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Abstract

We prove the Green–Lazarsfeld secant conjecture [Green and Lazarsfeld, On the
projective normality of complete linear series on an algebraic curve, Invent. Math. 83
(1986), 73–90; Conjecture (3.4)] for extremal line bundles on curves of arbitrary gonality,
subject to explicit genericity assumptions.

1. Introduction

Consider a smooth projective curve C of genus g and L a globally generated line bundle of degree
d. We define the Koszul group Ki,j(C,L) as the middle cohomology of

i+1∧
H0(L)⊗H0((j − 1)L) →

i∧
H0(L)⊗H0(jL) →

i−1∧
H0(L)⊗H0((j + 1)L).

As is well known, the Koszul groups give the same data as the modules appearing in the minimal
free resolution of the Sym H0(C,L) module

⊕
qH

0(C, qL). In the case where L is very ample

and the associated embedding is projectively normal,
⊕

qH
0(C, qL) is just the homogeneous

coordinate ring of the embedded curve φL : C ↪→ Pr.
The pair (C,L) is said to satisfy property (Np) if we have the vanishings

Ki,j(C,L) = 0 for i 6 p, j > 2.

Then φL : C ↪→ Pr is projectively normal if and only if (C,L) satisfies (N0), whereas the ideal
of C is generated by quadrics if, in addition, it satisfies (N1).

A beautiful conjecture of Green–Lazarsfeld gives a necessary and sufficient criterion for (C,L)
to satisfy (Np). To state the conjecture, a line bundle L is called p-very ample if and only if for
every effective divisor D of degree p+ 1 the evaluation map

ev : H0(C,L) → H0(D,L|D)

is surjective. Equivalently, L is not p-very ample if and only if C ⊆ Pr admits a (p + 1)-secant
(p− 1)-plane. We then may state [GL86] the following result.

Conjecture 1.1 (G–L secant conjecture). Let L be a globally generated line bundle of degree
d on a curve C of genus g such that

d > 2g + p+ 1− 2h1(C,L)− Cliff(C).

Then (C,L) fails property (Np) if and only if L is not (p+ 1)-very ample.
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It is rather straightforward to see that if L is not (p + 1)-very ample or, equivalently, L
admits a (p + 2)-secant p-plane, then Kp,2(C,L) is nonzero. The difficulty in establishing the
above conjecture is thus to go in the other direction, that is, to construct a secant plane out of
a syzygy in Kp,2(C,L).

In the case H1(C,L) 6= 0, it is well known that the secant conjecture reduces to Green’s
conjecture, which holds for the generic curve in each gonality stratum [Voi02, Voi05]. Thus, we
will henceforth assume that H1(C,L) = 0. If d > 2g+ p+ 1, then L is automatically (p+ 1)-very
ample and further L satisfies property (Np) by [Gre84, Theorem 4.a.1]. In particular, we may
assume that both Cliff(C) > 1 and d 6 2g + p. In this case, the line bundle L of degree d fails
to be (p+ 1)-very ample if and only if

L−KC ∈ Cp+2 − C2g−d+p,

where Ci ⊆ Pici(C) is the image of the ith symmetric product of C under the Abel–Jacobi map
(we set C0 := ∅).

In a joint work with Gavril Farkas, we established the secant conjecture for general line
bundles on general curves. Moreover, under certain assumptions on the degree, we were able
to prove effective versions of the secant conjecture. One of our main results was a proof of the
conjecture for odd-genus curves of maximal Clifford index and line bundles of degree d = 2g; this
is the so-called ‘divisorial case’ of the conjecture. To be precise, we showed the following result.

Theorem 1.2 [FK]. Let C be a smooth curve of odd genus g and with a line bundle L ∈
Pic2g(C). Then one has the equivalence

K(g−3)/2,2(C,L) 6= 0 ⇔ Cliff(C) <
g − 1

2
or L−KC ∈ C(g+1)/2 − C(g−3)/2.

The latter condition L−KC ∈ C(g+1)/2−C(g−3)/2 is equivalent to L failing to be ((g − 1)/2)-
very ample.

