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ON A GENERALIZATION OF ONE DIMENSIONAL 
RANDOM WALK WITH A PARTIALLY 

REFLECTING BARRIER 
BY 

B. R. HANDA 

1. Introduction and summary. Consider a one-dimensional random walk model 
where a particle starting at the origin at any instant either takes a jump through a 
unit distance to the right with probability pl9 or stays at the same position with 
probability p09 or else takes a jump through either of 1, 2 , . . . , ft units of distance 
to the left with probabilities p-l9p-2,--->P-n respectively. Assume 2î= -vPv^l. 
Furthermore a partially reflecting barrier which behaves in the following manner 
is placed at the position m ^ O ) . As soon as the particle reaches the barrier it is 
reflected to either of the positions m1 — 1, . . . , m1—ft with probabilities #_ l 5 . . . , q„u 

or else gets absorbed at the position m1 with probability q0 = (l — 2v=i <7-v). This 
paper mainly attempts the problem of obtaining the exact expressions for the pro
babilities of the events 

(A) of being at the position m at the iVth step 
(B) of being at the barrier at the Mh step and getting absorbed in the next step. 

A graphical representation of the above random walk introduced in the next 
section together with certain combinatorial arguments shall be used in the proofs. 
In §3 letting ft = 1 we derive the probabilities for the events (A) and (B). However, 
for the case of general ft we obtain in §4, the probability of event (B) only. The 
expression for the probability of (A) in general case is very cumbersome. The last 
section uses the result of §4 to solve a ballot problem with (ft+1) candidates, which 
shall be formulated in that section. 

2. Graphical representation. We would call the line segment between two lattice 
points in the plane on which no other lattice point lie as a step. If a step is parallel 
to the line x=ty, where t>0 is an integer, we say that the step is of the type St9 

whereas by a step of the type S we mean a step in the horizontal direction. With 
any realization of the generalized random walk we associate a minimal lattice 
path with diagonal steps (called a random walk graph) in the following manner. 

The minimal lattice path starts at the origin and at any instant proceeds either by 
a step of the type S with probability p1 or a step of any of the types St91=091,.. .,ft 
with probabilities pt-^ t=091,..., ft respectively. The line x=mx+fiy acts as a 
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barrier. Consequently the minimal lattice path reaching this line is reflected in 
such a way that the next step is either of the types St, t=0, 1 , . . . , \i— 1 (referred 
to[as the reflections of the types Dt) with probabilities qt-u, t=0, 1 , . . . , p— 1, or 
else it terminates there with probability q0. 

The minimal lattice path that ends on the line x^py + t must do so in f+ 2?=o 
(/x+1 — i)r{ steps, where r{ is the number of steps of the types Sh i = 0 , 1 , . . . , \i 
and remaining f+2?=o (/x — i)rt steps are of the type S. Therefore, corresponding 
to the events (A) and (B) of §1, we consider the following events in the terminology 
of minimal lattice paths 

(A2) A minimal lattice path having exactly rt steps of the type St (i=0, 1, . . . , /x) 
ends on the line x=m+fxy. 

(Bi) A minimal lattice path having exactly rt steps of the type Si(i=0, 1 , . . . , fj) 
ends on the barrier x=m1+fxy and the path terminates in the next step. 

In what follows we use the symbol I . . I to denote the multinomial co-
V/i , . . . , . / f c / 

efficient x(x— 1).. .(x—2ic=i./i + l)/n?=i7i! We state below a theorem from [4] in 
slightly different notations which shall be needed in the subsequent sections. 

