
TPLP 22 (3): 367–418, 2022. c© The Author(s), 2022. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distri-

bution and reproduction, provided the original article is properly cited.

doi:10.1017/S147106842100051X First published online 25 March 2022

367

Reactive Answer Set Programming

KRYSIA BRODA and FARIBA SADRI
Imperial College London, UK

(e-mails: k.broda@imperial.ac.uk, f.sadri@imperial.ac.uk)

STEPHEN BUTLER
Independent Scholar

(e-mail: stephenjbutler@virginmedia.com)

submitted 27 April 2021 revised 15 October 2021; accepted 18 October 2021

Abstract

Logic Production System (LPS) is a logic-based framework for modelling reactive behaviour.
Based on abductive logic programming, it combines reactive rules with logic programs, a
database and a causal theory that specifies transitions between the states of the database.
This paper proposes a systematic mapping of the Kernel of this framework (called KELPS) into
an answer set program (ASP). For this purpose a new variant of KELPS with finite mod-
els, called n-distance KELPS, is introduced. A formal definition of the mapping from this
n-distance KELPS to ASP is given and proven sound and complete. The Answer Set Pro-
gramming paradigm allows to capture additional behaviours to the basic reactivity of KELPS,
in particular proactive, pre-emptive and prospective behaviours. These are all discussed and
illustrated with examples. Then a hybrid framework is proposed that integrates KELPS and
ASP, allowing to combine the strengths of both paradigms.

KEYWORDS: logic programming, logic production systems, KELPS, Answer Set Programming,
reactivity, prospective reasoning

1 Introduction

Reactivity plays a major part in many areas of computing. For instance, it is an

important feature in situated agent systems and it forms the foundation of many state

transition systems. It also plays a part in constraint handling rules and abstract state

machines and reactive programming in general (Mancarella et al . 2009; Kowalski and

Sadri 1999; Costantini and Tocchio 2004; Alferes et al . 2006; Rao 2009; Frühwirth 1998;

Gurevich 2000a). Reactivity can take several different forms, such as event-condition-

action rules, for instance in active databases, or condition-action rules, for example

in production systems, or transition rules in abstract state machines (Zaniolo 2003;

Lausen et al . 1998; Fernandes et al . 1997; Russell and Norvig 2003; Gurevich 2000b).

Reactivity is implicit in some systems, such as BDI agents, whereas in other systems

it is explicit and core, for example Reaction RuleML and logic production system

(LPS) (Rao and Georgeff 1995; Paschke et al . 2012; Kowalski and Sadri 2011; 2015).

Consider, for example, an agent situated in an environment. The agent may have some

initial goals towards which it may plan and execute actions. But, to be effective, it also

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S147106842100051X
https://orcid.org/0000-0003-1307-7667
mailto:k.broda@imperial.ac.uk
mailto:f.sadri@imperial.ac.uk
mailto:stephenjbutler@virginmedia.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842100051X&domain=pdf
https://doi.org/10.1017/S147106842100051X

368 K. Broda et al.

Fig. 1. KELPS operational semantics cycle.

needs to take account of the changes in its environment and react to them by setting

itself new goals and adjusting its old goals and any already constructed (partial) plans.

This is also in the spirit of (Teleo)reactive systems, which have the primary objective

to increase the responsiveness and resilience of computer systems without the need for

replanning (Clark 2018; Clark and Robinson 2015; Nilsson 1994; Sanchez et al . 2016).

ASP (Answer Set Programming) (Gebser et al . 2013; Brewka et al . 2011) is a paradigm

of declarative programming, rooted in logic programming, that has gained popularity

in recent years and has been applied in several interesting domains, such as planning,

semantic web, computer-aided verification and health care (Erdem et al . 2016). Given

a logic program, ASP computes its models, called answer sets, which can be considered

solutions to the problem captured by the logic program.

In this work we show how reactivity can be incorporated within the ASP paradigm by

adopting the notion of reactivity from another logic-based paradigm, KELPS (KErnel of

LPS) (Kowalski and Sadri 2016). We call the resulting framework Reactive ASP. KELPS

(and LPS) is based on abductive logic programming and combines reactive rules with

logic programs, a database and a causal theory that specifies transitions between the

states of the database. We chose KELPS as the basis for Reactive ASP for two reasons.

Firstly, the logic-based syntax of KELPS and its notion of reactivity are, in our opinion,

quite general and intuitive – for example they subsume both event-condition-action rules

and condition-action rules. Secondly, KELPS provides a formal definition of reactivity

which guided our design of Reactive ASP and its formal verification.

The operational semantics (OS) of KELPS is based on the cycle illustrated in Figure 1.

Starting from an initial state (database), incoming external events and the framework’s

own generated actions are assimilated and the state is updated, and reactive rules whose

conditions have become true given the history of events and states so far are triggered.

This results in new goals to satisfy, and their incremental partial solutions, in turn,

result in more actions generated to be executed, thus iterating through the cycle. As

well as an OS KELPS has a model-theoretic semantics, and KELPS computation is

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 369

aimed at generating models for the reactive rules in dynamic environments. These models

can be infinite.

The paper makes several contributions:

• It shows how to facilitate reactivity in ASP by first defining a variant of KELPS

with a finite number of state changes in any model, called n-distant KELPS, and

then giving a mapping from this n-distant KELPS to Reactive ASP. We prove that

the mapping is sound and complete in the sense that, given any initial state and

any ensuing sets of external events, the answer sets of the resulting Reactive ASP

programs correspond exactly to the n-distant KELPS reactive models.

• The mapping is then used to shed light on possible relationships and synergies

between the two different paradigms. In particular, we show that it facilitates for

free additional alternative control strategies and a prospective style of programming

(Pereira and Lopes 2009), which allows to consider future consequences of present

decisions in order to choose what to do presently.

• Furthermore, we propose an approach that combines features of KELPS with ASP

into one unified architecture that enjoys the benefits of KELPS OS and its destruc-

tive updates of the state where no frame axiom reasoning is needed, together with

the flexibility of ASP that allows prospective and preference reasoning.

Notions of reactivity have been considered in ASP in other work but these approaches

are different from the form presented here. For example, in a tool for maritime traffic

control, Vaseqi and Delgrande (2013) explain how they used oclingo, a particular form

of reactive ASP that handles external data, now superseded by clingo 4 (Gebser et al .

2011), in order to handle histories efficiently inside the ASP system. Thus the work

in generating answer sets at each time step is reduced by discarding information from

previous time steps that is no longer useful. In Ribeiro et al . (2013) the notion of reac-

tivity in ASP is used to mean efficiency in reasoning by partitioning the knowledge base

so that reasoning is done only with the part relevant to the context, whereas Brewka,

at the end of his paper (Brewka 2013), sketches a notion of reactivity closer to ours.

He proposes as future work the use of rules that have “operational statements in their

heads”, where these operations are “read off” from the generated answer sets and the

program is modified accordingly. Recently, some applications using iclingo (an ASP sys-

tem that incorporates incremental grounding) to simulate reactivity have been described

in Gebser et al . (2019a).

The rest of the paper is structured as follows. Section 2 provides background on KELPS

and ASP. Section 3 describes and exemplifies the mapping between the two, while Sec-

tion 4 provides theoretical results. Section 5 discusses how Reactive ASP allows more

complex control strategies and prospection. In Section 6 we then propose a hybrid of

the two paradigms of KELPS and ASP that combines their advantages. We illustrate

this hybrid system with examples and discuss two different ways of realising it. Section 7

reviews the mappings discussed earlier in the paper and provides further insights in the

comparison of the incremental behaviour of KELPS and Reactive ASP. It then briefly

introduces an alternative incremental mapping to ASP and its implementation in clingo

4 and gives a brief empirical evaluation of our approach (with more detail in Appendix

B). It finally discusses related work by looking at other approaches to reactivity and

prospection in logic programming. In Section 8 we discuss future work and conclude.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

370 K. Broda et al.

2 Background

This section introduces the KELPS framework and reviews relevant features of ASP.

2.1 KELPS

KELPS (Kowalski and Sadri 2016) is a logic-based state transition framework combining

reactivity with a destructively updated database and a causal theory that has both

an OS and a model-theoretic semantics. KELPS is a subset of the full LPS language

(Kowalski and Sadri 2011). LPS has been implemented in Prolog, Java, Python and

SWISH and has been used in currently ongoing industry-based applications in smart

contracts and industry production control. The SWISH proptotype implementation of

LPS (Wielemaker et al . 2019) is downloadable and together with LPS examples can be

found at http://lps.doc.ic.ac.uk.

2.1.1 The KELPS vocabulary

KELPS uses a first-order sorted language including a sort for linear and discrete time,

in which the predicate symbols (and consequently atoms) of the language are parti-

tioned into sets representing fluents, events, auxiliary predicates and meta-predicates.

Fluent predicates are used to represent time-dependent facts in the KELPS state. In

their timestamped form, p(t1, ..., tn, i), their last argument i ≥ 0 represents the time of

the state Si to which the fluent belongs. The atom p(t1, ..., tn) is called the unstamped

fluent. Event predicates capture events, both observed external events and events gen-

erated by the framework itself (sometimes called actions to distinguish them). Events

contribute to state transitions – that is, they map one state into a successor state. In

their timestamped form, e(t1, ..., tn, i), their last argument i ≥ 1 represents the time of

the (successor) state Si and the event is said to take place in the transition between

state Si−1 and Si. The event atom e(t1, ..., tn) is called the unstamped event.1 Auxiliary

predicates are of two kinds: (i) time-independent predicates (and corresponding atoms)

do not include time parameters and represent properties that are not affected by events,

for example, isa(book, item), denoting that book is an item; and (ii) temporal constraint

predicates (and corresponding atoms) use only time parameters in arguments and express

temporal constraints, including inequalities of the form T1 < T2 and T1 ≤ T2 between

time points, and functional relationships among time points, such as max(T1, T2, T), de-

noting that T is the maximum of T1 and T2. The KELPS meta-predicates initiates(event,

fluent) and terminates(event, fluent) express the fluents that are initiated and terminated

by events. In general the first argument would be a set of events, to cater for cases where

a set of events may have a different impact on state changes from the sum of the effects

of each of the constituent events. In our mapping to ASP we define these meta-predicates

for single events only. This caters for all cases where concurrent events are independent

of each other, that is they do not affect the same fluent.

2.1.2 The KELPS framework

The KELPS framework is specified by a tuple < R, C,Aux > consisting of a set R of

reactive rules, a causal theory C specifying pre-conditions and post-conditions of the

1 For ease of notation we sometimes write p(i) and e(i) in place of p(t1, ..., tn, i) and e(t1, ..., tn, i).

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

http://lps.doc.ic.ac.uk
https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 371

events that cause state transitions, and a set Aux of auxiliary ground atoms. A reactive

rule has the logical form

∀X[antecedent(X)→ ∃Y consequent(X1, Y)] (1)

in which the consequent is a disjunction consequent1∨ . . .∨consequentn, the antecedent
and each consequenti is a conjunction of conditions, where each condition is either a

fluent literal, an event atom, or an auxiliary literal.2 In equation (1) Y is the set of all

variables that occur only in consequent(X1, Y), X is the set of remaining variables in

the rule and X1 ⊆ X.3 Note that because of the restrictions of the quantification of

variables in reactive rules we can omit the quantifier prefixes without ambiguity and

write antecedent(X)→ consequent(X1, Y). All timestamps in consequent are equal to,

or later than, all timestamps in antecedent.

For example, consider the following policy: If a customer (Cust) makes a request for

an item (Item) at time T , then either the item is available and the agent allocates the

item to the customer at some time T1 later than T , and then processes the order, all

to be done before 4 units of time after T , or the agent apologises about the item to the

customer at 4 units of time after T . Moreover, if an item is allocated to a customer, there

are fewer than 2 units of that item left afterwards and the item is not already on order,

then the agent must order 20 units of it at the next time unit. This can be expressed as

two reactive rules in KELPS:

request(Cust, Item, T)→
[(avail(Item,N, T1) ∧ allocate(Cust, Item,N, T2) ∧ T2 = T1 + 1

∧ process(Cust, Item, T3) ∧ T < T2 < T3 < T + 4)

∨ (apologise(Cust, Item, T4) ∧ T4 = T + 4)]

allocate(Cust, Item,N, T) ∧ avail(Item,N1, T) ∧N1 < 2

∧ ¬ on order(Item, T)→ order(Item, 20, T1) ∧ T1 = T + 1

(2)

The antecedent of reactive rules can refer to a history of events and states, in a similar

way that the consequent can refer to a plan4 to be made true over time and several states.

For example, consider the following requirement for applicants to a degree programme:

an applicant to a degree programme who is offered a place and then accepts the offer

must be placed on the pending list immediately and be sent an invoice within 30 days of

accepting the offer. In KELPS:

[apply(A,Prog, T1) ∧ offer(A,Prog, T2) ∧ accept(A,Prog, T)

∧ T1 < T2 < T]→
[add pending(A,Prog, T4) ∧ T4 = T + 1

∧ send invoice(A,Prog, T5) ∧ T4 < T5 ≤ T + 30]

(3)

Computation in KELPS involves the execution of actions in an attempt to make reactive

rules true in a canonical model of the logic program determined by an initial state,

sequence of events, and the resulting sequence of subsequent states. The causal theory

2 In KELPS a condition may also be a state condition which is a First Order Logic formula involving
fluents and auxiliary atoms. In this paper we ignore this generality.

3 Throughout the paper variables start in upper case and a set of variables is represented as X.
4 We use the term (planning or) plan to mean simply (the generation of) a course of actions that together
with external events and resulting states would make reactive rules true.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

372 K. Broda et al.

C, comprising Cpost and Cpre, specifies the state transformations caused by the events.

