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A VARIATIONAL CHARACTERIZATION

OF CONTACT METRIC MANIFOLDS
WITH VANISHING TORSION

D. E. BLAIR AND D. PERRONE

ABSTRACT. Chern and Hamilton considered the integral of the Webster scalar cur-
vature as a functional on the set of CR-structures on a compact 3-dimensional contact
manifold. Critical points of this functional can be viewed as Riemannian metrics as-
sociated to the contact structure for which the characteristic vector field generates a
1-parameter group of isometries i.e. K-contact metrics. Tanno defined a higher di-
mensional generalization of the Webster scalar curvature, computed the critical point
condition of the corresponding integral functional and found that it is not the K-contact
condition. In this paper two other generalizations are given and the critical point condi-
tions of the corresponding integral functionals are found. For the second of these, this
is the K-contact condition, suggesting that it may be the proper generalization of the
Webster scalar curvature.

1. Introduction In [6] Chern and Hamilton considered the integral of the Webster
scalar curvature as a functional on the set of CR-structures on a compact 3-dimensional
contact manifold. The critical points of this functional can be viewed as Riemannian
metrics associated to the contact structure for which the characteristic vector field gen-
erates a 1-parameter group of isometries i.e. a K-contact structure, a structure which is
also characterized by the vanishing of a torsion tensor introduced in [6]. Note that in
dimensions > 3, the notion of a contact metric structure is wider than the notion of a
strongly pseudo-convex (integrable) CR-structure. As a generalization of the Webster
scalar curvature, Tanno [10] defined the generalized Tanaka-Webster scalar curvature,
Wi, on a contact metric manifold and considered E;(g) = [y W1 dV as a functional on
the set 4 of metrics associated to the underlying contact form on the compact contact
manifold M. He computed the critical point condition for E(g) but it is not the K-contact
condition. The situation in dimension 3 is quite special and the Webster curvature can
be written in more than one way suggesting other generalizations. We first give such
a generalization to higher dimensions, W;, and compute the critical point condition of
E»(g) = fuy WodV on 4. We observe that if a metric is critical for both E| and E; it is
K-contact.

The main result of this paper is to define a third generalization of the Webster scalar
curvature, W3, as the average of W and W, and to show that the critical point condition
of E3(g) = [yy W3dV is precisely the K-contact condition, thus W3 may be the proper
generalization of the Webster scalar curvature.

This work was done while the first author was a visiting professor at the University of Lecce.
The work of the second author was supported by funds of the M.U.R.S.T.

Received by the editors February 6, 1991.

(© Canadian Mathematical Society, 1992.

455

https://doi.org/10.4153/CMB-1992-060-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1992-060-x

456 D. E. BLAIR AND D. PERRONE

After giving some preliminaries in Section 2, we develop this theory in Section 3.

2. Preliminaries By a contact manifold we mean a (2n + 1)-dimensional C*° man-
ifold M together with a global 1-form 7 such that 7 A (dn)" # 0. Given a contact form 7,
it is well known that there exists a unique vector field £, called the characteristic vector
field, such that dn(&, X) = 0 for all vector fields X and normalized by 7(€§) = 1. At each
point m € M, let B,, = {X € T,,M | n(X) = 0}; then B = UB,, is called the contact
subbundle on M. Note that if M is 3-dimensional, each B,, is a plane and we can speak
of its sectional curvature with respect to a Riemannian metric which we denote simply
by K(B).

A Riemannian metric g is said to be an associated metric if there exists a tensor field
¢ of type (1, 1) such that dn(X, Y) = g(X, ¢Y), n(X) = g(X, £) and ¢r=—I+ n® € and
we refer to M with this structure as a contact metric manifold. For a given form 7, the
set 4 of all such metrics is infinite dimensional. Moreover each associated metric has
the same volume element, viz. dV = %,Ln A (dn)".