In the case where C is Brill–Noether–Petri general of even genus g, we have a similar
statement.

Theorem 1.3 [FK]. The Green–Lazarsfeld (G–L) conjecture holds for a Brill–Noether–Petri
general curve C of even genus and every line bundle L ∈ Pic2g+1(C), that is,

K(g/2)−1,2(C,L) 6= 0 ⇔ L−KC ∈ C(g/2)+1 − C(g/2)−2.

The main result of this paper is an analogue of Theorem 1.2 in the case of curves of arbitrary
gonality, satisfying the linear growth condition of Aprodu [Apr05]. In this case, p takes on the
extremal value p = g − k.

Theorem 1.4. Let C be a smooth curve of genus g and gonality 3 6 k < bg/2c + 2. Assume
that C satisfies the following linear growth condition:

dimW 1
k+n(C) 6 n for all 0 6 n 6 g − 2k + 2.

Then the G–L secant conjecture holds for every line bundle L ∈ Pic3g−2k+3(C), that is, one has
the equivalence

Kg−k,2(C,L) 6= 0 ⇔ L−KC ∈ Cg−k+2 − Ck−3.
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The extremal secant conjecture for curves of arbitrary gonality

The proof is by reducing to the case of Theorem 1.2, using arguments similar to those in
[FK, § 6] and [Apr05]. Note that h1(L) = 0 is automatic for L ∈ Pic3g−2k+3(C) as above. The
condition L−KC ∈ Cg−k+2−Ck−3 is equivalent to the statement that L fails to be (g−k+1)-very
ample. Note that for the value p = g− k the set of L which fail to be (p+ 1)-very ample defines
a divisor in the Jacobian; thus this case is of particular interest.

From the main theorem, we easily deduce the following statement giving an effective criterion
for the vanishing Kp,2(C,L) = 0 for nonspecial line bundles in the case where the inequality in
the secant conjecture is an equality.

Theorem 1.5. Let C be a smooth curve of genus g and gonality 3 6 k < bg/2c + 2. Assume
that C satisfies the following linear growth condition:

dimW 1
k+n(C) 6 n for all 0 6 n 6 g − 2k + 2.

Let L ∈ Pic2g+p−k+3(C) be nonspecial. If p > g − k, then Kp,2(C,L) 6= 0. On the other hand,
assume that p 6 g − k and, in addition, that we have the two conditions

H1(C, 2KC − L) = 0, (1)

the secant variety V g−p−4
g−p−3 (2KC − L) has expected dimension g − k − p− 1. (2)

Then Kp,2(C,L) = 0.

Notice that, if the condition H1(C, 2KC − L) 6= 0 holds, then L − KC is effective, which
obviously implies that L is not (p+ 1)-very ample. In this case, we already know that Kp,2(C,L)
6= 0, from the easy direction of the G–L secant conjecture. So, the ‘interesting’ assumption is
really the second one.1

In the case p 6 g − k, both the conditions of Theorem 1.5 hold for a general line bundle
L ∈ Pic2g+p−k+3(C). In particular we get, when combined with the results of [FK], the following
corollary.

Corollary 1.6. Let C be a general curve of genus g and gonality k > 3 and let L ∈
Pic2g+p−k+3(C) be a general, nonspecial, line bundle. Then the Green–Lazarsfeld secant
conjecture holds for (C,L), i.e.

Kp,2(C,L) 6= 0 ⇔ p > g − k.

2. Proof of the theorem

Let C be a smooth curve of genus g and gonality 3 6 k < bg/2c+ 2; this covers all cases other
than C hyperelliptic or g odd and C of maximal gonality. Assume in addition that C satisfies
the linear growth condition

dimW 1
k+n(C) 6 n for all 0 6 n 6 g − 2k + 2.

Pick g−2k+3 general pairs of points (xi, yi). Let D be the semistable curve obtained by adding
g− 2k+ 3 smooth, rational components Ri to C, each one of which meets C at the pair (xi, yi).
The curve D is illustrated in Figure 1. It has arithmetic genus 2g − 2k + 3.