Cpost uses the meta-predicates terminates and initiates to specify the post-conditions

of events, and Cpre is a set of integrity constraints restricting the occurrence and co-

occurrence of sets of events. These constraints take the form false ← body, where body

is a conjunction that will include at least one event atom, and may include fluent and

auxiliary literals. All the event atoms will have the same variable or constant timestamp,

and all the fluent literals will have the same variable or constant timestamp, but one unit

before the common timestamp of the events.

For example, the post-conditions below specify that whenever an item is allocated to a

customer the available stock count (N) of the item is decremented, and that whenever an

item is ordered (for the stock) it is on order. The constraints specify that an item cannot

be allocated if it is out of stock (its quantity is 0),5 nor can the same item be allocated at

the same time to two different customers.

Cpost :

initiates(allocate(Cust, Item,N), avail(Item,N − 1))

terminates(allocate(Cust, Item,N), avail(Item,N))

initiates(order(Item,N), on order(Item))

Cpre :

false← allocate(Cust, Item,N, T + 1) ∧ avail(Item, 0, T)

false← allocate(Cust1, Item,N1, T) ∧ allocate(Cust2, Item,N2, T)

∧ Cust1 �= Cust2

(4)

2.1.3 The KELPS operational and model-theoretic semantics

Recall the OS of KELPS from Figure 1. The OS monitors the stream of states and in-

coming and self-generated events and actions, to determine whether an instance of a

reactive rule antecedent has become true. For all such true instances the instances of

the consequents are generated as goals to be satisfied in future cycles. The OS attempts

to make these goals true by executing actions, that, in turn, change the state. KELPS

keeps a record only of the latest events and states; new states replace the ones they

succeed. Because of this the antecedents of reactive rules are processed incrementally

with the incoming streams of events and changes of state. To illustrate this point con-

sider the reactive rule in equation (3), in which, more realistically, there is a deadline

of 30 days after an offer for accepting it, which is added to the antecedent of the re-

active rule. Suppose John applies for MSc at time 1. The reactive rule will provide a

residue

[offer(john,msc, T2) ∧ accept(john,msc, T) ∧ T ≤ T2 + 30 ∧ 1 < T2 < T]

→ [add pending(john,msc, T4) ∧ T4 = T + 1

∧ send invoice(john,msc, T5) ∧ T4 < T5 ≤ T + 30]

(5)

5 Note that here we follow KELPS notation of using the same identifier for the term representing a
fluent or an event and the predicate representing the holding of the fluent and the happening of the
event.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 373

If now John is offered a place on the MSc at time 3, then this residue will be further

processed to

[accept(john,msc, T) ∧ 3 < T ∧ T ≤ 33]→ add pending(john,msc, T4)

∧ T4 = T + 1 ∧ send invoice(john,msc, T5) ∧ T4 < T5 ≤ T + 30]
(6)

If John does not accept his offer by the deadline of time 33 the residue will be discarded.

Suppose John accepts at time 16, then the instantiated consequent of the reactive rule

will be generated as a goal to be solved.

[add pending(john,msc, 17) ∧ send invoice(john,msc, T5) ∧ 17 < T5 ≤ 46] (7)

Facts about fluents are updated destructively, without timestamps, giving rise to an

event theory ET as an emergent property that is similar to the event calculus (Kowalski

and Sergot 1986). This consists of two templates:

p(i+ 1)← initiates(e, p) ∧ e ∈ evi+1

p(i+ 1)← p(i) ∧ ¬∃e(terminates(e, p) ∧ e ∈ evi+1)
(8)

where evi+1 represents the set of events in the transition between state Si and Si+1.

Note that the second template in ET (equation (8)) is a frame axiom and whereas in

KELPS it is an emergent property, its translation will need to be included explicitly in

the Reactive ASP program.

In the KELPS model-theoretic semantics fluents and events are timestamped and

combined into a single model-theoretic structure. The computational task of KELPS

is to make the reactive rules true with respect to the model-theoretic semantics in the

presence of dynamically incoming external events, by generating actions that also satisfy

the integrity constraints in Cpre. We now describe the KELPS computational task more

formally.

Notation If Si is a set of fluents without timestamps, then S∗
i represents the same set

of fluents with timestamp i. Similarly, if evi is a set of events without timestamps taking

place in the transition from state Si−1 to state Si, then events ev∗i represents the same

set of events with timestamp i; likewise the set of timestamped external events ext∗i and

the set of timestamped agent’s own actions acts∗i , where exti and actsi are the external

events and agent’s actions occurring in the transition between states Si−1 and Si.

Definition 2.1

Let < R, C,Aux > be a KELPS framework, ext∗ = ∪iext∗i be a given set of external

events and S0 be the initial state. The KELPS computational task is to generate a set of

actions, actsi (and corresponding set of states Si), for all i ≥ 1, satisfying the following

properties:

• R ∪ Cpre is true in the Herbrand model Aux ∪ S∗ ∪ ev∗, where evi = exti ∪ actsi,

ev∗ =
⋃

i≥1 ev
∗
i and S∗ =

⋃
i≥0 S

∗
i .

• State Si+1, i ≥ 0, is generated from Si, evi+1, and Cpost and given by Si+1 =

(Si − {p : terminates(e, p) ∈ Cpost ∧ e ∈ evi+1}) ∪{p : initiates(e, p) ∈ Cpost ∧ e ∈
evi+1}.6

6 Notice that this implies that if some ground fluent p is both initiated and terminated by actions at
T + 1, then that fluent will hold at T + 1.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

374 K. Broda et al.

Consider the KELPS program described by equations (2) and (4). Assume that initially,

according to S0, we have 6 copies of “Hamlet” and two copies of “Emma” and external

events occur at times 1 and 2 as follows:

S0 = {available(hamlet, 6), available(emma, 2)}
ext1 = {request(john, hamlet), request(john, emma), request(bob, emma)}
ext2 = {request(tom, emma)}

In order to solve the goals represented by the reactive rules in equation (2) in the light

of the external events, the KELPS program will produce a sequence of states and events.

The OS has some choices – for example at each cycle it can decide whether or not to

execute an action and which actions to execute (concurrently). One possible sequence is

the following.

acts1 = { }, S1 = S0, acts2 = {allocate(john, hamlet, 6), allocate(john, emma, 2)}
S2 = {available(hamlet, 5), available(emma, 1)}
acts3 = {process(john, hamlet), process(john, emma),

allocate(bob, emma, 1), order(emma, 20)}
S3 = {available(hamlet, 5), available(emma, 0), on order(emma)}
acts4 = {process(bob, emma)}, S4 = S3

acts5 = { }, S5 = S4

acts6 = {apologise(tom, emma)}, S6 = S5

Other outcomes and models are also possible and might be generated by the KELPS

OS. One such could issue an apology to John with respect to his first order instead

of processing it, also making the reactive rules true. We will see later how the ASP

translation facilitates specifying preferences between models that could, for example,

favour allocating and processing orders wherever possible, rather than issuing apologies.

2.1.4 KELPS reactivity

The reactive rules R in KELPS are implications and can, in principle, be satisfied (made

true) in one of three ways: (i) by ensuring their antecedents are false, (ii) by ensuring

their consequents are true, (iii) by ensuring their consequents become true whenever their

antecedents are true. We call these possibilities, respectively, pre-emptive, proactive and

reactive. For example, consider the second reactive rule in equation (2). This rule can

be satisfied reactively as just illustrated above, that is, by ordering 20 copies of items

whenever their number falls below 2 after an allocation. The rule can be satisfied proac-

tively by ordering 20 copies of all items at all times, thus ensuring that the consequent

of the rule is always true. The rule can be satisfied pre-emptively by ordering at least

2 copies of all items at all times, thus ensuring that the antecedent is never true. As

we will see next, KELPS OS is designed to generate only reactive models. This is also

the behaviour we will model in Section 3 in our mapping to Reactive ASP. But later

in Section 5 we also show how the other two types of behaviour can be achieved in

Reactive ASP.

In KELPS reactive (Herbrand) interpretations are those in which every agent generated

action is supported, in the sense that it originates from a reactive rule whose earlier parts

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 375

have already been made true. This is formally defined in Definition 2.3 and uses the notion

of sequencing from Definition 2.2.

Definition 2.2

Let earlier and later be conjunctions of conditions. Then the conjunction earlier∧ later
is said to respect a sequencing, denoted earlier < later if, and only if, there exists a

ground substitution θ for all time variables in earlier ∧ later such that:

• all temporal constraints in earlierθ ∧ laterθ are true in Aux, and
• all timestamps in conditions occurring in earlierθ are earlier than (<) all times-

tamps occurring in conditions in laterθ.

We can now define a reactive model.

Definition 2.3

Let < R, C,Aux > be a KELPS framework with initial state S0 and set ev∗ of times-

tamped events partitioned into external events ext∗ and actions acts∗. Let I be the

(Herbrand) interpretation I = S∗ ∪ ev∗ ∪ Aux and let Cpre be true in I. Then I is a

reactive interpretation if, and only if, for every action action ∈ I, there exists a rule

r ∈ R of the form antecedent→ [other∨ [earlier∧act∧ rest]], and there exists a ground

substitution θ such that rθ supports action, in the sense that all the following hold:

(i) action is actθ

(ii) (antecedentθ ∧ earlierθ) < (actθ ∧ restθ)

(iii) I satisfies antecedentθ ∧ earlierθ ∧ actθ

I is a reactive model of S∗ ∪ ev∗ ∪ Aux if, and only if, I is a reactive interpretation and

R is true in I.

Note that in Definition 2.3 condition (iii) allows restθ to be false in interpretation I,

although it must be possible for rest to become true in the future, in the sense of not

violating the temporal constraints. This is ensured by the sequencing in condition (ii).

The KELPS OS allows the agent to perform actions from a consequent more than once,

as long as the temporal constraints are respected. This is beneficial, for instance, when

an action succeeds, but subsequent ones do not, and the action needs to be repeated.

For example: Suppose a customer requests an item and the seller notifies the customer

of a delivery window (W), but the delivery cannot subsequently be performed. Then the

seller can do another notification, of a new delivery window, and make another attempt

at delivery. This is captured by the reactive rule

request(Cust, Item, T)→
notify window(Cust, Item,W, T1) ∧ deliver(Cust, Item,W, T2)

∧ T < T1 < T2

(9)

A slightly more involved example is the following: if a fluent is initiated to make the

pre-condition of a later action true, but an external event subsequently terminates that

fluent, the initiating action can be re-executed thus re-establishing the fluent (subject

to time constraints). Reactive models can also include unnecessary actions because of

this possible repeated execution. Such actions can often be prevented through the use of

integrity constraints in Cpre.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

376 K. Broda et al.

2.2 Answer set programming

ASP (Gelfond and Lifschitz 1988; Brewka et al . 2011; Gebser et al . 2013) is an approach

to declarative problem solving. A problem is expressed as a normal logic program with

some additional constructs – the mapping from KELPS presented in this paper makes

use of the additional ASP constructs of choice rules and constraints. In an answer set

program a rule with variables is viewed as a first order schema and represents the set

of ground instances of the rule that are formed by substituting ground terms for the

variables (called a grounding). The ground terms are the constants or functional terms

constructed from the signature of the program, and the grounding (even if infinite) must

be equivalent to a finite set of ground rules. In what follows, without loss of generality,

we consider a program to be a set of ground rules. A normal rule, r, over a set of atoms

A is of the form h : −b1, ..., bm, not bm+1, ..., not bn, where 0 ≤ m ≤ n, h and each bi,

0 ≤ i ≤ n, are atoms in A, and for any atom a, not a is default negation. A literal is

a or not a, where a is an atom in A. For a normal rule r: head(r) = {h}; body(r) =

{b1, . . . , bm, not bm+1, . . . , not bn}; body(r)+ = {b1, . . . , bm}; body(r)− = {bm+1, . . . , bn}.
atoms(r) = head(r) ∪ body(r)+ ∪ body(r)−. The informal meaning of a normal rule is

that if the body is true, then so is the head.

A choice rule is of the form l{h1, ..., hk}u : −b1, ..., bm, not bm+1, ..., not bn, where 0 ≤
m ≤ n, each hi and bi is an atom in A, and l and u are non-negative integers satisfying l ≤
u. For a choice rule r, head(r) = {h1, ..., hk}, body(r) = {b1, ..., bm, not bm+1, ..., not bn},
and r is true if between l and u atoms from the set {h1, ..., hk} in the head are true when

the body is true. An integrity constraint r is of the form : −b1, ..., bm, not bm+1, ..., not bn,

where 1 ≤ m ≤ n and each bi is an atom in A. For a constraint r, head(r) is empty

(implicitly false) and body(r) = {b1, ..., bm, not bm+1, ..., not bn}. (Note that for a choice

rule or constraint r, body(r)+, body(r)− and atoms(r) are defined as for a normal rule

r.) An integrity constraint r is satisfied if body(r) is false. By insisting that integrity

constraints are satisfied in an answer set, they effectively rule out answer sets for which

this is not the case. Furthermore, in the original (non-ground) program, every normal

rule, choice rule or constraint r must be safe; that is every variable which occurs in r

must occur at least once in body(r)+.

ASP also allows weak constraints, which are used to define a preference ordering over

the answer sets of a program. Usually, one looks for the best answer sets in the ordering.

