

yN ′(t, dy) +
∫

|y|≥ε

yN(t, dy),
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where

γn := γ − L +
∫

εn≤|y|<ε

yν(dy).

By (3.5), γn → γ ′, and it follows from Theorem 2.6.2 of [2] that Xn(t) → X(t) uniformly in
[0, T ] with probability 1, as long as the sequence {εn} decreases fast enough so that

∫
0<|y|<εn

y2ν(dy) ≤ 1

8n
(3.8)

for every n. Similarly, X̃n(t) → X̃(t) uniformly in [0, T ] with probability 1. By taking limits
in (3.7), we see that X and X̃ satisfy (3.6) everywhere on the set on which both processes
converge.

3.3. The case of bounded and continuous f

In general, it seems difficult to eliminate the unnatural condition (d) in the definition of
SRSS, except when the reward function f is bounded and continuous on [0, ∞). This case
includes, for instance, the natural reward function f (x) = e−σx with σ > 0.

Say a general Lévy process X = (X(t))t≥0 with Lévy–Khintchine representation (3.1) is
RSS if

γ ≥ lim inf
δ↓0

∫
δ<|y|<1

yν(dy), (3.9)

and ν((a, ∞)) ≥ ν((−∞, a)) for all a > 0. Say X is LSS if X̃ is RSS.

Theorem 3.3. Let X = (X(t))t≥0 be a Lévy process, and let f : [0, ∞) → R be bounded,
nonincreasing, continuous, and convex. For fixed T > 0, consider problem (3.3).

(i) If X is RSS, the rule τ ≡ T is optimal.

(ii) If X is LSS, the rule τ ≡ 0 is optimal.

(Observe that the symmetric case is already covered by Theorem 3.2.)

Proof of Theorem 3.3. Suppose first that X is RSS. Let L := lim infδ↓0
∫
δ<|y|<1 yν(dy),

and choose a sequence δ1 > δ2 > · · · > 0 so that limk→∞
∫
δk<|y|<1 yν(dy) = L. For

each n, choose kn so that εn := δkn satisfies (3.8). Now we construct the process X as an
almost-sure uniform limit of a sequence of processes Xn = (Xn(t))t≥0, n ∈ N, exactly as
in the proof of Lemma 3.2. Then each Xn is RSS in the sense of Subsection 3.1. (Note
that in order to construct the processes Xn in this way, without their duals, condition (d) of
Definition 3.4(i) is not needed.) For each t ≥ 0, let Ft be the smallest σ -algebra containing
each σ({Xn(s) : 0 ≤ s ≤ t}), n ∈ N. Let �0 be the subset of � on which Xn(t) converges
uniformly in t . By arbitrarily redefining X(t; ω) ≡ 0 for ω ∈ � \ �0, we see that X is adapted
to {Ft }, and, clearly, Xt − Xs is independent of Fs for each 0 ≤ s ≤ t . Thus, by Theorem 3.1,
for any stopping time τ relative to {Ft },

E[f (Mn(T ) − Xn(τ))] ≤ E[f (Mn(T ) − Xn(T ))]. (3.10)

Now it follows from the uniform convergence of Xn to X that, pointwise on �0, Mn(T ) →
M(T ) and Xn(τ) → X(τ). Hence, by the continuity of f ,

f (Mn(T ) − Xn(τ)) → f (M(T ) − X(τ))
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and

f (Mn(T ) − Xn(T )) → f (M(T ) − X(T )).

Thus, taking limits in (3.10) we see via the bounded convergence theorem that

E[f (M(T ) − X(τ))] ≤ E[f (M(T ) − X(T ))].
Therefore, the rule τ ≡ T is optimal. A similar argument shows that the rule τ ≡ 0 is optimal
if X is LSS.

Remark 3.2. If we try to extend the above reasoning to unbounded continuous f via the
dominated convergence theorem, we run into the difficulty of bounding expectations such as
E |f (Mn(T ))| uniformly in n, since there is no guarantee that E |f (Mn(T ))| converges to
E |f (M(T ))|.
Remark 3.3. It may seem that in Theorem 3.2 we could have weakened the SRSS condition
similarly, replacing (a) and (b) in Definition 3.4(i) with (3.9). But, this would not actually
give a weaker hypothesis, since, in the presence of condition (d), the integral in (3.5) increases
monotonically as ε ↓ 0.
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