Given a contact metric structure (¢, &, 17, g), define a tensor field h by h = % L¢¢ where
¥ denotes Lie differentiation. 4 is a symmetric operator, h{ =0

@.1) oh+hd =0,

and h = 0if and only if { is Killing, i.e. £ generates a 1-parameter group of isometries. A
contact metric structure for which ¢ is Killing is called a K-contact structure. Moreover
h is related to the covariant derivative of £ by

Vi€ = —¢X — ¢hX.

We also define a tensor field £ by £X = Ry&, where R is the curvature tensor of g.
Other formulas for a general contact metric structure that we will need are

(2.2) (Vidip)d! = o’ (Vpoi) + njdri — njhind™ i + 20jmi
(see [8]),

(2.3) ViVid)' + ViVidi' = Rud)' + Ridi' + 2n(hypmd™; + him ™)
(see [4]) and

(2.4) Ric(¢) = 2n —trh?

On a contact metric manifold the x-Ricci tensor and x-scalar curvature are defined
by
ke i
R = Ryui¢" 4/, R =R}

The idea behind the derivation of critical point conditions, is to differentiate the
functional in question along a path of metrics in 4. Let g(¢) be a smooth curve in 2 and
let

o agij
YT ot .
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We also write D for the tensor field of type (1, 1) corresponding to Dj; via g = g(0) and
let ¢ be the fundamental collineation as above corresponding to g. Then D is tangent to
a path g(¢) in 4 at g if and only if

(2.5) D¢+¢D=0, DE=0
as is shown in [1,2]. The following lemma is proved in [4].
LEMMA. Let T be a second order symmetric tensor field on M. Then
/M TiD;dV =0

for all D satisfying (2.5) if and only if T and ¢ commute when restricted to B, i.e.
T —Tep =nQ ¢TE — (o Te) ® & or equivalently

Tij = qu¢tp¢jq + Tjrgrni + Tirgrnj - (Trsgrgs)'rli"j'

3. Main results On a 3-dimensional contact metric manifold the Webster scalar
curvature W was defined by Chern and Hamilton [6], p. 284, as

|
W= g( Ric(€) + 2K(B) +4)
or since the scalar curvature R = 2 Ric(§) + 2K(B)
W= 1(R — Ric(¢) +4).
8

Tanno [10], not including the factor of 1 / 8, defined the generalized Tanaka-Webster
curvature Wy by

W = R — Ric(€) + 4n.

We now state the theorem of Chern and Hamilton [6], an alternate proof of which was
given in [9], and the theorem of Tanno [10] and sketch their proofs simultaneously.

THEOREM (CHERN-HAMILTON). Let M be a compact 3-dimensional contact manifold
and 4 the set of metrics associated to the contact form. Then g € 4 is a critical point of
E(g) = fu W1 dV ifand only if g is K-contact.

THEOREM (TANNO). Let M be a compact contact manifold and A the set of metrics
associated to the contact form. Then g € 4 is a critical point of E if and only if

Q¢ —¢Q)— (lp — pl) =40h — Q@ dQE+ (N0 QP) B &

where Q is the Ricci operator.
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PROOFS. Clearly it is enough to consider fy;{R — Ric(£)} dV and differentiate along
a path g(r) € 4, g(0) = g. Having differentiated R and Ric(€) separately in [4] and [2]
respectively, we have

d . P , _
= [M {R—Ric(§)}dV|_ = /M (—RN + B, W™ + R ,'€7€° — 2h*)Dy dV.
Thus by the Lemma and (2.4) we see that the critical point condition is

3.1 Q9 — ¢Q) — (Ld — ¢pL) =4dh —n @ ¢QE+ (N 0 QP) ® &.
Now in dimension 3, the Ricci operator determines the full curvature tensor, i.e.

RyyZ = g(Y, 2)QX — g(X, 2)QY +g(QY, 2)X — g(QX, 2)Y
R
(3.2) - 5 (8, DX = 8(X, 2)Y).

