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A VARIATIONAL CHARACTERIZATION 
OF CONTACT METRIC MANIFOLDS 

WITH VANISHING TORSION 

D. E. BLAIR AND D. PERRONE 

ABSTRACT. Chern and Hamilton considered the integral of the Webster scalar cur­
vature as a functional on the set of C/?-structures on a compact 3-dimensional contact 
manifold. Critical points of this functional can be viewed as Riemannian metrics as­
sociated to the contact structure for which the characteristic vector field generates a 
1-parameter group of isometries i.e. ^-contact metrics. Tanno defined a higher di­
mensional generalization of the Webster scalar curvature, computed the critical point 
condition of the corresponding integral functional and found that it is not the ^-contact 
condition. In this paper two other generalizations are given and the critical point condi­
tions of the corresponding integral functionals are found. For the second of these, this 
is the ^-contact condition, suggesting that it may be the proper generalization of the 
Webster scalar curvature. 

1. Introduction In [6] Chern and Hamilton considered the integral of the Webster 
scalar curvature as a functional on the set of CR-structures on a compact 3-dimensional 
contact manifold. The critical points of this functional can be viewed as Riemannian 
metrics associated to the contact structure for which the characteristic vector field gen­
erates a 1-parameter group of isometries i.e. a ^-contact structure, a structure which is 
also characterized by the vanishing of a torsion tensor introduced in [6]. Note that in 
dimensions > 3, the notion of a contact metric structure is wider than the notion of a 
strongly pseudo-convex (integrable) C/?-structure. As a generalization of the Webster 
scalar curvature, Tanno [10] defined the generalized Tanaka-Webster scalar curvature, 
W\, on a contact metric manifold and considered E\ (g) = JM W\ dV as a functional on 
the set A of metrics associated to the underlying contact form on the compact contact 
manifold M. He computed the critical point condition for E\ (g) but it is not the A'-contact 
condition. The situation in dimension 3 is quite special and the Webster curvature can 
be written in more than one way suggesting other generalizations. We first give such 
a generalization to higher dimensions, W2, and compute the critical point condition of 
Ei(g) - SM W2 dV on A. We observe that if a metric is critical for both E\ and £2 it is 
^-contact. 

The main result of this paper is to define a third generalization of the Webster scalar 
curvature, W3, as the average of W\ and W2 and to show that the critical point condition 
of Ei(g) = JM W3 dV is precisely the ^-contact condition, thus W3 may be the proper 
generalization of the Webster scalar curvature. 

This work was done while the first author was a visiting professor at the University of Lecce. 
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After giving some preliminaries in Section 2, we develop this theory in Section 3. 

2. Preliminaries By a contact manifold we mean a (2n + l)-dimensional C°° man­
ifold M together with a global 1-form 77 such that 77 A (drj)n ^ 0. Given a contact form 77, 
it is well known that there exists a unique vector field £, called the characteristic vector 
field, such that dri(^X) - 0 for all vector fields X and normalized by 77(C) = 1. At each 
point m e M, let #m = {X G TmM | rç(X) = 0}; then B = UBm is called the contact 
subbundle on M. Note that if M is 3-dimensional, each Bm is a plane and we can speak 
of its sectional curvature with respect to a Riemannian metric which we denote simply 
by K(B). 

A Riemannian metric g is said to be an associated metric if there exists a tensor field 
</> of type (1,1) such that dr](X, Y) = g(X, <j>Y)9 r/(X) = g(X, 0 and (f>2 = - / + 77 <g> £ and 
we refer to M with this structure as a contact metric manifold. For a given form 77, the 
set A of all such metrics is infinite dimensional. Moreover each associated metric has 
the same volume element, viz. dV = ^ f r ç A (drj)n. 

Given a contact metric structure ((/>, £, 77, g), define a tensor field /iby/i = îî̂ </> where 
2 denotes Lie differentiation, h is a symmetric operator, /i£ = 0 

(2.1) # + /i(/> = 0, 

and /i = 0 if and only if £ is Killing, i.e. £ generates a 1 -parameter group of isometries. A 
contact metric structure for which £ is Killing is called a K-contact structure. Moreover 
h is related to the covariant derivative of £ by 

Vx£ = -(t>X-(t>hX. 