A weak constraint is of the form :∼ l1, . . . , lm.[penalty@level, t1, . . . , tn], where each ti
is a term occurring in the set of body literals, li, level is a positive integer representing

a priority and penalty is an integer. In our programs we assume that the terms ti are

exactly the variables occurring in the body literals. With this (simplified) assumption,

for each answer set, and for each level, the penalty for each weak constraint instance

whose body is satisfied by the answer set is accumulated into a total W for that answer

set. This total is the penalty the answer set pays for making the body of the constraint

instances true at the given level. The returned answer sets are those with minimal overall

accumulated penalty value, where penalties at the highest level are considered first, and

lower level penalties are only considered if all higher level penalties for two answer sets

are equal. If maximal accumulated weight values are required, then the penalties would

be given as negative integers. An example is provided by the trading program introduced

in equation (2) – it is preferable to allocate an item if one is available than to issue an

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 377

apology. This can be captured by the following weak constraint:

:∼ apologise(Cust, Item, T).[1@1, Cust, Item, T] (10)

which states that a penalty of 1 is paid every time an apology is made.7 In this case

the optimal answer set would contain an instance of the atom allocate(Cust, Item,N, T)

(which has no penalty), where possible in ensuring a reactive rule is satisfied, rather than

a corresponding instance of apologise(Cust, Item, T).

The semantics of an ASP program P is given by its answer sets, which are defined in

terms of the reduct of P . We use the definition of reduct from Law et al . (2015), repeated

below, which is adequate for our purposes.

Definition 2.4

The reduct of a program P with respect to an interpretation I, denoted P [I], is con-

structed through the following 4 steps.

1. Remove any normal rule, choice rule, or constraint whose body contains not a for

some a ∈ I and remove any negative literals from the remaining rules or constraints.

2. For any constraint r replace r with ⊥ : -body(r)+ (⊥ is a new atom which cannot

appear in any answer set of P).

3. For any choice rule r , l{h1, ..., hk}u : -body(r)+, such that l ≤| I∩{h1, . . . , hk} |≤ u,

replace r with the set of rules {hi : -body(r)
+ | hi ∈ I ∩ {h1, . . . , hk}}.

4. For any remaining choice rule r, replace r with the constraint ⊥ : -body(r)+.

The Answer Sets of a program P are those interpretations I that are minimal models of

the reduct of P with respect to I.

In Section 4, where we give some formal results, we will make use of the notions of splitting

set and partial evaluation, which we recall next (taken from Lifschitz and Turner (1994)).

Definition 2.5

Let P be a ground normal program and U be a set of ground atoms. U is called a splitting

set of P if for every rule r ∈ P , if head(r) ∩ U �= ∅ then atoms(r) ⊆ U . The set of rules

r ∈ P such that atoms(r) ⊆ U is called the bottom of P w.r.t. U , denoted botU (P), and

the set topU (P) = P − botU (P) is called the top of P w.r.t. U .

Definition 2.6

Let U and X be sets of atoms and P be a ground normal program. Then the set of rules

evU (P,X) is obtained from P by partial evaluation as follows. For each rule r ∈ P such

that body+(r) ∩ U ⊆ X and body−(r) ∩ U is disjoint from X, then the rule r′, where
head(r′) = head(r), body+(r′) = body+(r) − U , and body−(r′) = body−(r) − U belongs

to evU (P,X).

The Splitting Set Theorem (Lifschitz and Turner 1994) allows for the answer set of a

locally stratified program to be constructed iteratively. The theorem states that I is the

answer set of P , split by U , iff it can be written as the union of X and Y , where X is

the answer set of botU (P) and Y is the answer set of evU (topU (P), X).

7 Later we use a reified notation for event occurrences.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

378 K. Broda et al.

In Section 4 the Splitting Set Theorem will only be applied to reducts of programs with

no constraints. In particular, these will be locally stratified programs with no negation,

and which therefore will have a unique answer set (Gelfond 2007). The set construction is

relatively simple and is described in Lemma 1 (adapted from Deane (2016) Lemma 5.17)

in order to introduce some notation. The idea is to compute the answer set in steps.

Beginning with the lowest strata 0, the atoms in strata 0 are used to split the program

then the answer set of the bottom part is used to partially evaluate the remaining strata.

The process is repeated using atoms in strata {0, 1} as a splitting set, continuing in a

similar way through all strata until the final strata is reached. The answer set is then the

union of the answer sets computed at each step.

Lemma 1

Let P be a ground locally stratified positive program with n + 1 strata labelled 0 . . . n,

where Rj is the set of rules in strata j and Hj is the set of atoms occurring in strata 0

to j, then its unique answer set A can be constructed iteratively using the Splitting Set

Theorem.

Proof

Let π0 = P . Then H0, the set of atoms in the rules in R0, splits π0 into botH0
(π0)

and topH0
(π0). Define π1 = evH0

(topH0
(π0), S0), where S0 is the answer set of R0 (=

botH0
(π0)). The lowest strata of π1 is strata 1 of π0, but with its rules partially eval-

uated by S0. By the stratification these rules are not dependent on atoms in higher

strata. More generally, given S0 is an answer set of botH0
(π0), for 1 ≤ j ≤ n we

can split πj−1 using Hj−1 into botHj−1
(πj−1) and topHj−1

(πj−1), and define πj =

evHj−1
(topHj−1

(πj−1), Sj−1), where Sj−1 is the answer set of botHj−1
(πj−1).

Then by the Splitting Set Theorem S = ∪nj=0Sj is the answer set of π0.

Controlling Grounding and Solving in clingo 4. In this work, we have used the clingo

implementation, version 4 (Gebser et al . 2019).8 The standard mode of computation in

ASP is the following (called single shot): first it generates a finite propositional represen-

tation of the program (called a grounding), and then it computes the answer sets of the

resulting propositional program. We assume this computational mode in the following

sections. However, it is not the only way KELPS could be simulated. There is an alterna-

tive incremental computation (called multi-shot) provided by clingo 4, which can also be

used. In this mode of operation, the program is structured into parametrisable subpro-

grams. The grounding and assembly of these subprograms are modular and controllable

using one of the embedded scripting languages.9 Control of which rules to include in the

subprogram assembly is achieved through the use of an external atom that can be set to

true or false before each iteration of the multi-shot solving process. In Section 7.2 we ex-

plain why we kept to the standard mode in our mapping. Nevertheless, for completeness

we outline the incremental mapping method in the Appendix.

8 The clingo 4 webpage (https://potassco.org/clingo/) states that clingo 4 adheres to the ASP
language standard (Calimeri et al . 2020). Since our use of ASP is compatible with the structures in
ASP-Core-2 our programs also adhere to the standard.

9 Either Python or Lua may be used; in our implementation we used Lua.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://potassco.org/clingo/
https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 379

3 Mapping KELPS to ASP

In this section we show how a KELPS program P can be systematically mapped into an

ASP program PA such that answer sets of PA correspond to reactive models of P . In

this way a notion of reactivity similar to that in KELPS is injected into ASP. We call

programs written in this way Reactive ASP. In order to obtain the correspondence we

define the new notion of an n-distant KELPS framework.

In this section it is convenient to associate a KELPS framework with a set of external

events E and we write a framework as < R, C,Aux >E .

Definition 3.1

A KELPS framework < R, C,Aux >E is called n-distant, for some n ≥ 0, if it satisfies

the following two properties:

(i) In every reactive rule r in R, for every timestamp parameter T ime that is a uni-

versally quantified time variable there is a condition T ime ≤ n in the antecedent

of r, and for every timestamp parameter T ime that is an existentially quantified

time variable in a disjunct in the consequent of r there is a condition T ime ≤ n

in that disjunct.

(ii) Any constant timestamp c in a reactive rule must satisfy c ≤ n.

(iii) There are no external events in E after time n; that is, ext∗i = { } for all i > n.

We denote an n-distant KELPS framework by < R, C,Aux, n >E . A reactive model of a

KELPS n-distant framework is called an n-distant KELPS reactive model (or n-distant

reactive model for short).

We assume in what follows that an n-distant KELPS framework can only consider ex-

ternal events that occur at times up to and including n and where it is clear we drop the

subscript E in the notation < R, C,Aux, n >E .

We can make several observations regarding n-distant KELPS frameworks:

• As a consequence of the properties in Definition 3.1 acts∗i = { } for all i > n and

for all i > n the non-timestamped set of states Si = Sn. That is, there are no state

changes after time n.

• A KELPS framework that satisfies conditions (ii) and (iii) can be transformed into

an n-distant KELPS framework Fn, for n ≥ 0, called its n-distant conversion, by

adding the temporal constraints for the time parameters to each of its reactive rules.

For example, let a KELPS framework contain the reactive rule true → a1(T1) ∧
a2(T2) ∧ T2 = T1 + 1, where a1 and a2 are events. Then the 2-distant conversion

will replace that rule with true→ a1(T1)∧a2(T2)∧T2 = T1+1∧T1 ≤ 2∧T2 ≤ 2.

• Let F be a KELPS framework and Fn be its n-distant conversion. Even with the

same set of external events, not every reactive model of F is a reactive model of Fn.

Consider for example the above reactive rule: true→ a1(T1)∧a2(T2)∧T2 = T1+1,

and suppose n = 2. The only reactive model of Fn is {a1(1), a2(2)}, whereas other
reactive models are possible for F ; for example {a1(3), a2(4)}, or more interestingly

{a1(1), a2(2), a1(2)}. The latter is possible in F because a1(2) is a supported action

in F (Definition 2.3), but it is not supported in F2 because the 2-distant framework

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

380 K. Broda et al.

will not allow the possibility of a2 to be executed at time 3, or more specifically

the condition 3 ≤ 2 will not be satisfiable. Note that this clearly shows that for

example F2 and F4, with the same set of external events, will not necessarily have

the same models. This holds in general for any Fn and Fm, for m �= n. Moreover,

if one has a model the other is not guaranteed to have one too.

• The converse property, that models of Fn are models of F , also does not hold in

general even if the external events remain the same. As an example, suppose F

consists of the reactive rule a(T1) ∧ p(T) ∧ T = T1 + 1 → a1(T2) ∧ T2 = T + 1,

where a and a1 are events and p is a fluent. The corresponding Fn would be

a(T1) ∧ p(T) ∧ T = T1 + 1 ∧ T1 ≤ n ∧ T ≤ n → a1(T2) ∧ T2 = T + 1 ∧ T2 ≤ n.

Now suppose also that n = 3, a(3) is an event that has occurred, p holds initially

and no event terminates p. The antecedent will be false because T1 + 1 = 4 and

4 �≤ n. Thus Fn has a reactive model with only one event a(3), but this is not a

model of F , as in F the antecedent is true and the consequent is false.

However, as the following Lemma 2 shows, if rules in F are restricted such that the

timestamp of every fluent in the antecedent (if any) is guaranteed to be ≤ the timestamp

of some event in the antecedent, then models of Fn are indeed models of F (again

assuming that the external events remain the same). Notice that the above counter-

example does not conform to this restriction.10

Lemma 2

Let F be a KELPS framework such that each rule conforms to the restriction that the

timestamp of every fluent in the antecedent (if any) is guaranteed to be ≤ the timestamp

of some event in the antecedent. Then for any n, if Fn is the n-distant conversion of F ,

and F and Fn have the same external events, then any n-distant reactive model of Fn is

also a reactive model of F .

Proof

Let In be a reactive model of Fn, and suppose for contradiction that In is not a reactive

model of F . There are two cases: In must either make a pre-condition false or make a

reactive rule false.

Case 1: If In makes a pre-condition c in F false, then for some instance of c it

makes the constraint body true. By assumption, any external event true in In is

timestamped ≤ n, and by construction of the rules in Fn any generated action will also

be timestamped ≤ n. Since pre-condition constraints include an event, the false instance

of c must be at a time T ≤ n, contradicting the fact that c is true in In.

Case 2: If In makes a rule R in F false, then for some instance r of R it makes

the antecedent true and the consequent false. First, note that all events in In will have

timestamps ≤ n. Now consider the antecedent of r. If it includes no fluents then if In

10 This restriction captures many cases of reactive rules when the reaction is primarily to an event, that
may have happened under certain circumstances (e.g. fluents holding before its occurrence). Violating
such a restriction can lead to issues of refraction (Berstel-Da Silva 2012). For example, the reactive
rule: enter-room(T) ∧ hot(T1) ∧ T1 > T → open-window(T2) ∧ T2 > T1 violates this restriction and
may lead to multiple attempts to open the window if the room remains hot after entering it.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 381

Fig. 2. Simple KELPS framework.

makes the antecedent true it would also make the antecedent of the rule true in the

n-distant conversion. On the other hand, if the antecedent includes a fluent, then by

assumption the fluent must be timestamped with a T ime that is ≤ the timestamp of

some event also in the antecedent. In this case, if the antecedent is true in F it would

also have been true in the n-distant version Fn (again by a similar argument to that in

Case 1) and hence the consequent would be true in Fn and also in F , contradicting the

assumption.

3.1 Basics of mapping KELPS to ASP

We next present the basics of the Reactive ASP mapping through a simple example,

elaborating where necessary.

The KELPS framework in Figure 2 captures a simple narrative for evacuation if an

alarm sounds. Initially at time 0 the door is locked. Then at time 2 an alarm sounds.

Evacuation is impossible while the door remains locked. The door is unlocked at time 4.

Consider the n-distant version of the above framework with n = 7. Definition 3.1 means

that for n = 7 this KELPS framework produces sequences of states and events incre-

mentally for each time point up to 7 taking into account the external events11, of which

one such sequence is: S0 = {door locked} = S1 = S2 = S3, S4 = S5 = S6 = S7 = {},
ev1 = ev3 = ev6 = ev7 = {}, ev2 = {alarm}, ev4 = {unlock}, ev5 = {evacuate}, and
furthermore R ∪ Cpre is true in the Herbrand model S∗ ∪ ev∗ ∪ Aux. Other 7-distant

models are also possible including an evacuate action at time 6 or time 7, and possibly

more than one evacuate action.