THEOREM. For nonnegative integralvalues of'a, f3andQ<t<p let N(a, £; r0 , . . . , rt) 
represent the number of paths from (0,0) to (a+f}n,ri) where « = 2i = o'*t never 
touching the line x=Py except possibly for the end points and having r{ steps of the 
type Si(i=0, l , . . . , 0 - Then 

(1) tf(a,j8;r0,...,r,)H 

/i(P+l-i>,-l\ ^ ^ 0 

*-o \ r0,...9rt J 
i t \ 

a « + Z O Î + I - I > , 
«+20+1-0*1 f r ra>0 

3. The simple case 0*=1). Here the paths involve only three types of steps, 
viz., horizontal, along the line x=y (referred to as the diagonal step) and vertical. 
Also there is only one type of reflection at the barrier x—y+m-L, viz., of the type D0 

which is in the vertically upward direction. 
Denote by Pn(m; r0, r±) the probability that a path with r0 vertical steps and rx 

diagonal steps ends in the point (m + r0 + rl5 rQ-\-r^) on the line x=m+y and has 
exactly n reflections at the line x=m±+y. Obviously Pn(m; r0, rx) is nonzero for 
m<mx. Also since 

(2) PJjri! ; r0, rx) = Pn(m! - 1 ; r0, r1)p1 

we shall obtain the expression for Pn(m; r09 r±)9 when m<m1 only. 
It might be possible to use the reflection principle in the lines of Lehner [2] in 

order to obtain the required expression, but we propose to use a combinatorial 
method involving convolution identities proved in [3]. The later technique is 
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equally elegant as the first one but is more powerful in the sense that it is capable of 
being extended to the case of general /z, to be dealt with in the next section. 

The expression for Pn(m; r0, r±) is stated in the following theorem. 

THEOREM 1. For w < /Wi : 

(3) 
\Pn{m\r09r^ = 

2mx—m + n—l f-ft-1 /m + 2r0 + r1-(n-l) \(<l-i\n 

- ( « - 1 ) \ro + / n - / W i - ( / i - l ) , r J \ ^ - i / /w+2r0 + r1-

x^y+'opjip'j?!, for I < n < r0+/w-/Wi + l. 

Proof. F o r « = 0 : 

(4) Po(^; r0, #i) = iV0(m; r0, ràpVr*pVfïi, 

where i\T0(m; r0, r2) denotes the number of paths from (0,0) to (m+r0 + rl9 rQ-\-r^) 
having exactly r0 vertical and r± diagonal steps and never touching or crossing the 
line x^mx+y. Subtracting from the total number of paths from (0,0) to 

(m+r0+ri,r0+ri) 

Figure 1. 

(m+r0+rl9 r0 + rx)9 those paths that actually touch or cross the line x = w x + j 
(see Fig. 1) we have, by using (1), 

(m+lro+r^ 
ro9r± 

(5) 

The sum on the right can be written as 

/wx + 2j0 +j\\ [m± + 2(r0 -j0) + (rx -j\)\ 
ro —jo* ri —ji 

A r / x (m+lro+rA 

ro-(mi-m) rx ( /« 

)} 
m. ro-(mx-m) n 

y y 
i~o iCZomi + 2/0 +ji 

//Wi + 270 + M//] 
\ Jo, A A 

which, with the help of convolution (10) in [3], simplifies to 

/ m + 2r0 + /'1 \ 
Vo + m-m^rJ' 
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Inserting the value of N0(m; r0, r±) from (5) in (4) we have proved the result for 
«=0. 

For n> 1 we prove the result by induction. When n = l w e divide the path into 
two segments, the first segment containing j0 vertical andy'x diagonal steps ends in 
the point (W14-/0+.7WO+./:L)

 o n the line x=m1+y where the reflection takes place. 
Then with the help of (1), we can write the expression for the paths from (0,0) to 
(tni + r0 + rl9 r0 + rx) with one reflection as 

ro + m-mi n 

2 2 N(mi>l '* Jo* Ji)N(mi ~ m, 1 ; r0 - m!+m -j0, rx -j\) 
;'o = 0 i i = 0 

which, by using the convolution (9) in [3], simplifies to 

/ m + lro + n \ 
m+2r0-fr1 

Since each such path has the same probability 

the theorem is proved for n— 1. Assume (3) to be true up to n = r. For n = r+1, we 
consider a similar division of the path as for the case « = 1, but here the point 
(mi+jo+jitjo+ji) is the point of (r+ l)th reflection. Thus 

ro + m-mi ri 

Pr+i(m ; r0, rx) = 2 2 pr(mi - 1 ; Jo, A) -Pi 

xq-iNfa-m, l;r0-m1 + m-j0,r1-j1) 

Xpm-mx+To-Joprf-hpTo-fa-l 

Routine calculations reduce the right-hand member to the right member of (3) 
with n=r+1. This completes the proof. 

