RANK OF THE SUM OF CERTAIN MATRICES

BY
P. M. GIBSON

In this note we give a very elementary proof of a result of Meyer's [1]. Let $r(A)$ be the rank of the matrix A. By using generalized inverses, Meyer proved the following.

Theorem. If A and B are $m \times n$ complex matrices such that $A B^{*}=0$ and $B^{*} A=0$ then $r(A+B)=r(A)+r(B)$.

Proof. Let $C=[A, B], D=A+B$. Since $A B^{*}=B A^{*}=0$ and $B^{*} A=A^{*} B=0$,

$$
D D^{*}=C C^{*}, C^{*} C=\left[\begin{array}{cc}
A^{*} A & 0 \\
0 & B^{*} B
\end{array}\right]
$$

Hence,

$$
r(D)=r\left(D D^{*}\right)=r\left(C C^{*}\right)=r\left(C^{*} C\right)=r\left(A^{*} A\right)+r\left(B^{*} B\right)=r(A)+r(B)
$$

Reference

1. C. D. Meyer, On the rank of the sum of two rectangular matrices, Canad. Math. Bull. 12 (1969), p. 508.

University of Alabama,
Huntsville, Alabama