1 In [FK, Theorem 1.7], we forgot to explicitly state the assumption that L−KC is not effective. When L−KC is
effective, then the expected dimension of V g−p−4

g−p−3 (2KC − L) is strictly less than g − k − p− 1, so this assumption
was actually implicit in Theorem 1.7. As explained above, the case L −KC effective is of no interest, as then L
trivially fails to be (p + 1)-very ample.
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Figure 1. (Colour online) The curve D.

Let L be a very ample line bundle on C of degree 3g − 2k + 3. Write

L = OC(z1 + · · ·+ z3g−2k+3)

for distinct points z1, . . . , z3g−2k+3 which avoid all (xi, yi). For each 1 6 i 6 g − 2k + 3, choose
points wi ∈ Ri distinct from xi, yi. Let T denote the union of the points zj and wi. Since T
avoids all nodes, it makes sense to set N := OD(T ). Notice that N defines a balanced line bundle
on the quasi-stable curve D, and that D is (4g − 4k + 6)-general, in the sense of [Cap08]. In

particular, N defines a (stable) point in Caporaso’s compactified Jacobian P
4g−4k+6

(X), where
X is the stabilisation of D, i.e. the nodal curve obtained from C by identifying xi with yi.

The curve D together with the marking {z1, . . . , z3g−2k+3, w1, . . . , wg−2k+3} defines a point
[D] ∈ M2g−2k+3,2(2g−2k+3). Let Mva

2g−2k+3,2(2g−2k+3) denote the open locus of marked stable

curves D′ such that the marking defines a very ample line bundle N ′ with H1(D′, N ′) = 0, and
set Mva

2g−2k+3,2(2g−2k+3) := Mva
2g−2k+3,2(2g−2k+3) ∩M2g−2k+3,2(2g−2k+3). In [FK, Theorem 1.6],

we established the following equality of closed sets:

Syz = Sec ∪ Hur.

Here Syz denotes the closure of the locus Syz of smooth, marked curves Syz such that the
marking defines a very ample line bundle with a certain unexpected syzygy

Syz := {[B, x1, . . . , x2(2g−2k+3)] ∈Mva
2g−2k+3,2(2g−2k+3) :

Kg−k,2(B,OB(x1 + · · ·+ x2(2g−2k+3))) 6= 0},

whereas Sec denotes the closure of the locus of smooth, marked curves Syz such that the marking
defines a line bundle which fails to be (g − k + 1)-very ample

Sec := {[B, x1, . . . , x2(2g−2k+3)] ∈M2g−2k+3,2(2g−2k+3) : OB(x1 + · · ·+ x2(2g−2k+3))

∈ KB +Bg−k+2 −Bg−k}
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and Hur is the closure of the Hurwitz divisor of curves which are (g−k+2)-gonal. The following
result is due to Aprodu.

Proposition 2.1 [Apr05]. The marked curve [D] lies outside Hur ⊆M2g−2k+3,2(2g−2k+3).

Proof. Let X be the stabilisation of D as above. By [HR98], it suffices to show that

Kg−k+1,1(X,ωX) = 0;

see also [Apr05, Proposition 7]. This is implied by the linear growth assumption on C and the
generality of the points (xi, yi); see the proof of [Apr05, Theorem 2]. 2

The following lemma is similar to [Apr05, Proposition 7].

Lemma 2.2. Assume that [D] ∈M2g−2k+3,2(2g−2k+3) lies outside

Syz ⊆M2g−2k+3,2(2g−2k+3).

Then Kg−k,2(D,N) = 0.

Proof. The only reason why this lemma is not totally obvious is that Syz was defined as the
closure of smooth, marked curves with extra syzygies. However, the determinantal description
from [FK, § 6] can be extended verbatim to the open locusMva

2g−2k+3,2(2g−2k+3) of marked stable

curves D′ such that the marking defines a very ample line bundle N ′ with H1(D′, N ′) = 0; see
also [Far06, § 2] and [Far09]. Indeed, the only thing which needs checking is that we continue to
have H1(D′,