The mapping of the above KELPS program into Reactive ASP is shown in Figure 3.12

The ASP program uses a number of special predicates with particular meanings relevant

to the KELPS program. These are defined in Table 1 and further explained below.

We capture the n-distant notion of KELPS by adding an assertion time(0..n) to

the ASP program, here represented by time(0 ..7) (in Line 1), an ASP shorthand

for the facts time(0),. . . ,time(7). Auxiliary atoms are also mapped to themselves. In

what follows we have often included time atoms in the body of rules resulting from

the translation to ASP for two reasons. Firstly it makes for easy comparison with the

n-distant transformation, and secondly their inclusion can reduce the size of the ASP

program grounding, for instance in Cpre (Line 12). Unless they are required to guarantee

safeness of a rule we have otherwise minimised their use.

Observe that in our ASP translation we reify fluent atoms using the meta-predicate

holds and reify events using the meta-predicate happens. This has several advantages. It

allows to capture the event theory that has to be made explicit in Reactive ASP more

11 Remember that state Si results after occurrence of events evi.
12 From here onwards, we use Reactive ASP and ASP interchangeably.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

382 K. Broda et al.

Table 1. Predicates used in mapping KELPS to Reactive ASP

Predicate Meaning

time(X) X is a valid timestamp (0 ≤ X ≤ n for n-distant KELPS)
happens(X,Ts) Event X occurs in the timestamp interval [Ts− 1, T s)
holds(X,Ts) Fluent X holds at timestamp Ts
ant(ID,Args,Ts) Antecedent of rule with identifier ID and arguments Args becomes

true at timestamp Ts
cons(ID,Args,T,Ts) (A disjunct of the) Consequent of rule with identifier ID whose an-

tecedent with arguments Args became true at T becomes true at
timestamp Ts

broken(X,Ts) FluentX is terminated by some event that happened in the half-open
timestamp interval [Ts− 1, T s)

supported(X,Ts) Action X is supported at timestamp Ts
consTrue(ID,Args,Ts) A supplementary predicate expressing that the consequent of rule

with identifier ID whose antecedent with arguments Args became
true at Ts has become true at some time Ts1 (necessarily Ts1 > Ts)

Fig. 3. Reactive ASP mapping of example in Figure 2.

succinctly. It also allows to define general choice rules and the notion of supportedness

which also has to be made explicit in ASP.

In Figure 3 the initial state is captured by holds facts with timestamp 0 (in Line

2), while external events ext∗ = {alarm(2), unlock(4)} are modelled using the happens

meta-predicate (in Lines 3 and 4).

Causal Theory. In translating the KELPS framework into ASP we have kept as close to

the KELPS syntax as possible. For instance, the post-condition part of the causal theory,

Cpost, uses initiates and terminates facts, exactly as in KELPS. However, in ASP,

in case actions or fluents have arguments these need to be qualified. For instance, the

KELPS Cpost fact initiates(develop symptoms(P),ill(P)) would require in ASP the

atom person(P) to be added into the body, turning the fact into a clause.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 383

The pre-condition part of the causal theory, Cpre, uses constraints. In Figure 3, Line

12 states that the evacuate action cannot occur in the interval [Ts− 1, T s) if the door is

locked at time Ts−1. The event theory ET (equation (8)), that was an emergent property

of the KELPS OS, is included explicitly in the ASP ontology to allow reasoning about

fluents that are true in each cycle (Lines 13 to 15 in Figure 3). The predicate broken

is introduced to avoid a negated conjunctive condition in Line 14. A consequence of an

explicit event theory in Reactive ASP programs is that reasoning with frame axioms (via

Lines 14 and 15) is needed. This is something that KELPS was designed to avoid for

the sake of efficiency. In generating answer sets the ASP program will have to duplicate

fluents from state to state with increasing timestamps until the fluents are terminated

by events.

3.2 Mapping the reactive rules

Before explaining the way we map a reactive rule (see Lines 5 to 8 in Figure 3), we first

express the general case of a KELPS reactive rule, rewriting (1), to differentiate between

time variables and non-time variables, as follows:13

∀X∀T [antecedent(X ∪ T)→ ∃Y ∃T1consequent(X ′ ∪ T ′, Y ∪ T1)] (11)

where X (T) represents all the non-time (time) variables that occur in antecedent, and

Y (T1) is the set of all non-time (time) variables that occur only in consequent. X ′ and
T ′ represent subsets of X and T , respectively.

In the mapping to ASP a reactive rule is given an identifier ID and is represented by

several rules and an integrity constraint. One of these rules captures the antecedent (with

head using the ant predicate) and the others capture the consequent (with head using

the cons predicate). The body of the ant rule maps the antecedent of the reactive rule

identified by ID, while the bodies of the cons rules map the disjuncts in the consequent

of the reactive rule identified by ID. Assume that RID is a KELPS reactive rule of the

form given by (11). Then the antecedent and each disjunct of the consequent are mapped

to rules with the following structures:

ant(ID,(X ′ ∪ T ′),Ts):-antecedent(X ∪ T),max(T,Ts),time(Ts).

cons(ID,(X ′ ∪ T ′),Time,Ts):-ant(ID,(X ′ ∪ T ′),Time),
consequenti(X ′ ∪ T ′, Y ∪ T1),max(T ′ ∪ T1, Ts), time(Ts).

(12)

The body conditions antecedent(X ∪ T) and consequenti(X ′ ∪ T ′, Y ∪ T1) represent the

conjunction of event, fluent, and auxiliary literals in the respective KELPS antecedent

and each disjunct consequenti of consequent. The condition ant in the definition of cons

ensures that the variables in the head of the rule are safe. More particularly, the rule ID,

X ′ ∪ T ′ and the ant timestamp Ts, combined, enables to identify each unique instance

of an antecedent having been satisfied and to identify a corresponding instance of cons.

The variables in X −X ′, and T − T ′ occur only in antecedent and are not required for

this identification. Moreover, avoiding their inclusion simplifies the grounding of the ASP

program. The timestamp Ts represents the time at which the head atom of either rule

13 We replace any time constant k in a reactive rule with a new variable T and add T = k to the conjunct
in which k appears.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

384 K. Broda et al.

becomes true; note that the ant timestamp is represented by the Time variable in the

cons rule. So for ant, Ts is the maximum of all antecedent time variables in T , and for

cons, Ts is the maximum of all time parameters occurring in consequenti, that is, the

maximum of the times in T ′∪T1. Note that the combination of max and time conditions

achieves the correspondence to n-distant KELPS ensuring that all time parameters are

constrained to be ≤ n.

In practice, to implement the max atom in (12), one or more linked atoms using

the auxiliary predicate max/3, which holds if the third argument is the greater of the

first two arguments, are used. Moreover, the max function is needed only when the time

variables in antecedent or consequent are not totally ordered. This is why it is not needed

in Figure 3. For an example when max is necessary, consider the following reactive rule

that states if event occurs, then the agent must perform action1 and action2 (in any order

and possibly concurrently): event(T)→ action1(T1)∧ action2(T2)∧ T < T1 ∧ T < T2. In

ASP, assuming we give the rule an ID = 1, the consequent part is represented as:

cons(1,(T),T,Ts):-ant(1,(T),T),happens(action1,T1),happens(action2,T2),

T<T1,T<T2,max(T1,T2,Ts),time(Ts).

For disjunctive consequents, we define cons separately for each disjunct; that is, there

is a cons/4 rule for each course of action the agent could take. For example the disjunctive

reactive rule in (2) is mapped as:

ant(1,(Cust,Item,Ts),Ts):-happens(request(Cust,Item),Ts),time(Ts).

cons(1,(Cust,Item,T),T,Ts):-ant(1,(Cust,Item,T),T),

holds(available(Item,N),T1),happens(allocate(Cust,Item,N),T2),

T2=T1+1,happens(process(Cust,Item),Ts),T<T2,T2<Ts,Ts<T+4,time(Ts).

cons(1,(Cust,Item,T),T,Ts):-ant(1,(Cust,Item,T),T),

happens(apologise(Cust,Item),Ts),Ts=T+4,time(Ts).

The generic constraint equation (13) enforces all reactive rules:

:-ant(ID,Args,Ts),not consTrue(ID,Args,Ts),time(Ts).

consTrue(ID,Args,Ts):-cons(ID,Args,Ts,Ts1),time(Ts1).
(13)

The variable Ts represents the time at which the antecedent becomes true, and the

last argument of cons represents an existentially quantified timestamp Ts1 when the

consequent becomes true (for example Ts and Ts1 correspond, respectively, to T and T1

in the KELPS reactive rule of Figure 2). The constraint ensures all answer sets possess

the property that there is at least one instance of cons(ID,Args,Ts,Ts1) for every instance

of ant(ID,Args,Ts).

Note that we do not try to map a reactive rule in R directly as an ASP normal rule

for several reasons:

• any ASP rule of the form consequent(X,Y)← antecedent(X) would mis-interpret

the quantification of Y as universal, whereas it is existential in R;14
• the consequent is, in general, disjunctive;

• the consequent may contain fluents. The reactive rules in KELPS are goals to

be satisfied – they are not used to directly allow inference of fluents. There is a

14 It would also be “unsafe”, because the variables in Y do not appear in any positive body literals.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 385

structure to KELPS programs whereby the truth of fluents is affected only through

events; and

• we would like to capture the reactivity of KELPS (as given in Definition 2.3). The

representation of KELPS reactive rules by the separation into ant and cons and a

generic constraint makes this possible.

3.3 Mapping supportedness

Recall that the KELPS OS produces reactive models, in which the agent responds to

triggers but does not behave proactively or pre-emptively. Reactivity is an emergent

property of the KELPS OS, but in ASP it has to be stipulated explicitly in the program.

In the case of the example in Figure 2 we determine from R that the agent should

perform the action evacuate at some time T1 > T if the rule antecedent (alarm) has

occurred by time T . As seen in Line 10 of the program in Figure 3 we express this using

a meta-predicate supported/2. This stipulates that action evacuate is supported any

time (within the n-distance) after the antecedent of the reactive rule with ID=1 becomes

true. To achieve in ASP the effect of the KELPS abductive generation of actions to make

the reactive rules true, we use a choice rule as seen in Line 9, which specifies that any

action that is supported at time Ts may happen at time Ts, or not, and ensures that

only supported actions can be added to the answer sets.15

More generally, according to Definition 2.3, an action act can only be performed if

there exists (an instance of) a reactive rule in the form antecedent→ [other ∨ [earlier ∧
act∧ rest]], where antecedent and earlier are already true, and there is enough time for

rest to become true in the future. The “future” in an n-distant reactive model is capped

by the value of n. To model this we define supported/2 for every act in a reactive rule

of the form antecedent → [other ∨ [earlier ∧ act ∧ rest]]. The head atom contains the

act, and the body contains the conjuncts of antecedent and earlier. For the rest, we

check there is a future time when rest can be satisfied without violating the temporal

constraints.

The general schema of a supported/2 rule is:

supported(Act,Ts):-ant(ID,(X ′ ∪ T ′),Ts1),earlier(X ′, Y , T ′
1,Ts2),Ts1<=Ts2,

Ts2<Ts, sat rest time(T ′, T ′
1, T

′
2,Ts), time(Ts),time(Ts2), time(T ′

2).
(14)

where earlier(X ′∪Y ∪T ′
1,Ts2) represents the conjunction of the event and fluent literals

which must be satisfied before Act and their temporal constraints, T ′
1 represents the set

of time variables belonging to these events and fluents together with some of the times in

T ′, and Ts2 represents the latest of these time variables.16 The predicate sat rest time

represents the conditions under which it will be possible for the rest of that disjunct

of the consequent of the rule to be satisfied, without violating time constraints; these

conditions may take into account the antecedent time variables (T ′), the time variables

in T ′
1 and the time variables in T ′

2. The latter are time variables occurring in rest but

15 Without the explicit condition supported ASP would generate arbitrary actions with no relationship
to the reactive rule.

16 The atom time(T ′
2) is shorthand for a requirement of all variables in T ′

2 to be less than or equal to
the maximum time n.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

386 K. Broda et al.

not elsewhere in the reactive rule. The action Act is supported at time Ts only if all

these constraints are satisfiable.17 Note that all constraints in an n-distant model must

be satisfied for times ≤ n, the upper bound.

To illustrate the supported predicate, consider again reactive rule (2):

R: request(Cust, Item, T)→
[(avail(Item,N, T1) ∧ allocate(Cust, Item,N, T2) ∧ T2 = T1 + 1

∧process(Cust, Item, T3) ∧ T < T2 < T3 < T + 4)

∨(apologise(Cust, Item, T4) ∧ T4 = T + 4)]

The rule includes three different actions, allocate, process, apologise, for each of which

there is a supported/2 definition in Reactive ASP:

supported(allocate(Cust,Item,N),Ts):-ant(1,(Cust,Item,T),T),T<Ts,

holds(available(Item,N),Ts-1),Ts<T2,T2<T+4,time(T2),time(Ts).

supported(process(Cust,Item),Ts):-ant(1,(Cust,Item,T),T),

holds(available(Item,N),T1-1),happens(allocate(Cust,Item,N),T1),

T<T1,T1<Ts,time(T1),Ts<T+4,time(Ts).

supported(apologise(Cust,Item),Ts):-ant(1,(Cust,Item,T),T),

Ts=T+4,time(Ts).

The action allocate(Customer,Item,N) is supported at time Ts if the rule antecedent is

true, the earlier conditions of the relevant disjunct of the consequent are true, and there

exists a time T2 after Ts which is also before T +4 (i.e. when the order can be processed).

The last two time constraints constitute the test for sat rest time in the schema in (14).