Denoting by P(A±; ft9 m) and P(B±; p) the probabilities of the events A± and Bx 

respectively defined in §2, one immediately proves the following corollaries. 

COROLLARY 1. For rrKm^ 

P(Ai;l,m)= \(m+2r° + r*) + ( m + 2ro + ̂  U l +(1=1-2) L\ r0,r! J \r0+m-m1,r1)\ \p_1 ) 

XaFi(l, -(ro + m-mi); -(m + 2r0 + ri);^A\ 

p.1\r0 + m-m1,r1-lj 

XaFi(l, -(ro + ni-ffia); - (w + 2r0 + r 1 - l ) ; ^ l 

•xpT+r°PW-i 

H'Aere 2Fi is 7/ze well known hypergeometric function. 
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Proof. From Theorem 1 

L\ r09rx J Vo + m-m^rJ 
,_. ro+m mi + i 2m1-m + n-l I m+2r0 + r 1 ~ ( ^ - l ) \ 
1 } n t i m+2ro + r 1 - ( « - l ) \ r 0 + m - m 1 ~ ( « - l ) , r 1 / 

x(|^)n]^+Vo^r-0i. 

Though it might be possible to express (7) as (6) by modifying the steps used for 
obtaining equations (29) through (37) in [2], a much simpler method would be to 
use the identity 

Irrix—m+n / m+2r0 + r1—w \ 
m + 2rQ + r1—«\r0 + m—J^—n, rj 

= / m + 2r0 + r 1 - « \mmmo( m + 2rQ + r1-n-l \ / m + 2r0 + r 1 ~ « - l \ 

along with some rearrangement of the terms, in the summation on the right of (7). 

COROLLARY 2. 

^Hr:,r){fe+('-fe) 
( 8 ) ><2Fi{i,-r0;-(m1+2rQ + r1);^ji 

x^o^r i+ ro^o^-0i. 

Proof. Observe that 

P(i?i;l) = P(i4i; l , / i t i - l)^i .?o 

=
 n ? o m 1 + 2 r 0 + , 1 - n l , „ - » , * j ^ W - ^ o (from (7)) 

which, when expressed in terms of hypergeometric function, is as in (8). 

4. The general case. Denoting by P(m; r 0 , . . . , ru; k0,..., fc^-O the probability 
that the minimal lattice path having rt steps of the type St(i=0, 1 , . . . , ^) ends on 
the line x—m-V^y and has exactly k{ reflections of the type D{ 0*=0,. . . , p— 1), 
we prove the following theorem. 

THEOREM 2. 

P{m1 ; r 0 , . . . , /"# ; kQ,..., k„ _ jj 

(8) U. *»-! V-'f^+J^+l-OrAro-^.. . ,^-^.^,/ 
t = 0 i = 0 

v-1 /n, \ki u v ' 

x n m npï'-^1*'-»0-^ 
i = 0 \Pi-uf i = 0 
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Proof. The proof is by induction which uses the following equations 

P(m1;r09...9rlt;l909...90) 
ru ri r 0 - l u 

= 2 ••• 2 2 N(m1,n;j0,...Jlx)YlPii-n-

i = 0 P-n 

and f o r 7 = 0 , 1 , . . . , /A— 1 

P(wi1i r 0 , . . . , r„; fc0,..., ks+1,..., ^_x ) 

= 2 2 ••• 2 ••• 2 ••• 2 
*P(Mil jo,. •.9 Jul k09..., kj+1,..., fcj— 1 , . . . , A:tf«i) 

xqi-vN(p-l9 fi; r0-j09..., r , - 1 -y„ . . .9ru-ju) 

i = 0 Z7 / -^ 

[when /= / , the limits of summation overy, is modified as from &0 to r0— 1 and the 
first term under summation becomes P(wiiijQ9 ...9juik09..., ^ _ x ) ] . The rest of 
the proof involves the usual simplifications. 