∧g−kMN ′ ⊗N ′2). This follows from the short exact sequence

0 →

g−k+1∧
MN ′ ⊗N ′ →

g−k+1∧
H0(N ′)⊗N ′ →

g−k∧
MN ′ ⊗N ′2 → 0

and the assumption H1(D′, N ′) = 0.
Thus, we get a divisor Syzva ⊆ Mva

2g−2k+3,2(2g−2k+3), which coincides with Syz on
Mva

2g−2k+3,2(2g−2k+3). Now the fact that L is very ample implies that N is very ample; indeed,

H0(C,L) ' H0(D,N), and φN : D → Pg−2k+3 embeds D as the union of the curve C (embedded
by L) together with g − 2k + 3 secant lines Ri. So, [D] ∈ Mva

2g−2k+3,2(2g−2k+3). Riemann–

Roch now gives H1(D,N ′) = 0. The point [D] lies on precisely one boundary component of
M2g−2k+3,2(2g−2k+3), namely the component δirr whose general point is an integral curve with

one node; see [AC99] for details of the boundary of Mg,n.
Thus, it suffices to show that Syzva does not contain δirr. This follows easily from [FK,

Theorem 1.8]. Indeed, it suffices to show that there exist integral, singular curves with nodal
singularities in the linear system |L| on the K3 surface Z2g−2k+3 from [FK, § 3].2 For this, one can

degenerate to the hyperelliptic K3 surface Ẑ2g−2k+3 as in [FK, § 3], and take a general curve A in
the base-point-free linear system |L−E| which meets a given elliptic curve B ∈ |E| transversally.
The nodal curve A+B then deforms to an integral nodal curve in |L|. 2

We next compare difference varieties with secant varieties; see [ACGH85, VIII.4] and [FK,
§ 2] for background.

2 There is a typo in the statement of [FK, Theorem 1.8], namely we should have (C)2 = 4i. This typo is not
repeated in [FK, § 3].
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Lemma 2.3. For any 0 6 j 6 g − 2k + 3, the inclusion

L− C2(g−2k+3−j) −KC ⊆ Ck−1+j − Cg−k−j

of closed subvarieties of Pic2k+2j−g−1(C) implies that the following dimension estimate holds:

dimV 2g−3k−j+4
2g−3k−j+5 (L) > 2g − 2j − 4k + 6.

Note that the expected dimension of the secant variety V 2g−3k−j+4
2g−3k−j+5 (L) is 2g − 2j − 4k + 5,

so the inclusion above implies that the secant variety has dimension higher than expected.

Proof. From the inclusion L − C2(g−2k+3−j) −KC ⊆ Ck−1+j − Cg−k−j , we have that, for every
effective divisor D of degree 2(g−2k+3−j), there exists an effective divisor E of degree k−1+j
such that

[L− (D + E)] ∈ KC − Cg−k−j .

As h0(C,KC) = g, this implies that L− (D+E) has at least k+ j sections. This is equivalent to

[D + E] ∈ V 2g−3k−j+4
2g−3k−j+5 (L).

Let C(i) denote the ith symmetric product of C. There are only finitely many possible D′ ∈
C(2(g−2k+3−j)) such that we have the equality of divisors

[D + E] = [D′ + E′] ∈ C(2g−3k−j+5)

for some effective divisor E′ of degree k − 1 + j. Hence, the dimension of V 2g−3k−j+4
2g−3k−j+5 (L) is at

least 2(g − 2k + 3− j). 2

We now apply [AS15, Remark 4.2] to show that if L as above is (g− k+ 1)-very ample, then
none of the secant loci from the previous lemma can have excess dimension.

Lemma 2.4. Assume that L as above is (g − k + 1)-very ample. Then

dimV 2g−3k−j+4
2g−3k−j+5 (L) = 2g − 2j − 4k + 5

for all 0 6 j < g − 2k + 3, whereas V g−k+1
g−k+2 (L) = ∅.

Proof. Firstly note that, if 0 6 j < g− 2k+ 3, then all secant loci V 2g−3k−j+4
2g−3k−j+5 (L) are nonempty

by [ACGH85, p. 356]. For j = g−2k+3, the secant locus V g−k+1
g−k+2 (L) = ∅, by the assumption that

L is (g−k+1)-very ample. Suppose that there exists 0 6 j < g−2k+3 with dimV 2g−3k−j+4
2g−3k−j+5 (L) >

2g − 2j − 4k + 5. By [AS15, Remark 4.2], dimV g−k+2
g−k+3 (L) > 2.