A case where this would not be satisfiable is at timestamp Ts=T + 3, where T is the

time at which the antecedent is satisfied. Likewise, the action process(Cust,Item) is

supported at time Ts if the rule antecedent is true, the earlier conditions of the relevant

disjunct of the consequent are true, including the allocation of the item, provided that

Ts < T+4 and Ts is within the time bound. Similarly, the agent may apologise to the

customer if the antecedent is true and four cycles have elapsed.

3.4 Summary

We summarise the mapping of an n-distant KELPS framework < R, C,Aux, n > into

Reactive ASP in Table 2, in which for each item number, it first shows the KELPS

feature and its representation in KELPS, and then shows the ASP representation. As

can be seen, parts of Reactive ASP rules are identical, or almost identical, to KELPS

but for the reified syntax in ASP (items 2, 3, 4, 5, 6). There are two major differences

evident between the two paradigms: the mapping of the implicit concepts and properties

of the OS of KELPS into explicit program rules in ASP (items 9, 10, 11); the map-

ping of reactive rules, which are conceptually goals in KELPS and become constraints

in ASP (item 8). Note also that the n-distance constraints of n-distant KELPS are

mapped into a program rule (item 1), and the addition of time conditions in items 8,

10 and 11.

The translation of KELPS to ASP is as elaboration tolerant (McCarthy 1998) as the

original KELPS. In particular, the normal rules defining ant and cons can fully capture

17 Note that T ′ includes the time at which the antecedent was satisfied (Ts1) and T ′
1 includes Ts2. Also

there is no need to specify time(Ts1) since Ts1 is constrained by the ant atom.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 387

Table 2. Mapping details of KELPS to Reactive ASP

1 n-distance Temporal constraints requiring all time parameters to be ≤ n
Replace the explicit temporal constraints in reactive rules with explicit
time atoms and add a time range declaration time(0..n). Add explicit time atoms to
ASP parts dealing with (supported) actions and event theory - see items 9, 10, 11 below.

2 Aux A set of facts
Identical non-temporal facts in ASP syntax, rely on ASP built-ins for temporal facts

3 Time-stamped events e(t1, . . . , tn, i)
happens(e(t1,...,tn),i)

4 Time-stamped fluents p(t1, . . . , tn, i)
holds(p(t1,...,tn),i)

5 Initial state fluents p(t1, ..., tn, 0)
holds(p(t1,...,tn),0)

6 Cpost facts initiates(e, p)/ terminates(e, p)
Identical ASP facts

7 Cpre constraints false← body(T, T + 1)
:-aspbody(Ts-1,Ts),time(Ts-1),time(Ts).
aspbody is body but with the ASP reified syntax for events and fluents

8 Reactive rules ∀X∀T [antecedent(X ∪ T)→∃Y ∃T1consequent(X ′ ∪ T ′, Y ∪ T1)]
Domain dependent part:

ant(ID,(X ′ ∪ T ′),Ts):-antecedent(X ∪ T),max(T ,Ts),time(Ts). (where X ′, T ′ are the

variables in X, T , respectively, in the antecedent, that also occur in the consequent.)

cons(ID,(X ′ ∪ T ′),Time,Ts):-ant(ID,(X ′ ∪ T ′),Time),
consequenti(X ′ ∪ T ′, Y ∪ T1),max(T ′ ∪ T1,Ts),time(Ts).

Domain independent part:
:-ant(ID,Args,Ts),not consTrue(ID,Args,Ts),time(Ts).

consTrue(ID,Args,Ts):-cons(ID,Args,Ts,Ts1),time(Ts1).

9 Event theory An emergent property of the OS, not part of the program
Explicitly part of the program
holds(P,Ts):-initiates(E,P),happens(E,Ts),time(Ts).

holds(P,Ts):-holds(P,Ts-1),not broken(P,Ts),time(Ts-1),time(Ts).

broken(P,Ts):-terminates(E,P),happens(E,Ts),time(Ts).

10 Supported actions An emergent property of the OS, not part of the program
Explicitly part of the program

supported(Act,Ts):-ant(ID,(X ′ ∪ T ′),Ts1),earlier(X ′, Y , T ′
1,Ts2),Ts1 <= Ts2,

Ts2<Ts,sat rest time(T ′, T ′
1, T

′
2,Ts),time(Ts),time(Ts2),time(T ′

2).

11 Abduction of
supported actions

Part of the OS, not part of the program

Explicitly part of the program
0{happens(Act,Ts)}1:-supported(Act,Ts),time(Ts),Ts>0.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

388 K. Broda et al.

any expression in the KELPS antecedents and consequents, and the shared parameters

between ant and cons ensure that the connection between antecedent and consequent of

reactive rules is preserved.

4 Formal results

In this section we show that the n-distant KELPS framework and its mapping to Reactive

ASP as defined in Section 3 compute the same reactive models. In particular, we show

that the mapping is sound and complete; that is, any answer set of the resulting ASP

program corresponds to an n-distant KELPS reactive model and any n-distant reactive

model corresponds to an answer set. We first focus on the soundness.

Definition 4.1

Let P be an n-distant KELPS framework < R, C,Aux, n >, with initial state S0 and

external events ext∗. Let PA be the mapping of P into Reactive ASP and M be an

answer set for PA. Based on M we define MKELPS as follows.18

Let S∗
i = {p(i) : holds(p, i) ∈M}, 0 ≤ i ≤ n,

act∗i = {e(i) : happens(e, i) ∈M and e(i) �∈ ext∗}, 1 ≤ i ≤ n,

Si = Sn, i > n, and act∗i = ∅, i > n.

Then MKELPS = S∗ ∪ ext∗ ∪ act∗ ∪ Aux, where

S∗ = S∗
0 ∪ S∗

1 ∪ . . . ∪ S∗
n ∪ S∗

n+1 ∪ . . . and act∗ = act∗1 ∪ act∗2 ∪ . . . ∪ act∗n.

We next show that MKELPS is an n-distant reactive model of P .

Theorem 4.1 (Soundness)

Let P , PA, M , and MKELPS be as defined in Definition 4.1. Then MKELPS is a reactive

model of P .

Proof

We need to show the following four properties:

(i) S0 = the initial state

Si+1 = succ(Si, evi+1), 0 ≤ i < n, where succ(Si, evi+1) =

(Si − {p : terminates(a, p) ∈ Cpost ∧ a ∈ evi+1}) ∪
{p : initiates(a, p) ∈ Cpost ∧ a ∈ evi+1}.

(ii) Cpre is true in MKELPS .

(iii) R is true in MKELPS .

(iv) Every action in act∗ is supported in the sense of Definition 2.3.

We recall that the inclusion in PA of the time atoms as conditions in Cpre and ET is

simply for safety and grounding. We show (i) - (iv) below:

(i) Note first that by definition S∗
0 is the initial timestamped state and hence S0 =

the initial state. Next, recall from Subsection 2.1.1 that events are assumed to

18 Recall that the facts in Aux are the same in both a KELPS program and the corresponding ASP
program and hence they will be a subset of PA. Note also that holds(p, i) is the reified form of the
(shortened) timestamped fluent atom p(i) (see Section 2.1.1) and happens(e, i) is the reified form of
the (shortened) timestamped event atom e(i).

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 389

occur independently, even if they occur at the same timestamp. In terms of the

vocabulary of the program PA, this property means

holds(P, T + 1)↔ (∃E(initiates(E,P) ∧ happens(E, T + 1) ∧ T + 1 ≤ n)

∨ (holds(P, T)∧
¬∃E(terminates(E,P) ∧ happens(E, T + 1) ∧ T + 1 ≤ n))

(15)

The property in equation (15) is included explicitly as part of PA (the event

theory ET) and is thus true in M and hence also in MKELPS , since the property

only refers to events and fluents in M .

(ii) The PA version of Cpre is true in M . The only predicates mentioned in that

version of Cpre are happens, holds, auxiliary and time predicates. MKELPS con-

tains exactly the same set of events as M , any fluents in a rule in Cpre have a

timestamp earlier than an event in that rule and no event occurs after time n.

Thus the KELPS Cpre (without a temporal constraint) is also true in MKELPS .

(iii) Consider a reactive rule r in P of the form shown in equation (11) (repeated

here)

∀X∀T [antecedent(X ∪ T)→ ∃Y ∃T1consequent(X ′ ∪ T ′, Y ∪ T1)]

and recall that if r has an ID=id it is mapped to the following in PA (equa-
tion (12) and the general reactive rule constraint equation (13)).

ant(id,(X ′ ∪ T ′),Ts):-antecedent(X ∪ T),max(T,Ts),time(Ts).

cons(id,(X ′ ∪ T ′),Time,Ts):-ant(id,X ′ ∪ T ′),Time),
consequenti(X ′ ∪ T ′, Y ∪ T1),max(T ′ ∪ T1, Ts), time(Ts).

:-ant(ID,Args,Ts),not consTrue(ID,Args,Ts),time(Ts).

consTrue(ID,Args,Ts):-cons(ID,Args,Ts,Ts1),time(Ts1).

Suppose for contradiction that r is false in MKELPS . Therefore, it must

be the case that for some X ∪ T and timestamp ts (ts ≤ n) such that

antecedent(X ∪ T) is true there is no Y and T1 at a timestamp ts1 (ts1

≤ n) for which consequent(X ′ ∪ T ′, Y ∪ T1) is true. Then by construction of

MKELPS from M and the above mapping, ant(id,args,ts) (where args=X ∪T)
is true in M , but cons(id,args,ts,Ts1) is not true in M for any Ts1. Conse-

quently, consTrue(id,args,ts) is not true in M , contradicting that the constraint

:-ant(ID,Args,Ts),not consTrue(ID,Args,Ts),time(Ts) is satisfied in M . There-

fore r is true in MKELPS .

(iv) Actions (i.e. happens atoms not related to external events) can be in M

only through instances of the rule 0{happens(Act,Ts)}1:-supported(Act,Ts),
time(Ts),Ts>0, hence actions Act at time Ts included in M must satisfy

supported(Act,Ts). Moreover, as argued earlier in Section 3.3, the definition of

supported in PA corresponds exactly to that in the KELPS framework, hence

the actions in act∗ of MKELPS are also supported.

Theorem 4.1 shows that answer sets of PA correspond to reactive models of the

n-distant KELPS framework P . In Theorem 4.2 we show that if P is an n-distant KELPS

framework and PA the corresponding ASP program, then if MP is an n-distant reactive

model of P there will be a corresponding answer set A of PA.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

390 K. Broda et al.

Theorem 4.2 (Completeness)

Let P be an n-distant KELPS framework < R, C,Aux, n > with initial state S0 and

external events ext∗, and PA be the Reactive ASP mapping of P . If MP is an n-distant

reactive model of P , then the program PA has an answer set M such that MKELPS =

MP .

Before giving the proof of Theorem 4.2 we define some notation.

Definition 4.2

Let P , PA, MP , and ext∗ be as given in the statement of the theorem and acts∗ be the

set of timestamped actions in MP . Then

– PAncc is the program consisting of the normal rules of PA, but neither the con-

straints nor the choice rule, augmented by the set of facts H = { happens(a,t) |
a(t) ∈ acts∗}.

– Ancc is the answer set of PAncc.
19

– For 0 ≤ i ≤ n, Fi is the set of fluents given by Fi = {p(i) : holds(p, i) ∈ Ancc}.
– PA− is the program PA without the constraints.

The proof of Theorem 4.2 has several steps that are outlined next.

Step 1: Note that PA includes happens facts corresponding to the external events

ext∗ of the KELPS program P . We construct from PA a (reduced) program

PAncc that excludes constraints and the choice rule, but includes the set H

of happens facts corresponding to the actions acts∗ in MP . We show that

PAncc is locally stratified by constructing a stratification (Gelfond 2007) and

therefore conclude it has a unique answer set, denoted Ancc.

Step 2: We show that the set of states of MP up to Sn and the set of fluents in the

answer set Ancc of PAncc (expressed through holds/2 atoms) are the same.

Step 3: We show that for every happens(a,t) fact in Ancc, where a is not an external

event, the fact supported(a,t) is also in Ancc.

Step 4: By considering the program PA−, derived from PAncc by reinstating the

choice rule and removing the happens facts in H, we show, through iterative

application of the Splitting Theorem as described in Lemma 1, that the answer

set of PAncc is an answer set of PA−.
Step 5: Finally, we show that the answer set of PAncc is an answer set of PA.

Proof

Step 1: We show that PAncc is locally stratified. Hence PAncc has a unique answer set

Ancc (Gelfond 2007). Later, in Step 4, this answer set will be constructed.

The stratification, given in Table 3, is based on the following observations. PAncc has

a finite grounding and the ground instances of its rules can be placed into strata based

on the timestamp argument Ts. The lowest stratum (denoted 0), includes atoms in Cpost

and Aux, together with time atoms. For each timestamp Ts ≥ 0 there are strata Ts-i,

Ts-ii and Ts-iii, which are ordered according to the value of Ts, such that each Ts-i is

19 In Step 1 we show Ancc exists and is unique.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 391

Table 3. Strata in Reactive ASP

Strata Rules

0 initiates, terminates, time and Aux facts
0-ii facts for holds at timestamp 0 (i.e. initial state)
0-iii rules for ant or cons at timestamp 0
Ts-i rules for broken, happens and supported at timestamp Ts, Ts > 0
Ts-ii rules for holds at timestamp Ts, Ts > 0
Ts-iii rules for ant and cons at timestamp Ts, Ts > 0
n rules for consTrue

in the stratum immediately preceding Ts-ii, each Ts-ii is in the stratum immediately

preceding Ts-iii, and stratum 0 is least in the order. (Note that happens and supported

atoms can only occur at timestamps > 0, so in fact there is no stratum labelled 0-i.)