The following corollaries from Theorem 2 are immediate. 

COROLLARY 3. 

(9) P (5 1 ; / * )= 2 2 p ( m i ' r o , . . . , r „ ; / ; 0 , . . . ,fc t f-i) 
n = 0 

w/iere 2 n w * Ae .MI/W orer a// A:*'.? subject to the restrictions 

\%oki=Zn' ° ~ ^ ~ r i > * = 0» l , . . . , f * — 1 \ 

COROLLARY 4. PFAew r x = • • • = r^=0 , /.e. the random walk has two moves, viz. 
\ or —pat any stage, we have 

P(n - , A - R m1 + nti (wi1"n + (ix+l)r0\(q_u\
n] 

\ rQ Jl q.„ \ q.u ) 

x a * i ( l 0 - r 0 ; - ( w i + 0 i + l ) r o ) ; | ^ ) ] 

A particular case of (10) when n= 1 is the result (41) in [2]. 
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5. An application to ballot problem. Let us consider a ballot with (p+1) candi
dates A09...9AU^.1 and A having r0 , . . . , ru-x and r votes respectively. Represent 
by Ai(k) (by A{k)) the number of votes for the candidate A{ (for A), i=0,1,..., p — 1 
when the first k votes have been counted. 1 <A:<2f=o" rt+r. The probability of the 
event 

(11) En,,:{A{k)> *tb-t)A£k\ 
i = 0 

&=1, . . . , ^f-o rt+r and the equality sign holds for exactly n number of fc's), 
0 < n < 2f= o1 ?i will be obtained in this section. 

Assume that all possible counting records are equally likely, each having the 
same probability 

' / ( r + t " ) 
I Vo , . . . , ^ - i / 

Any counting record can be represented by a minimal lattice path from (0,0) to 
(r+2f=ox iru Jf^o1 rt) such that the ith step ( /=1 , . . . , r+Jf^o1 rf) is of the type 
St (t=0,..., fx— 1) or S, according as the ith vote is cast for the candidate At or 
A. Favourable counting records to the event Entlt are those whose corresponding 
minimal lattice paths lie below the line jc=/xy and touch this line exactly at n points. 
Clearly P(Ent w) is nonzero when r > Jf^o10*—0r*• Reviewing Theorem 2, by taking 
rtf=0 and Wi==r—2f*To1GLt"~Ori a moment's reflection, yields the number of 
favourable paths to be 

(12) i(y-^-)r-'gr^-°( ~;t'<'-« ) 
i = 0 

where 2n denotes as before the sum over all fc^'s subject to restrictions {Zf=o kt=n, 
0<ki<ri, i=0 , . . . , ft— 1}. Then by multiplying (12) by 

• A r + : t " ) 
one gets P(Entll). 

Observe that P(E0, x) and JSLoP(Enpl)
 a r e ^ e s t r i c t s e n s e a nd w e ak s e n s e 

probabilities (see [1]) of the classical ballot problem. Whereas if we set rx= • • • 
==rM _ x=0 in P (EUt u) we can get probabilities corresponding to the Babier generaliza
tion of classical ballot problem. 
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We conclude with the following identity. 

= ' ° + " ^ - * V ( * O + " - + * I I - I \ 
/ i ^ \ n = 0 \ Ko) * * »9 rC/i-i J 

1 = 0 

i = 0 

Note that the left-hand side uses (1) and represents the number of paths from 
(0, 0) to (r+Jf^o1 î> Li=o J*t)5 never crossing the line x=/zy. 
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