Thus the operator £ is given by

£X = QX — 1(X)QE + &(0E, OX — 8(OX, )€ — & (X — n(0E)

from which
(3.3) lp— ¢l =00—00+n®PQE —(no QP) ®E.
Combining (3.1) and (3.3) we have 4¢h = 0 and hence, since h =0, h = 0. ]

Now on a general contact metric manifold Olszak [8] showed that
1
(3.4) R—R*—4n2=—§|V¢|2+2n—trh2 <0

with equality if and only if the structure is Sasakian and from the form (3.2) of the
curvature tensor in dimension 3

|Vo|?=4+2trh%.
Combining these with (2.4), in dimension 3, we have
R — R* = 2Ric(§).

Thus the Webster scalar curvature can be written as %(R* +Ric(§) + 4) = % (R + %|V¢|2)

which in arbitrary dimension becomes é(R* + Ric(¢) + 4n2). Thus we define another
generalization of the Webster scalar curvature W, by

W, = R* +Ric(€) + 4n®

THEOREM 1. Let M be a compact contact manifold and A the set of metrics associated
to the contact form. Then g € 4 is a critical point of E>(g) = [y W2 dV if and only if

(Q9 — ¢Q) — ({p — ¢f) = —4(2n — D)dh+ (n° QP) ® £ — 1 @ PQE.
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PROOF. We compute %Ef - for a path g(¢) in 4 with g(0) = g. In [4], R* was
differentiated along such a path and we indicate each of these by square brackets in the
following integral formula

dE,
dt

- J Al=2nk" = V(@67 — R
+[—H,hm —R"J €€ + 201 }Dy aV.
Thus from the Lemma we see that the critical point condition is
2(1 — )" — %V,{W Vb7 + ¢V 9 — %(R*ff +R*Y) — W hmt — R Jees
= 20— W6y — 3 (VAPIT" + 9 V16)

RIS R~ Iy~ RPEES
+ [~V Vi + 19107 — SR
+ & [~V Vb + ¢V — SR
— g [——;-Vi(as’“w" + 649" e

As in [4] it is easy to see from the definition of sz that all terms involving the x-Ricci
tensor vanish. Expanding the terms involving covariant derivatives of ¢, the several
terms containing products of first derivatives cancel as in [4] mainly by virtue of (2.2).
Similarly a computation using (2.3) and also done in [4] yields

1 Lo 1 -1 : 1. 1 .
_§¢kp(vivk¢lq)¢1p¢eq = —§¢kevivk¢y + EquWqu - §R’( + ER’rﬁrﬁe
Toterg 1 pineiet
+ 2Rr€ S 3 Ric(§)&'¢
+2nk" + %gw’“vivkw’.

Substituting this into the critical point condition, using ¢4 + h¢ = 0 and simplifying, we
have

0=402n— W' +R",J€€ — R, PLEY 0" — RE + R ,01,
+RLEE +RLETE — Ric(O)EE’.

Applying ¢ to this we have

0=4C2n—Doh+ ¢l —Lp— Q0+ Q¢ — (N0 QP) D+ ® Q¢

completing the proof. n
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We remark that if g is a critical point of both E, and E, then g is a K-contact metric.
Our goal is to seek a single functional whose critical points are the K-contact metrics. To
this end we define a third generalization of the Webster scalar curvature which in view
of the result may be the proper generalization. We define Wj to be the average of W, and
Wz, ie.

Wi = %(R+R* +4n(n+1)).

THEOREM 1. Let M be a compact contact manifold and Athe set of metrics associated
to the contact form. Then g € A is a critical point of E3(g) = [y W3dV ifand only if g is
K-contact.