Consider the Abel–Jacobi map π : V g−k+2
g−k+3 (L) → Picg−k+3(C). We claim that π is finite.

Indeed, otherwise we would have a one-dimensional family of [Dt] ∈ V g−k+2
g−k+3 (L) with OC(Dt)

constant. Then the line bundle KC −L+Dt is independent of t, and furthermore it is effective,
since [Dt] ∈ V g−k+2

g−k+3 (L). Let Z ∈ |KC − L + Dt| and s ∈ Supp(Z); the assumption that k > 3

ensures that deg(KC−L+Dt) > 1. There exists some t′ such that s ∈ Supp(Dt′); let D′ := Dt′−s.
Then Z − s ∈ |KC − L + D′|, so KC − L + D′ is effective, and D′ ∈ V g−k+1

g−k+2 (L), contradicting

that V g−k+1
g−k+2 (L) = ∅. Thus, we have that π is finite.
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We will now apply [FHL84] to see that V g−k+1
g−k+2 (L) 6= ∅ (cf. [AS15, Remark 4.4] and the proof

of [FK, Theorem 1.5]). This contradiction will finish the proof. Indeed, for any point p ∈ C, we
can find an irreducible, closed curve S ⊆ V g−k+2

g−k+3 (L) such that, for all s ∈ S, the corresponding

divisor [Ds] ∈ V g−k+2
g−k+3 (L) passes through p, so that D′s := Ds − p is an effective divisor. Now

consider the Abel–Jacobi map

p : V g−k+2
g−k+3 (L) → Pick−2(C)

[D] 7→ KC − L+D.

This image p(S) is a closed curve, each point of which parametrises an effective line bundle.

By [FHL84], there exists an s ∈ S with KC − L + Ds − p = KC − L + D′s effective. But this is

the same as saying that D′s ∈ V g−k+1
g−k+2 (L). 2

We now record a lemma which we will need for the proof of the main theorem.

Lemma 2.5. Let N be the balanced line bundle of degree 4g− 4k+ 6 as above and assume that

Kg−k,2(D,N) = 0.

Then

Kg−k,2(C,L) = 0.

Proof. Assume that Kg−k,2(C,L) 6= 0. Then Kg−k+2,0(C,ωC ;L) 6= 0, by Koszul duality [Gre84].
Likewise, Kg−k,2(D,N) = 0 if and only if Kg−k+2,0(D,ωD;N). Note that H0(D,N) ' H0(C,L),
and the proof of Koszul duality using kernel bundles goes through unchanged in our case, even
though D is nodal; see [AN10, Theorem 2.24]. Restriction induces natural inclusions

H0(D,N) ↪→ H0(C,L),

H0(D,ωD) ↪→ H0

(
C,ωC

(g−2k+3∑
i=1

xi + yi

))
,

H0(D,N ⊗ ωD) ↪→ H0

(
C,L⊗ ωC

(g−2k+3∑
i=1

xi + yi

))
.

We thus get the following commutative diagram, where both vertical arrows are injective:

∧g−k+2
H0(D,N)⊗H0(D,ωD)

��

dg−k+2,0 // ∧g−k+1
H0(D,N)⊗H0(D,N ⊗ ωD)

��∧g−k+2
H0(C,L)⊗H0(C,ωC(

∑
i xi + yi))

d̃g−k+2,0 // ∧g−k+1
H0(C,L)⊗H0(C,L⊗ ωC(

∑
i xi + yi)).