There is also a strata n for all consTrue atoms. The strata are ordered (lowest to highest)

by 0 < 0-ii < 0-iii < 1-i < 1-ii < 1-iii < 2-i < . . . < n-i < n-ii < n-iii < n.20 It can be

checked that each ground rule instance only refers to positive body atoms in the same

or a lower stratum, and only refers to negative body atoms in a lower stratum.

Step 2: Lemma 3 shows that for 0 ≤ i ≤ n the state Si of the KELPS model MP and

the set of fluents holding at time i in the answer set Ancc are the same.

Lemma 3

Using notation in Definition 4.2, for each i, 0 ≤ i ≤ n, Fi = the state Si of MP .

Proof

Note first that by construction MP and Ancc have the same set of events, both user

actions and external events, the same initial state and the same definition of Cpost.

Initially, F0 = S0 by definition of MP and Ancc. Assume as inductive hypothesis (IH)

that Fi = Si, for some i, 0 ≤ i < n. We argue Fi+1 = Si+1. By Definition 2.1, Si+1 =

(Si−{p : terminates(e, p) ∈ Cpost∧ e ∈ evi+1})∪{p : initiates(e, p) ∈ Cpost∧ e ∈ evi+1}.
From the ET in PA (and thus in PAncc), and noting that time(i+1) and time(i) are

true, holds(p,i+1) is true if and only if ∃e: initiates(e,p) and happens(e,i+1) or

holds(p,i) and not (∃ e : terminates(e,p) and happens(e,i+1)). Thus, Fi+1 = {p :

holds(p,i+1)∈ Ancc} = {p : (∃e : initiates(e,p)∧happens(e,i+1)) ∨
(holds(p,i) ∧¬(∃e : terminates(e,p)∧happens(e,i+1)))}. By (IH) and because ET

and KELPS have the same CPost and same user actions and external events, Fi+1 =

{p : (∃e : initiates(e, p) ∧ e ∈ evi+1) ∨ (p(i) ∧ ¬(∃e : terminates(e, p) ∧ e ∈ evi+1))} =
Si+1.

Step 3: By the properties of an n-distant reactive KELPS model, it holds thatR∪C is true
in MP and every user action in MP is supported, satisfying conditions of Definition 2.3.

Furthermore, both the actions in H and external events are common to MP and Ancc,

by definition, respectively, of MP and PAncc, and, as shown in Lemma 3, the values of

fluents at each time point up to n will therefore be the same.

20 The final stratum n is so named as all consTrue atoms, regardless of their timestamp, can refer to
timestamped cons atoms with timestamps up to n.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

392 K. Broda et al.

By construction, because MP is an n-distant reactive model of KELPS, the maximum

time of occurrence of any happens fact in H is n. Partition the happens facts in H by

their time of occurrence and form a sequence of sets of actions. Denote by H(i) the set

of actions occurring at time i, that is, H(i) = {a : happens(a,i) ∈ H} and consider an

action u in H(i). We show that u is supported at time i, namely that supported(u,i) is

in Ancc. By definition of MP , all actions in acts∗ are supported, which by Definition 2.3

means there is a rule r and instance ru such that (i) the antecedent of ru occurs before

i, (ii) actions and fluents in some disjunct of the consequent of ru can be separated into

those that occur at times t1, where t1 < i, the instance of u at i, and those that should

occur at or after i, and (iii) that the temporal constraints for the the latter actions and

fluents are satisfiable.

As explained below equation (14), these conditions are captured in Reactive ASP, re-

spectively, by the conditions ant(ID,(X ′ ∪T ′),Ts1), earlier(X ′, Y , T ′
1,Ts2), Ts1<=Ts2,

Ts2<Ts, and sat rest time(T ′, T ′
1, T

′
2,Ts), where the relevant instantiation(s) would be

that ID is the identifier of rule r, Ts is i, earlier times t1 in T ′
1 are all less than Ts, and

times later than Ts are in the set T ′
2.

Step 4: Now consider the program PA−. By considering the reduct of PA− w.r.t the

interpretation Ancc, we next show that Ancc is an answer set of PA− by iteratively

applying the Splitting Set Theorem as described in Lemma 1.21 Since Ancc is the answer

set of PAncc, by Definition 2.4 the answer set of the reduct of PAncc w.r.t Ancc will be

Ancc. In Lemma 4 we show that the answer set of the reduct of PA− w.r.t. Ancc is also

Ancc by iteratively constructing the answer sets according to Lemma 1 to both reducts

and showing that they are the same.

Lemma 4

The answer set Ancc of PAncc is an answer set of PA−.

Proof

Consider the reducts of PAncc and PA− w.r.t. Ancc, the answer set of PAncc. First,

note that the PAncc and PA− are almost the same, differing only in the following way:

the rules with happens in the head related to actions are facts in PAncc and choice

rules in PA−. 22 Second, observe that the answer set Ancc will include all atoms of the

form happens(event,t) (where event may be an external event or a generated action),

that appear as facts in PAncc. These observations guarantee that the reducts of the two

programs will therefore differ in only one respect, namely the rules for happens atoms.

In the reduct of PAncc these are simply facts, whether event is an external event or an

action, whereas in the reduct of PA− they are either also facts for external events, or

ground rules of the form

happens(act,t):-supported(act,t),time(t),t>0. (16)

for those actions act and timestamps t where happens(act,t) is a fact in the reduct

of PAncc. These latter rules are derived from the choice rules in PA−, by item 3 of

21 In what follows we work with the grounding of PA− and PAncc.
22 Other rules with happens in the head, that is, external event happens, are facts in both PAncc and

PA−.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 393

Definition 2.4, given the observation above.23 The reduct of PA− can be stratified ac-

cording to the strata given in Table 3; in particular, the rules of the form in equation (16)

will be in the strata Ts-i for Ts = t, the same strata as the happens facts at time t

in PAncc. Therefore the iterative answer set construction of Lemma 1 can be applied to

both reducts in parallel.

Throughout the lemma we will use the following notation. We denote the programs cor-

responding to πj in Lemma 1 derived from the iterative splitting of the reducts of PAncc

and PA− by, respectively, Bj and Cj , where j is one of the strata in Table 3, and the

corresponding answer sets Sj of botHj
(πj) by ABj (answer set of botHj

(Bj)) and ACj (an-

swer set of botHj
(Cj)). Recall that by construction, πk = evHk−1

(topHk−1
(πk−1), Sk−1),

where, depending on the reduct πk−1 is either Bk−1 or Ck−1 and Sk−1 is either ABk−1

or ACk−1. Finally, when we refer to k as a stratum, we mean the set of rules in that

stratum (i.e. k = botHk
(πk)).

Let k be a stratum and assume as IH that for all preceding strata j < k the answer

sets ABj and ACj are identical. There are several cases depending on the type of strata

of k.

k = stratum 0: The strata in the two reducts are identical by construction and hence

the programs botH0
(B0) and botH0

(C0) (=k) will be the same. Hence the answer

sets AB0 and AC0 will also be the same. Note that after applying partial evaluation

to topH0
(B0) or topH0

(C0) all time atoms will be eliminated as time atoms occur

only positively in clauses in Reactive ASP. Moreover, in any clause in which a true

Aux atom occurs positively in topH0
(C0) or topH0

(B0) the atom will be removed

after partial evaluation, whereas if it occurs negatively the clause will be eliminated.

Similarly, in any clause in which an Aux atom that is not true occurs negatively in

topH0
(C0) or topH0

(B0) the atom will be removed after partial evaluation, whereas

if it occurs positively the clause will be eliminated. In particular, this means that in

program C1 = evH0
(topH0

(C0), AC0) the time atom and Aux atom t>0 will have

been eliminated from the clauses of the form given by equation (16), where t will be

a particular ground timestamp value24 because they are all true facts in botH0
(C0)

and hence will be in the answer set AC0.

k= stratum t-i: By hypothesis ABk−1 = ACk−1 and as noted above the difference in

the strata is only in the rules for happens. In the case of program Bk the answer set

ABk of botHk
(Bk) will include happens, supported and broken atoms at timestamp

t. The happens atoms come directly from the happens facts, and the other atoms

will be derived, through partial evaluation with answer sets of previous splits, from

rules where the body atoms are true in those answer sets. In the case of program Ck,

the supported and broken atoms at timestamp t in the answer set ACk of botHk
(Ck)

will similarly be derived through partial evaluation with answer sets of previous splits,

and the happens atoms will be derived for exactly those supported actions. Since, as

we have shown in Step 3, all such atoms are indeed supported, the answer set ACk

will include exactly the same happens atoms as ABk. Thus the answer sets ABk and

ACk are the same.

23 In KELPS there are no occurrences of negated happens literals in the antecedent or consequent of
rules, hence the application of item 1 of Definition 2.4 will yield the same results.

24 See explanation below equation (16).

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

394 K. Broda et al.

k = stratum t-ii or t-iii: Similar, but simpler, reasoning to the previous case allows

to conclude that the rules in botHk
(Bk) and botHk

(Ck) are the same because the rules

in strata t-ii or t-iii of the two reduct programs AB0 and AC0 are the same. Hence

the answer sets of strata k, ABk and ACk, are also the same.

k = stratum n: Arguing as in the previous cases, the answer sets ABk and ACk are

the same. That is, ABn = ACn. As this is the highest strata, there is no partial

evaluation to be made.

Finally, the answer sets of the two reducts w.r.t. Ancc, namely B0 (reduct of PAncc) and

C0 (reduct of PA−) are both equal to
⋃j=n

j=0 ABj =
⋃j=n

j=0 ACj , where j ranges over the

strata 0, 0-ii, 0-iii, 1-i, . . . , n-iii, n.

Step 5: Step 4 showed that Ancc is an answer set of PA−. Consider now program PA,

that is, by reinstating the constraints into PA−. If none of the constraints is violated

by Ancc then Ancc will be an answer set of PA. Suppose for contradiction that Ancc

is not an answer set of PA. This means that one or more of the constraints in PA

must have been violated (i.e. the respective constraint body is satisfied) by Ancc. There

are two categories of constraints in PA, the pre-conditions in Cpre and the reactive

rule constraint :- ant(ID,X,Ts),not consTrue(ID,X,Ts),time(Ts). There are two

cases.

Case 1: Ancc does not satisfy one of the constraints in Cpre. By Step 2, Ancc has

the same fluents as MP up to time n. Also, Ancc and MP have the same set of external

events and by construction the same set of actions (the set H). Thus if Ancc does not

satisfy a pre-condition constraint, nor will MP , contradicting that MP is a reactive

model of P . Moreover, for a constraint that inhibits co-occurrence of events, all the

events in the constraint have the same timestamp and if they all occur in Ancc, then

they all occur in MP . For a constraint that imposes a pre-condition on an event, because

the fluents in Cpre have timestamps earlier than an event in the same Cpre rule, the fact

that Ancc has states only up to n does not matter.

Case 2: Ancc does not satisfy the reactive rule constraint. That is, for some id, x

and t, ant(id,x,t) is true and consTrue(id,x,t) is false in Ancc. This means, by

the definition of consTrue that there can be no Ts1≥t in the range [0, . . . , n] such that

cons(id,x,t,Ts1) is true. That is, there is a reactive rule in P with its antecedent true

but for no time ≤ n can its consequent be made true. But that means there is a reactive

rule in P that is not true in MP , which is not the case.

5 Reactive ASP functionality beyond KELPS

In this section we describe how some features of ASP inherited by Reactive ASP can

be exploited to enhance its flexibility and functionality beyond those of KELPS. The

features we exploit are the model generation paradigm, weak constraints and the explicit

representation of choice. More specifically, model generation allows reasoning to take into

account any ramifications of actions (for prospective behaviour), in which Reactive ASP

can look ahead to reason about possible evolutions of its current state, thus informing

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 395

current decisions. Explicit choice and weak constraints allow to specify the type of model

(pre-emptive, proactive or reactive) preferred and to rule out unwanted models and rank

those models that are not ruled out. All of these new behaviours are possible because

reactive ASP generates complete answer sets, and thus complete courses of actions and

resulting fluents, up to a maximum time range n. In particular, we explain how to achieve

pre-emptive, proactive and prospective reasoning, and introduce a hybrid system that

combines the two frameworks of KELPS and ASP into one enhanced integrated frame-

work that uses the best features of both.

Reasoning with Priorities In KELPS all constraints are hard constraints and are used

only to express pre-conditions of actions and to restrict co-occurrences of events. But in

ASP constraints can be hard or soft (weak constraints) and can be used to express many

other features, including preferences.

One useful application of preferences would be where the consequent is disjunctive

and we would like to express preferences amongst the disjuncts. This can be achieved

systematically when mapping to ASP as follows: Suppose the disjuncts in KELPS are

written in order of preference from high to low. In the mapping to ASP, first give cons

atoms an additional argument representing the position of a disjunct in the consequent of

a rule; second, add the following generic weak constraint, which allows to prefer answer

sets that achieve the lowest possible indexed disjunct.

:∼cons(ID,I,Args,T,Ts).[1@I,ID,I,Args,T,Ts]

where the second argument of cons represents the position of the disjunct in the con-

sequent of the reactive rule. For instance, the head of the second (apologise) disjunct

in equation (2) might be written as the atom cons(1,2,(Cust,Item,T),T,Ts), where

T represents the timestamp of the associated request. In this case the weak constraint

ensures a preference for allocating items that are requested (I=1), if possible, rather than

apologising (I=2).