We also define a tensor field I by IX = Rx^, where 7? is the curvature tensor of g. 
Other formulas for a general contact metric structure that we will need are 

(2.2) (Vk<t>ipW = <PkP(Vp4>ij) + rijfa - 7ijhkm<t>mi + 2(^77; 

(see [8]), 

(2.3) V,V*</>/ + V,VyW = Rtati + fy^' + 2n{hkm<j>mj + A;«<A) 

(see [4]) and 
(2.4) Ric(0 = 2rc-tr/72 

On a contact metric manifold the *-Ricci tensor and ^-scalar curvature are defined 
by 

R*j=RUl4>ke4/, K*=Rf. 

The idea behind the derivation of critical point conditions, is to differentiate the 
functional in question along a path of metrics in A. Let g(t) be a smooth curve in A and 
let 
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We also write D for the tensor field of type (1,1) corresponding to Ay via g = g(0) and 
let 4> be the fundamental collineation as above corresponding to g. Then D is tangent to 
a path g(t) in A at g if and only if 

(2.5) D<j) + (t>D = 0, D£ = 0 

as is shown in [1,2]. The following lemma is proved in [4]. 

LEMMA. Let Tbe a second order symmetric tensor field on M. Then 

[ TijDijdV = 0 
JM J 

for all D satisfying (2.5) if and only if T and </> commute when restricted to B, i.e. 
</>T — T<j> - r] <S> <t>T^ — (77 o T(f>) (g) £ or equivalently 

Tij = TMWW + TjrCm + Tirfrij - (TrsCOmrij. 

3. Main results On a 3-dimensional contact metric manifold the Webster scalar 
curvature W was defined by Chern and Hamilton [6], p. 284, as 

W = ^ ( R i c ( 0 + 2tf(fl) + 4) 

or since the scalar curvature R = 2 Ric(£) + 2K(B) 

W = i ( t f - R i c ( 0 + 4). 

Tanno [10], not including the factor of 1/8, defined the generalized Tanaka-Webster 
curvature W\ by 

WX=R- Ric(0 + An. 

We now state the theorem of Chern and Hamilton [6], an alternate proof of which was 
given in [9], and the theorem of Tanno [10] and sketch their proofs simultaneously. 

THEOREM (CHERN-HAMILTON). Let M be a compact 3-dimensional contact manifold 
and A the set of metrics associated to the contact form. Then g G A is a critical point of 
E\ (g) = JM W\ dV if and only if g is K-contact. 

THEOREM (TANNO). Let M be a compact contact manifold and A the set of metrics 
associated to the contact form. Then g G A is a critical point ofE\ if and only if 

{Q<i> ~ <t>Q) ~ W - <t>0 = 4 # - 7] 0 <t>Qi + {T]oQ(t>)^i 

where Q is the Ricci operator. 
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PROOFS. Clearly it is enough to consider JM{R — Ric(£)} dV and differentiate along 
a path g(t) G A, g(0) = g. Having differentiated R and Ric(£) separately in [4] and [2] 
respectively, we have 

jJM{R- Ric(0} dV\^ = jM{-Rki + HJi"1* + &„'?? - 2hik)Dik dV. 

Thus by the Lemma and (2.4) we see that the critical point condition is 

(3.1) (Q<j> - <t>Q) - (l<t> - <t>l) = 4 # - 7] <g> 0 Q Ç + (r/ o Q<j>) ® £ . 

Now in dimension 3, the Ricci operator determines the full curvature tensor, i.e. 

RXYZ = g(Y, Z)QX - g(X, Z)QY + g(QY, Z)X - g(QX, Z)Y 

(3.2) -*(g(Y,Z)X-g(X,Z)Y). 

Thus the operator I is given by 

iX=QX- r1(X)Q^ + g(QZ, OX - g(QX, Oi -\(X~ *7(*)£) 

from which 

(3.3) £<£ - <^ = G<£ - <£G + ?7 ® <£Q£ ~ 0 / ° Q<\>) ® £. 