We have an isomorphism H0(D,N) ' H0(C,L), and H1(C,L) = 0, so Riemann–Roch implies

that H1(D,N) = 0.
The image of the restriction map H0(D,ωD) ↪→ H0(C,ωC(

∑
i xi+yi)) includes H0(C,ωC) ⊆

H0(C,ωC(
∑

i xi + yi)). We have a natural commutative diagram, where the vertical arrows are
injective:
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∧g−k+2H0(C,L)⊗H0(C,ωC)

��

d′g−k+2,0 // ∧g−k+1H0(C,L)⊗H0(C,L⊗ ωC)

��∧g−k+2H0(C,L)⊗H0(C,ωC(
∑

i xi + yi))
d̃g−k+2,0 // ∧g−k+1H0(C,L)⊗H0(C,L⊗ ωC(

∑
i xi + yi)).

Thus, if Kg−k+2,0(C,ωC ;L) 6= 0, then there exists a nonzero element of Ker(d̃g−k+2,0) which lies

in the image of

g−k+2∧
H0(D,N)⊗H0(D,ωD) →

g−k+2∧
H0(C,L)⊗H0

(
C,ωC

(∑
i

xi + yi

))

and thus dg−k+2,0 is noninjective, so Kg−k+2,0(D,ωD;N) 6= 0. 2

We are now in a position to prove the main theorem.

Proof of Theorem 1.4. Assume that

L−KC /∈ Cg−k+2 − Ck−3.

We need to show that Kg−k,2(C,L) = 0. From Lemma 2.5, it suffices to prove that Kg−k,2(D,N)

= 0. From Lemma 2.2 and Proposition 2.1, it suffices to show that the marked curve [D] ∈
M2g−2k+3,2(2g−2k+3) lies outside Sec. For this, it is sufficient to show that

H0

(
D,

g−k∧
MKD

(2KD −N)

)
= 0,

by [FMP03, Proposition 3.6]. Here MKD
is the kernel bundle, defined by the exact sequence

0 → MKD
→ H0(D,KD)⊗OD → KD → 0.

Equivalently, if φKD
: D → P2g−2k+2 is the canonical morphism, then MKD

' φ∗KD
ΩP2g−2k+2(1).

Note that φKD
is not an embedding; indeed, each component Ri is contracted to a point.

We define subcurves of D as such: for 1 6 k < g − 2k + 3, let

Dk := C ∪Rk+1 ∪ · · ·Rg−2k+3

and set Dg−2k+3 = C. Define Ni := N|Di
. The Mayer–Vietoris sequence gives

0 →

g−k∧
MKD

⊗ (2KD −N) →

g−k∧
MKD1

(x1+y1)(2KD1 −N1 + 2x1 + 2y1)⊕OR1(−1)(
2g−2k+2

g−k )

→

g−k∧
MKD

⊗ (2KD −N)|x1,y1 → 0,

using that MKD |D1
'MKD1

(x1+y1) (note that restriction induces an isomorphism H0(D,KD) '
H0(D1,KD1(x1 + y1))).
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So, it suffices to show that the evaluation map

H0

(
D1,

g−k∧
MKD1

(x1+y1)(2KD1 −N1 + 2x1 + 2y1)

)
→ H0

(
D,

g−k∧
MKD1

(x1+y1)(2KD1 −N1 + 2x1 + 2y1)|x1,y1

)
is injective or

H0

(
D1,

g−k∧
MKD1

(x1+y1)(2KD1 −N1 + x1 + y1)

)
= 0.

We have a short exact sequence

0 →

g−k∧
MKD1

→

g−k∧
MKD1

(x1+y1) →

g−k−1∧
MKD1

(−x1 − y1) → 0;

see for instance [Bea03, Remark on p. 345]. So, it is enough to show the following two vanishings:

H0

(
D1,

g−k∧
MKD1

(2KD1 −N1 + x1 + y1)

)
= 0,

H0

(
D1,

g−k−1∧
MKD1

(2KD1 −N1)

)
= 0.

For any semistable curve Y and vector bundle E on Y , we define ΘE as the set of line bundles
M with

H0(Y,E ⊗M) 6= 0.

We define Csm,i as the intersection of C with the smooth locus of Di. As x1, y1 are general, it is
enough to satisfy the following two conditions:

2KD1 −N1 + Csm,1
2 * Θ∧g−k MKD1

, (3)

2KD1 −N1 * Θ∧g−k−1 MKD1

, (4)

where the notation Csm,i
d refers to the dth symmetric product of Csm,i.