We briefly mention some other typical examples, based around the bookstore narrative

from Section 2, that demonstrate how constraints might be used to enhance decisions

in Reactive ASP. As another example of using a weak constraint, we might want to

prioritise allocation of items to a particular customer (say Tom) over any others in a

situation where two customers requested the same item at the same time. This could be

achieved by the constraint

:∼happens(request(tom,Item),T),happens(request(C,Item),T),C!=tom,
happens(allocate(tom,Item,),T2),happens(allocate(C,Item,),T1),

time(T),time(T2),time(T1),T1<T2.[1@1,T,T1,T2,Item,C]

which penalises allocating the Item to customer C before allocating to Tom. Another

example could be to prefer not to process more than one book at any time. This could

be expressed by25

:∼happens(process(C1,Item1),T),happens(process(C2,Item2),T),
time(T),Item1<Item2.[1@2,T,Item1,Item2,C1,C2]

25 For simplicity, we assume customers do not request a particular item more than once in the timescale
of the program.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

396 K. Broda et al.

One could even express a preference not to allocate items to the same customer within

(say) three time steps. Other kinds of preferences could include: allocate as early as

possible, or if an item requested by a customer is not in stock but is on order to be

re-stocked then schedule the response to the customer’s order as late as possible (to

avoid apologising unnecessarily). One could also consider more specific preferences, such

as the one above, preferring to allocate books one at a time, but within that preferring

to allocate children’s books as early as possible. This can be achieved by adding a second

weak constraint at level 1. For instance

:∼happens(request(C,Item),T1),child book(Item),
happens(allocate(C,Item,),T2),
time(T1),time(T2).[(T2-T1)@1,Item,T1,T2,C].

will aim to minimise the time difference between a request and allocation of a children’s

book.

In the next subsection we will show how to achieve pre-emptive, proactive and prospec-

tive behaviours in Reactive ASP.

5.1 Relaxing reactivity to provide a variety of other models

Recall that in KELPS the fact that all actions are supported is an emergent feature but

in Reactive ASP this has to be formalised explicitly in the program. Below we explain

how, by relaxing that actions be supported, a wider range of models can be generated by

Reactive ASP leading to either pre-emption of a reactive rule, or proactive behaviour to

satisfy a reactive rule. For instance, in case of an alarm in some building, the following

KELPS reactive rule will produce a reactive model including the evacuate action only if

no guard is present at the time of the alarm.

alarm(T1) ∧ ¬present guard(T1)
→ evacuate(T2) ∧ T1 + 1 < T2 ∧ T2 < T1 + 4

(17)

However, another possible model could be to pre-empt the alarm and send a guard to

the building even before any alarm, so evacuation would not be needed. On the other

hand, a proactive model might, as a precaution, evacuate a building even before any

alarm! A more practical example of proactive behaviour could be to buy a ticket in

advance of entering a bus to save time. Thus given the reactive rule enter bus(T) →
have ticket(T1)∧T ≤ T1∧T1 ≤ T +1 the ticket could be bought before entering the bus,

ensuring that the fluent have ticket holds when necessary. Neither of these behaviours

is possible in KELPS as they are not supported by earlier conditions in a reactive rule,

but by relaxing the supported condition for actions both behaviours can be achieved in

our Reactive ASP formalism.

Firstly, any action that can be either pre-emptive or proactive is defined by a clause

of the form action(act(X̄)):-body(X̄) where act names the action, and body(X̄)

represents a conjunction of auxiliary atoms used to ground X̄, the set of arguments (if

any) pertaining to that action.

Secondly, the choice rule is simplified to enable actions of this kind to take place at any

time T , whether supported or not: 0{happens(Act,Ts)}1:-action(Act),time(Ts),Ts>1.
Actions that cannot be proactive or pre-emptive (i.e. are not defined by an action clause)

are enabled, as before, by use of the supported predicate. As an example, in Figure 4 we

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 397

Fig. 4. Security guard proactive and pre-emptive behaviour.

illustrate how we can make actions send guard and evacuate potentially proactive and

pre-emptive. The figure also includes the ASP version of reactive rule (17).26 This ASP

program exhibits (or results in) several possible distinguishable behaviours via the models

it generates. In some models a guard is sent at or before time 3 (pre-emptive behaviour);

in some a guard is not sent and evacuation takes place at time 5 or 6 (reactive behaviour);

and in others evacuation takes place at times from time 1 onwards (proactive behaviour).

In the pre-emptive models the sending of the guard causes the antecedent condi-

tion not holds(present guard,Ts) to be false by causing holds(present guard,Ts) and

avoiding evacuation. To prefer such behaviour a weak constraint can be used, such as

the following, which minimises the number of evacuate actions, the best being zero:

:∼happens(evacuate,T),time(T).[1@2,T]. By making the priority level 2, this constraint

will be minimised before any at a lower priority. Line 10 ensures that multiple occurrences

of sending a guard are avoided, as a guard is sent only if one is not already present. Alter-

natively, the weak constraint :∼happens(send guard,T),time(T).[1@1,T] could be added

to minimise the occurrences of the sending of guards (in addition to minimising the num-

ber of evacuates). This constraint can also be used on its own to minimise occurrences

of sending a guard if proactive behaviour is preferred.

5.2 Prospective reasoning

KELPS agents are capable of non-deterministic self-evolution. At any given time, they

may have several different possible future trajectories depending on what actions they

take, when those actions are taken and what external situations arise. This provides

an opportunity to explore what Pereira and others (Pereira and Lopes 2009; Anh and

Pereira 2011) call Prospection or Evolution Prospection. The challenge stated in Pereira

and Lopes (2009) was “how to allow such evolving agents to be able to look ahead,

prospectively, into such hypothetical futures, in order to determine the best courses of

evolution from their own present, and thence to prefer amongst them”.

The advantage of Reactive ASP compared to the original KELPS is that it naturally

incorporates Prospective reasoning and no further machinery is required. In particular,

Recative ASP determines every possible course of actions and the corresponding set of

ramifications (within a given time frame) and thus allows n-distant Prospective KELPS.

26 If evacuate is not allowed to be proactive then the second fact of Line 2 would be omitted and
appropriate clauses (similar to those in Lines 9-10 of Figure 3) would be needed.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

398 K. Broda et al.

Fig. 5. Example for prospection.

It can also easily accommodate constraints and expected future events within that time

frame. Thus each answer set would represent the agent’s possible future evolution within

a fixed time frame of n cycles, with expected external scenarios. Furthermore, we can

express “a priori” preferences for certain outcomes using strong and weak constraints,

allowing to filter action plans and to highlight others in order of optimality. We will

illustrate some of these features by an example.

Consider the following scenario related to decisions about what to drink and when to

go to bed. There are three reactive rules: (i) if the agent drinks wine they must retire (to

bed) within one cycle, due to drowsiness; (ii) if the sun sets the agent must also retire,

but within three cycles; and (iii) if the agent is thirsty, they must have a drink (coffee,

wine or water) before three cycles. Furthermore, there are some action pre-conditions:

the agent cannot perform any action while asleep, nor, if the agent feels energetic, can

they go to bed. Finally, there are some post-conditions: drinking coffee makes the agent

energetic and going to bed induces sleep. Ideally, the agent wants to go to bed as late

as possible. The scenario is expressed in the KELPS framework as shown in Figure 5.27

Note that the above preference cannot be represented in KELPS.

The corresponding mapping to Reactive ASP is standard and is in Figure A1 (in the

Appendix). Imagine now that S0 = {} and ext∗ = {thirsty(1)}. So the agent must drink

something and could choose coffee, wine, or water. Suppose we also know that sunset

will occur at time 2. Then we can extend ext∗ = {thirsty(1), sunset(2)} and look ahead

beyond the first 2 cycles, say up to time 5. Given the preference of going to bed as late

as possible, the latest bedtime is time 5, after the sunset that occurs at time 2. As soon

as the agent goes to bed it falls asleep and so can no longer drink. Thus the drinking

can happen at the latest by time 5; in fact the latest is time 3 as it must be before

time 4 according to the third reactive rule. Depending on which drink is chosen, there

are various consequences. If coffee is chosen as the drink at time 2 or 3, then due to

becoming energetic the agent will not be able to go to bed in time (and there will be no

model). If wine is chosen at time 2 or 3, then the agent will have to go to bed at time 3

or 4, respectively, because of the first reactive rule. If water is chosen at time 2 or 3 then

the agent need not go to bed until time 5. Of course, it is also possible to have multiple

drinks, with similar consequences as above.

Reactive ASP provides all this information in the answer sets it produces, and the

agent can then choose the best drinking option in the light of this. It is also possible

27 In order to avoid clutter we omit the temporal constraints related to n-distance, but will assume they
are present for our choice of n.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 399

Fig. 6. HKA: a combined architecture for reactive and prospective control.

to express preferences a priori, for example to minimise the number of drinks, or the

aforementioned preference of going to bed as late as possible. These are achieved by

weak constraints as in Lines 17 and 18 in Figure A1, repeated here.

17. :∼happens(drink(L),T),isDrink(L),time(T).[1@1,T,L]
18. :∼happens(gotoBed,T),time(T).[-T@2,T]

6 An integrated KELPS and reactive ASP framework

The discussions in the paper up to this point have highlighted the strengths of each of the

two paradigms of Reactive ASP and KELPS. The major strength of Reactive ASP is that

it easily allows a variety of reasoning behaviours and functionalities, such as prospective

reasoning and reasoning with preferences via weak constraints. On the other hand major

strengths of the KELPS OS are that it updates the state destructively and incremen-

tally simplifies the reactive rules. Thus it does not reason with frame axioms, nor does it

need to access past information about states or events. These respective strengths sug-

gest a potential new architecture for reactive, prospective agents that combines KELPS

and Reactive ASP. Such an architecture is summarised in Figure 6. The distribution of

the work between the two paradigms in this architecture is informed by their relative

strengths. We describe the architecture, henceforth abbreviated to HKA, and illustrate

its behaviour through two examples.

In HKA the KELPS OS retains from Section 2 the parts of updating the state and

triggering and simplifying the reactive rules in the light of changes to states and events,

whereas the part of generation of plans to solve the goals is passed on to (prospective)

Reactive ASP.

That is, in the KELPS module, at time T , the state is updated according to the events

executed during the interval [T − 1, T). Then the reactive rules are processed given the

updated state at time T . The KELPS module then passes to Reactive ASP the updated

state and all the processed reactive rules. Furthermore, if there happen to be anticipated

external events in the future, these are also input to the Reactive ASP module. This

module will have a time frame starting at T and ending at T + k (time(T..T+k)), for

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

400 K. Broda et al.

Fig. 7. First Example for HKA interaction (a1− a8 are events and p and q are fluents).

some chosen k, meaning that the search can consider up to k-distant models beyond the

current time T . The value of k can vary in different iterations of the cycle if required.

The current state is modelled by holds(Args,T) and the future anticipated events at

some time t>0 as happens(Args,t):-time(t). Since KELPS has processed all previous

occurred events, there is no need for ASP to start its time range from earlier than T. We

can illustrate this with a simple example. Let

a(T) ∧ b(T + 3)→ c(T1) ∧ T + 3 < T1 ∧ T1 < T + 6

be a reactive rule in KELPS, where a, b and c are events, and suppose that a occurs at time

2. KELPS will partially process this rule to give a rule b(5)→ c(T1) ∧ 5 < T1 ∧ T1 < 8.

It is this rule that is mapped into Reactive ASP for the time interval starting at time 2.

The rest of the Reactive ASP program, such as the causal theory and event theory

remain as described in Section 3. Weak constraints formalising priorities and preferences

can also be changed if desired with different iterations of the cycle.

The output from running the Reactive ASP part of HKA will be a set of optimal

answer sets, according to the weak constraints, and looking forward in time from T to

T +k. From these answer sets and taking account of the external events in the next time

interval [T,T+1), the best set of actions in this time interval to execute can be chosen.

These are executed and combined with the external events and fed into the KELPS

module for the next iteration at time T + 1.

Note that in HKA the ASP program has no need to reason about the past. In particular

it will never need to instantiate the frame axiom in the event theory with time prior to

the current cycle time, that is, prior to T in its time frame of time(T..T+k). It also

does not need to reason with past events and states in respect to the reactive rules.

We consider some simple examples of how this interaction works. For the first example,

shown in Figure 7, we just describe the results.

Informally, from Figure 7 it can be seen that to satisfy rule R1 either a3 or a4 can

occur at any time in the range [2, . . . , 4], and to satisfy rule R2 either a6 may occur at

any time in the range [2, . . . , 9], or a7 can occur, but at or after time 6, after q is initiated

by event a8. Suppose now that it is also the case that a7 is preferred to a6 in order to

satisfy rule R2. It can be seen that in this situation rule R1 can only be satisfied by

a4, because a3 terminates the pre-condition p of a7 before a7 can be usefully executed

(because q would not be true). But after a4, a7 can occur at times 6, 7, 8 or 9. When

translated into ASP at time 1 and run prospectively up to time 10, ASP will return as

optimal answer sets the above results. The optimal answer sets are returned to KELPS,

and KELPS makes a choice about the next action. It is worth noting that not only can

KELPS by itself not deal with preferences, it cannot deal with foreknowledge of events

such as a8 in the example when reasoning at earlier times.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 401

Fig. 8. Second Example for HKA interaction (here a and a1− a3 are events).

Suppose an additional rule R3 : a7(T)→ a9(T1)∧T1 = T +1 is added to the example

of Figure 7, and that it is also desired for a9 to be executed as late as possible. Then in

a time frame extending from 1 to 10, a4 can occur as before and a7 should be executed

at time 9, the latest time it can be to satisfy rule R2, to allow a9 to occur at time 10

and rule R3 to be satisfied.

In the next example, shown in Figure 8, we illustrate the evolution of the ASP transla-

tion through several cycles. By way of illustration we assume that KELPS requests ASP

to consider a time frame of 3 steps beyond the current time (i.e. k=3).