Combining (3.1) and (3.3) we have 4<\>h = 0 and hence, since h£> = 0,h = 0. m 

Now on a general contact metric manifold Olszak [8] showed that 

(3.4) R-R* - An2 = ~ | V</>|2 +2rc - tr/i2 < 0 

with equality if and only if the structure is Sasakian and from the form (3.2) of the 
curvature tensor in dimension 3 

|Vc/>|2 = 4 + 2tr/z2. 

Combining these with (2.4), in dimension 3, we have 

R-R* = 2 Ric(0-

Thus the Webster scalar curvature can be written as | (/?* + Ric(£) + 4) = ± (R + \ | V012) 
which in arbitrary dimension becomes £(/?* + Ric(£) + 4n2). Thus we define another 
generalization of the Webster scalar curvature W2 by 

W2 = /T+Ric(0 + 4rc2 

THEOREM I. Let M be a compact contact manifold and A the set of metrics associated 
to the contact form. Then g G A is a critical point ofEiig) = JM W2 dV if and only if 

(Q<t> ~ <t>Q) ~ W " <t>0 = -4 (2" - 1 ) # + (TI ° Q<t>) ® £ - 1 ® </>££• 
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PROOF. We compute ^ f j ^ for a path g(t) in A with g(0) = g. In [4], R* was 
differentiated along such a path and we indicate each of these by square brackets in the 
following integral formula 

dE2 

dt t=o 
= f{[-2nh!1 - V,(<A"V^) - J?*"] 

JM 

+ [-Hmhmt - R(
rJCe + 2He]}Dje dV. 

Thus from the Lemma we see that the critical point condition is 

2(1 - n)hil - \Vi(4>klVk^ + <j>kjVk<j>u) - l-(R*'1 + R*V) - Hmhmt - ReJC? 

= 2(1 - n)tf«4Jp4>l
q - ^ ( V i ( ^ V t ^ + ^ V t ^ ) ) ^ 

_ 1 
~ 2 

pV q 

{R*Pq+B?w)<pp<t>tq _ vjrvvrft - * v * T ^ ' * 
- ^ V / ^ V ^ + ^ V ^ - ^ ' 

+ £V| 4 W ' W + /'v,<n - ljr< 

-e^f-^v^v^+^v^) ^ 5 

As in [4] it is easy to see from the definition of R^ that all terms involving the *-Ricci 
tensor vanish. Expanding the terms involving covariant derivatives of </>, the several 
terms containing products of first derivatives cancel as in [4] mainly by virtue of (2.2). 
Similarly a computation using (2.3) and also done in [4] yields 

+ ^ T - ^ R i c ( 0 ^ 

+ 2W + ^W"V,-V^fr. 

Substituting this into the critical point condition, using <j>h + h<\> = 0 and simplifying, we 
have 

0 = 4(2/1 - 1)A>< + * V £ T - RqrsPiris^P<t>'q ~ Rj" +Rpq<tJP<t>l
q 

Applying <j> to this we have 

0 = A(2n - 1 ) # + </>l - 1<I> - <\>Q + Q<j> - (// o Q<j>) ® £ + 77 <g> </>£>£ 

completing the proof. • 
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We remark that if g is a critical point of both E\ and Ei then g is a ^T-contact metric. 
Our goal is to seek a single functional whose critical points are the A -̂contact metrics. To 
this end we define a third generalization of the Webster scalar curvature which in view 
of the result may be the proper generalization. We define W3 to be the average of W\ and 
W2, i-e. 

W3 = -(/? + /?*+4n(n+l)). 

THEOREM II. Let M be a compact contact manifold and & the set of metrics associated 
to the contact form. Then g G !Ais a critical point ofE^{g) = JM ^3 dV if and only if g is 
K-contact. 