Using the Mayer–Vietoris sequence

0 → ODi−1 → ODi ⊕ORi → Oxi,yi → 0

together with

0 →

p∧
MKDi

→

p∧
MKDi

(xi+yi) →

p−1∧
MKDi

(−xi − yi) → 0,

and the generality of x1, y1, . . . , x2(2g−2k+3), y2(2g−2k+3), we see that, in order to verify the
conditions

2KDi −Ni + Csm,i
2(i−j) * Θ∧g−k−j MKDi

, 0 6 j 6 i, (5)

it is enough to verify that

2KDi+1 −Ni+1 + Csm,i+1
2(i+1−j) * Θ∧g−k−j MKDi+1

, 0 6 j 6 i+ 1. (6)
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Hence, it is enough to verify that

2KC − L+ C2(g−2k+3−j) * Θ∧g−k−j MKC
, 0 6 j 6 g − 2k + 3 (7)

or

L− C2(g−2k+3−j) −KC * Ck+j−1 − Cg−k−j , 0 6 j 6 g − 2k + 3,

by Serre duality and [FMP03, Proposition 3.6]. This follows from Lemmas 2.3 and 2.4. 2

Theorem 1.5 now follows easily from Theorem 1.4.

Proof of Theorem 1.5. In the case p > g−k, then each line bundle L ∈ Pic2g+p−k+3(C) fails to be
(p+ 1)-very ample [FK]. Thus, by the known direction of the secant conjecture, Kp,2(C,L) 6= 0.

So, assume that p 6 g − k, H1(C, 2KC − L) = 0, H1(C,L) = 0 and that V g−p−4
g−p−3 (2KC − L) has

the expected dimension g−k−p−1. Note that this implies that L is (p+1)-very ample. Indeed,
otherwise

L−KC ∈ Cp+2 − Ck−3,

which implies that
2KC − L− Cg−k−p ⊆ KC + Ck−3 − Cg−k+2,

which gives dimV g−p−4
g−p−3 (2KC −L) > g− k− p, using the assumption that H1(C, 2KC −L) = 0.

In fact, this last inclusion is equivalent to dimV g−p−4
g−p−3 (2KC − L) > g − k − p; use that a one-

dimensional family of divisors must pass through any given point. In particular, the previous
discussion shows that L is base-point free. For a general, effective divisor D of degree g − k− p,
the argument above gives L(D)−KC /∈ Cg−k+2 − Ck−3. By Theorem 1.4, we have

Kg−k,2(C,L(D)) = 0.

By [FK, Proposition 2.1], this implies that Kp,2(C,L) = 0. 2

Proof of Corollary 1.6. As we are assuming that k > 3, the inequality p 6 g − k implies that
deg(L − KC) 6 g − 1, so we have H1(C, 2KC − L) = 0 for a general L ∈ Pic2g+p−k+3(C). To
show that the condition ‘V g−p−4

g−p−3 (2KC −L) has the expected dimension g− k− p− 1’ holds, for

C a general k-gonal curve and L general with H1(C,L) = H1(C, 2KC −L) = 0, we need to show
that

2KC − L− Cg−k−p * KC + Ck−3 − Cg−k+2;

see [FK]. This is equivalent to showing that

L−KC + Cg−k−p * Cg−k+2 − Ck−3.

For this, we may specialise C to a hyperelliptic curve, as the k-gonality stratum inMg contains
the locus of hyperelliptic curves. In this case, the condition

L−KC + Cg−k−p ⊆ Cg−k+2 − Ck−3

implies that
L−KC ∈ Cp+2 − Ck−3,

by [FK, Proposition 2.7]. Under the assumption that p 6 g − k, if L is a general line bundle of
degree 2g + p− k + 3, then L−KC does not lie in Cp+2 − Ck−3. This completes the proof. 2
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FMP03 G. Farkas, M. Mustaţă and M. Popa, Divisors onMg,g+1 and the minimal resolution conjecture

for points on canonical curves, Ann. Sci. Éc. Norm. Supér. 36 (2003), 553–581.
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