PROOF. Clearly it is enough to consider [y {R + R*} dV. Again having differentiated
the terms separately in [4], we have

dit /M {R+R*}dV|_, = [M {[—R] + [—2n" — Vi(¢*' V) — RY1}D; dV
and hence the critical point condition is
—R'" — 2n" — %V,-(d)“quS’j + ¢V, — %(R*ﬂ +RY)
= R0y — 200G, — 3 (VT + 0V6) 0
— SRR,

1 ) o 1
+ €', (R = SV Vio" + 69,67 — SR
1

+ gjnr(_R(’r _ %Vi(¢krvk¢if + ¢kt’vk¢ir) _ ER:«r(’)

_ éjgf [_Rrs _ Evi«bksvkd)" + ¢krvk¢m)] NMs

Terms involving the *-Ricci tensor and products of first derivatives of ¢ cancel as in
the previous theorem. Terms involving the second derivatives are also treated as in the
previous theorem. The critical point condition then reduces to —2n#* = —2nhP4¢/ ,¢° , +
2nh’ + 2nh"% which since ¢h + hé = 0 yields h = 0 as desired. n

REMARK 1. A contact manifold is said to be regular if every point has a neighborhood
such that any integral curve of £ passing through the neighborhood passes through only
once. The celebrated Boothby-Wang Theorem [5] states that a compact regular contact
manifold is a principal circle bundle over a symplectic manifold of integral class. In
[2,3], it was shown for a compact regular contact manifold, g € 4 is a critical point
of L(g) = [yyRic(§)dV if and only if g is K-contact, but that without the regularity a
counterexample can be given. In particular the standard contact metric structure on the
tangent sphere bundle of a compact surface of constant curvature —1 is a critical point
of L but is not K-contact.
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REMARK 2. We note that the average of W, and W, is the best linear combination
of W; and W, to take for the purpose of achieving a functional whose critical points
are the K-contact metrics. In fact the critical point condition for [y, (aW; + bW,)dV,a, b
constants, not both zero, is

(~8nb+4(b—a))dh—(b—a) Q¢ — Q) = (b— )N $QE — (110 QP VE — (£d— HO)].

Now since h = 0 implies £ = [ — n ® &, we see that if & = 0, then either a = b or
06— d0 = —n R pQ& + (n 0 Qp) ® £ and in general one would not want to restrict
oneself to the latter alternative from the outset.

If g is a Sasakian metric, then it is a critical point of the functional

E(g) = [ (@Wi+bWa)dV,

for all a and b; in fact g Sasakian implies that 4 = 0 and that Q¢ — ¢Q = 0. The converse
implication is an open question. On the other hand there are K-contact manifolds which
are not Sasakian. To see this let N be a compact symplectic manifold with symplectic
form Q (i.e. Q" # 0 and dQ = 0) such that [Q] € H*(N, Z), then there is a compact
regular contact manifold M which is an S'-bundle over N by the Boothby-Wang fibration
([5]). Since N admits an almost Kihler structure (J, G) with Q as its fundamental 2-form,
this almost Kahler structure induces on M a K-contact structure which is Sasakian if and
only if (J, G) is Kéhlerian. Since there exist compact almost Kédhler manifolds whose
fundamental 2-forms, €2, determine an integral cohomology class and which are not
Kaihler (see e.g. [7,12]), we conclude that there exist K-contact manifolds which are not
Sasakian.

REMARK 3. By a B-homothetic deformation (often called a D-homothetic deforma-
tion) [11] we mean a change of structure tensors of the form

1 -
7= an, £=E£’ ¢=¢, g=ag+al@a—1)n&n

where a is a positive constant. It is well known and easy to see that (¢, €, 1, 8) is a contact
metric structure. By direct computation one shows that, R, Ric(§) and R* transform in
the following manner.

- 1 l1—a
R=-R+
a

Ric({)—2n<a; 1)2

a?

Ric(§) = glz-(Ric(g) +2n(a® — 1))

| -1 1— 1 —d?
R=-rR+ Ric(§)+2n(2n< “)+ 2“)
a a a a

From these we see that W; = éW,-, i = 1,2, 3. In particular this also justifies the choice of
constants depending on dimension in the definitions of the W;’s.
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REMARK 4. From (2.4) and (3.4) we note that W; > R+ 2n, i = 1,2,3. For W,
equality holds if and only if the structure is K-contact and for W, i = 2, 3, equality holds
if and only if the structure is Sasakian.
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