PROOF. Clearly it is enough to consider SM{R + ̂ *} dV. Again having differentiated 
the terms separately in [4], we have 

jtfu{R + **} ̂ U = JM{[-RJt] + [-2nh!e - V ,# W V^) - R?Jt]}DJt dV 

and hence the critical point condition is 

= - # V > < , - 2nh^p<t>'q - - (Vi^Vrf* + <^ V*< )̂)<^ pv q 

-\{R*pq+R*qpWP<t>'q 

+i^r{-Rjr - \vi(tkrvkr + < '̂v,<n - ^ ) 

- £/ Ê T - /T - IVi^Vkfi' + ^Vkt*) VrVs 

Terms involving the *-Ricci tensor and products of first derivatives of <j> cancel as in 
the previous theorem. Terms involving the second derivatives are also treated as in the 
previous theorem. The critical point condition then reduces to —2nh/E = — 2nhpq <\j q<\>1

 q + 
2nUl + 2nhlJ which since (j)h + h(j> - 0 yields h = 0 as desired. • 

REMARK 1. A contact manifold is said to be regular if every point has a neighborhood 
such that any integral curve of £ passing through the neighborhood passes through only 
once. The celebrated Boothby-Wang Theorem [5] states that a compact regular contact 
manifold is a principal circle bundle over a symplectic manifold of integral class. In 
[2,3], it was shown for a compact regular contact manifold, g G Si is a critical point 
of L(g) = JM Ric(£) dV if and only if g is ^-contact, but that without the regularity a 
counterexample can be given. In particular the standard contact metric structure on the 
tangent sphere bundle of a compact surface of constant curvature —1 is a critical point 
of L but is not A^-contact. 
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REMARK 2. We note that the average of W\ and W2 is the best linear combination 
of W\ and W2 to take for the purpose of achieving a functional whose critical points 
are the ^-contact metrics. In fact the critical point condition for JM(aW\ + bW2) dV, a, b 
constants, not both zero, is 

(-Snb+4(b-a))(^h-(b-a)(Q(l)-^Q)=(b-a)[r]^(j)Q^-(71oQ^)^^-(£(f>-(l)l)l 

Now since h = 0 implies I = I — 77 0 £, we see that if h = 0, then either a = b or 
<2</> — <t>Q = —T] ® <t>Q£ + (77 o g(/>) 0 £ and in general one would not want to restrict 
oneself to the latter alternative from the outset. 

If g is a Sasakian metric, then it is a critical point of the functional 

E(g)= [ (aWl+bW2)dV, 
JM 

for all a and b\ in fact g Sasakian implies that h = 0 and that Q(j> — <\>Q = 0. The converse 
implication is an open question. On the other hand there are ^-contact manifolds which 
are not Sasakian. To see this let TV be a compact symplectic manifold with symplectic 
form ft (i.e. ft" ^ 0 and dft = 0) such that [ft] G H2(N, Z), then there is a compact 
regular contact manifold M which is an Sl -bundle over N by the Boothby-Wang fibration 
([5]). Since N admits an almost Kâhler structure (/, G) with ft as its fundamental 2-form, 
this almost Kâhler structure induces on M a ̂ -contact structure which is Sasakian if and 
only if (/, G) is Kâhlerian. Since there exist compact almost Kâhler manifolds whose 
fundamental 2-forms, ft, determine an integral cohomology class and which are not 
Kâhler (see e.g. [7,12]), we conclude that there exist A -̂contact manifolds which are not 
Sasakian. 

REMARK 3. By a B-homothetic deformation (often called a D-homothetic deforma­
tion) [11] we mean a change of structure tensors of the form 

77 = 077. £ = -£ , <̂> = </>, g = ag + a(a-\)r]®r] 
a 

where a is a positive constant. It is well known and easy to see that (</>, £, 77, g) is a contact 
metric structure. By direct computation one shows that, R, Ric(£) and R* transform in 
the following manner. 

1 1 — a . M ^ f a — \ \ 2 

R=-R + —=- Ric(0 - 2/i( 
a a1 \ a J 

Rk(0 = ^(Ric(0 + 2«(a2-l)) 

/r = - / r + —— RiC(o + 2n 2/i ( — + —5— 
a az \ \ a ) a1 ) 

From these we see that W,- = - W/, / = 1, 2, 3. In particular this also justifies the choice of 
constants depending on dimension in the definitions of the W/'s. 
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REMARK 4. From (2.4) and (3.4) we note that Wt > R + 2w, / = 1,2,3. For Wx 

equality holds if and only if the structure is ^-contact and for Wi, i = 2, 3, equality holds 
if and only if the structure is Sasakian. 
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