The prospective answer set from ASP in the time frame {1, . . . , 4} will suggest to

execute a1 at time 2 or at time 3, allowing for a2 to be executed at time 3 or at time

4, respectively. Suppose that indeed a1(2) is executed, and furthermore foreknowledge

of the external event a3(3) becomes available. Then it will become impossible to execute

a2(3) because it would violate Cpre. The only course of action to satisfy the reactive rule

is for a1 to be executed again.28 Assuming that the time frame has now increased to

{2, . . . , 5}, then ASP will recommend re-executing a1 at time 3 (or time 4) to allow for

a2 to be executed at time 4 (or time 5) in order to satisfy the reactive rule.

The operation of HKA relies on the following key observation: at each step of KELPS

processing the reactive rules, the causal theory and the current state form a KELPS

framework. In effect, the current state ST becomes the initial state for the next cycle (in

Figure 6) and the conversion to k-distant KELPS and to Reactive ASP can be carried

out as described in Section 3. In the sequel we will use the notation KELPS(T ;T + k)

to refer to the k-distant KELPS starting at time T . In Figure 9 we show the ASP rules

resulting from mapping KELPS(T ;T + 3) for Figure 8 at times T = 0, 1, 2, 3. In this

figure the numbering notation x.y indicates that x is the timestamp of the start of the

time frame and y is an identifier for a reactive ASP rule. Thus rules with x = 0 are

the mapping of KELPS(0; 3) into Reactive ASP. Rules with x > 0 are the mapping

of KELPS(x;x + 3). For example, at time 2 rule 2.3 is the result of processing the

consequent of R due to the event a1(2), the antecedent of R having already become true

because of the earlier event a(1). Original rules from previous timestamps are carried

forward, unless otherwise indicated.

By way of further illustration we highlight some of the results of these mappings. The

rules 0.1 to 0.9 (called set 0) are a mapping of the frameworkKELPS(0; 3) from Figure 8.

These rules, except 0.1 and 0.7, are maintained in subsequent frameworks. For example

the constraints 0.8 and 0.6 are present in set 2, that maps KELPS(2; 5). The mapping of

framework KELPS(1; 4) (set 1) includes in addition the rules 1.1, 1.3-1.5, 1.7, and 1.8.

The rules for time (e.g. rules 1.1) replace the old ones (e.g. 0.1) because of the shifting

of the time window, that is rule time(0..k) is replaced by rule time(1..1+k). The new

choice rule 1.7 replaces the old one (0.7) for the same reason, increasing the bound on Ts

28 Note this is possible because a1 in the consequence of the rule remains supported, and ASP can still
generate it through the choice rule.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

402 K. Broda et al.

Fig. 9. In the numbering notation x.y, x is the timestamp of the start of the time frame and y
is an identifier for a reactive ASP rule. Thus rules with x = 0 are the mapping of

KELPS(0; 3) into Reactive ASP. Rules with x > 0 are the mapping of KELPS(x;x+ 3).

to the new start time of the framework. Similarly for transitions between times 1 and 2,

etc. Rule 1.3 is the mapping of the processing by KELPS of rule R after the event a(1),

which makes the antecedent of the rule true at time 1, leaving the instantiated consequent

a1(T1) ∧ 1 < T1 ∧ a2(T2) ∧ T2 = T1 + 1. The occurrence of event a(1) also results in

the new supported rules 1.4 and 1.5. Since the antecedent of the reactive rule has been

made true at time 1 the reactive rule constraint for that instance of the rule becomes

the constraint 1.8 :-not consTrue(1,(1),1) indicating that rule R has not yet been

satisfied. Similar explanations for the rules in set 2 and set 3 can be given. The rules in

set 3 are the mapping of KELPS(3; 6), after action a1(3) and event a3(3). Notice also,

that although some rule may have been satisfied, while actions in its consequent remain

supported, ASP will still be able to generate those actions through the choice rule. This

is why action a1(3) can occur as it is still supported (see rule 1.4).

We end this section by discussing the relationship between HKA and KELPS. First

we define some terminology to use in our discussion.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 403

Fig. 10. Relationship between KELPS(T ;T + k) and ASP(T ;T + k).

Definition 6.1

Let T ≥ 0 be a time and KELPS(T ;T + k) = < RT , C,Aux, k > be a k-distant KELPS

framework starting at time T with state ST . Let ev
∗
T+1 be events that take place during

the time interval [T, T + 1). Let these events transform the KELPS state ST to ST+1

and process the reactive rules RT to RT+1. We denote by KELPS(T + 1;T + 1 + k) =

< RT+1, C,Aux, k + 1 >, the k-distant KELPS framework starting at time T + 1 with

state ST+1. We denote the mapping of KELPS(T ;T + k) into ASP by ASP (T ;T + k)

and the mapping ot KELPS(T + 1;T + 1 + k) into ASP by ASP (T + 1;T + 1 + k).

We focus the discussion of the relationship between HKA and KELPS on the commu-

tative diagram shown in Figure 10. In that figure the HKA approach we have described so

far involves the mapping of KELPS(T ;T +k) to ASP (T ;T +k) (arrow m1), processing

of the rules in KELPS(T ;T +k) in the light of events that take place during the time in-

terval [T ;T+1) and the resulting updated state to obtainKELPS(T+1;T+1+k) (arrow

m2), and a mapping of this to ASP (T +1;T +1+ k) (arrow m3). In addition, of course,

as indicated in Figure 6, ASP (T ;T + k) feeds back to KELPS(T ;T + k) information

about computed answer sets, as does ASP (T +1;T +1+k) to KELPS(T +1;T +1+k).

It is worth noting that the soundness and completeness results of Section 4 naturally

extend to the mappings in m1 and m3, based on the aforementioned key observation

that at each step of KELPS processing the reactive rules, the causal theory and the

current state form a KELPS framework. But as can be seen in Figure 10 there is an

alternative, more economical, approach to realising HKA, namely the following. There

is an initial mapping of KELPS(0; k) to ASP (0; k), but after that, at each time T > 0

after KELPS provides the executed events and the updates state to ASP, it is possible

to mirror in ASP itself the (KELPS-style) processing of the reactive rules to obtain

the new ASP (T ;T + k). This is indicated by arrow m4 in Figure 10. This avoids the

need for mappings of KELPS into ASP after T > 0. In the following we define the direct

mapping between ASP (T ;T+k) and ASP (T+1;T+1+k). This correspondence between

KELPS and its mapping to ASP relies on the fact KELPS processing of the reactive rules

is based on resolution. Moreover, since both ASP and KELPS are logic-based languages

the resolution step is defined identically for the two, and thus each mirrors the other. We

formalise this idea next in Definition 6.2.

Definition 6.2

Given ASP (T ;T + k), a set of events in the form happens(e, T+1), in the time interval

[T, T + 1) and a set of fluents, in the form holds(f,T+1), ASP (T + 1;T + 1 + k) is

constructed through 5 steps as follows:

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

404 K. Broda et al.

Step 1: Increment time. Replace time facts time(T..T+k) with time(T+1..T+1+k)

and replace the condition T < Ts in the choice rule with T + 1 < Ts.

Step 2: Reason with events and fluents at time T + 1. Apply inference to rules

in ASP (T ;T + k) using facts of the form happens(e,T+1) and holds(f,T+1).

Step 3: Simplify using Aux and time facts. Remove from rule bodies all ground

and true time atoms (i.e. inference with the time facts added in Step 1). Remove

all true negated happens and holds literals, and negated Aux literals.

Step 4: Propagate new facts timestamped T + 1. Apply inference to rules using

any newly generated facts timestamped T + 1 (e.g. ant and cons) with rules.

Step 5: Remove processed facts and constraints. Except for any newly generated

consTrue fact, remove facts timestamped T + 1 which were reasoned with in Step

4. Remove rules which now have unsatisfiable body conditions. This latter step may

apply to ground constraints of the form :-not consTrue(ID,Args,Ts) which were

generated at a time Ts earlier than the current time T + 1.

We use Figure 9 to exemplify some of the reasoning described in Definition 6.2. The

rules 1.3 to 1.5 and 1.8 are instances of rules in set 0 that have been derived using facts

at time 1. Rule 0.2 is resolved with the facts happens(a,1) and time(1) (Steps 2 and 3)

to give ant(1,(1),1), which in turn is resolved with rule 0.3 to give 1.3, and with rule

0.8 to give 1.8 (Step 4). Similar derivations yield the other rules. If the constraint 0.6

were not present, action a2 could occur at time 3 making cons(1,(1),1,3) true. This

would allow consTrue(1,(1),1) to be derived from 0.9 (Step 4) and the constraint 1.8

to be satisfied, whence it can be removed because it would have an unsatisfiable body

condition (Step 5). In the case of the actual example in Figure 9, since 0.6 is present,

this cannot occur and constraint 1.8 remains in set 3 as shown.

7 Discussion and related work

In this section we review the translation of KELPS to ASP and the variations considered,

before discussing related work.

7.1 Brief review of reactive ASP

The basic concepts of KELPS were described in Section 2.1, in which, to progress towards

achieving the goals specified by the reactive rules, and in the light of new observations,

at each time point supported actions can be selected for execution provided their pre-

conditions hold. KELPS models are not time limited, so for translating to ASP, which

produces finite models, the notion of an n-distant KELPS framework was introduced (see

Definition 3.1). The basic restriction is that time is limited to the interval [0, . . . , n] for

some given value of n and no events can occur after n, nor can the notion of supportedness

require that time extend beyond n.

The translation of n-distant KELPS into ASP was described in subsections 3.1 to 3.3

and proven sound and complete in Section 4. A feature of the translation is the ability to

include pre-emptive and proactive, as well as reactive, behaviour. This is facilitated by

the flexibility of how to specify explicitly in the program what actions can be selected,

as well as by prioritising models with weak constraints, as we saw in Section 5. Another

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 405

feature of the translation we illustrated in Section 5 is the ability to include prospective

behaviour. This is essentially the basic mapping, but the focus is different. In this case

foreknowledge of possible future events is made available to improve the decision making

at the current time. This feature is not possible in KELPS, but simply emerges as a

consequence of the ASP translation.

The two paradigms KELPS and Reactive ASP differ in their operational behaviour.

In KELPS the framework reasons partially about the consequences of reactive rules and

interleaves the reasoning with action execution. Thus, a KELPS framework may execute

an action as part of a partial evaluation of a consequent and simply verify that the

temporal constraints will allow a model to exist potentially. Of course, future (as yet

unknown) events, or consequences of future actions, might still prevent the existence of

such a potential model. On the other hand, Reactive ASP, being a model generation

paradigm, generates complete answer sets and thus complete plans up to a maximum

time n, and it is this that makes prospective reasoning possible. Even so, it is possible

that an answer set of a reactive ASP program exists at some time t, but no answer set

including it exists for longer time frames because of new observations made after time t.

Another major difference between the two paradigms is that KELPS requires no frame

reasoning, but Reactive ASP requires reasoning with the explicit frame axiom in the

event theory (rule 14 in Figure 3).

These differences encouraged the design of a hybrid KELPS/ASP paradigm that ben-

efits from the destructive update of actions and the consequences on fluents that is

inherent in KELPS, yet also uses prospection as a way of providing information about

the “best” actions to be selected for execution at each increasing time point. In an ar-

chitecture described in Section 6 for this hybrid the initial KELPS program is translated

into ASP, and then at each later time step ASP recommends the next set of actions to

be executed through prospective reasoning taking into account any anticipated future

events up to a required time point, and KELPS executes the actions and returns to ASP

via the translation the updated state and partially evaluated reactive rules. The period

of prospection can vary as required, for example at each time step. This hybrid system

is able to simulate an extended KELPS framework incorporating prospective reason-

ing over some possibly varying set k of future times, the prospective time frame being

[currentT ime . . . currentT ime+k], where currentT ime increases by 1 at each iteration.

This system is quite close to the operational semanitics of KELPS in the sense of com-

mitting to actions as time progresses. In fact, the models computed by the ASP program

at cycle t can be characterised as follows. They are the KELPS t + k-distant models of

the initial state of KELPS together with the executed events (observed events and user

actions) up to time t and the anticipated external events at times t+ 1 up to t+ k.

7.2 A possible alternative incremental ASP mapping

The OS of KELPS, as depicted in Figure 1, is inherently incremental in nature. As time

progresses the database is updated destructively, new events are observed and actions

are considered to make the consequents of reactive rules true, once their antecedents

are satisfied. In effect, KELPS (resp. n-distant KELPS) attempts to construct model

structures (resp. n-distant model structures) based on current knowledge, for each time

step k, k ≥ 0 (resp. 0 ≤ k ≤ n).

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

406 K. Broda et al.

We initially had a concern that in the basic translation of Section 3, here called the

standard mapping, the frame axiom in the event theory of Reactive ASP might render

the system unscalable, as regards the size of the grounding of the program, and the time

taken to generate the grounding and find solutions.

Therefore, in addition to what we have described so far we implemented a slightly dif-

ferent mapping of n-distant KELPS to ASP utilising the incremental variant of clingo 4.

The models returned by the implementation are found incrementally, from inital time 0

up to final time n. Assuming the same external events, the effect is the same as if the

standard mapped program were run iteratively in a loop for times varying from 0 through

n. That is, for each time t in the range [0, . . . , n] there is an answer set if and only if

KELPS has a t-distant model, and the answer sets correspond to the KELPS models

in the sense of Section 4. Recall from Section 3 that the sets of models of n-distant

frameworks for different values of n are generally not the same, even when the external

events are unchanged. Therefore, in the incremental approach the models must be, and

are, re-computed for each t in the range [0, . . . , n].

To compare the two approaches, we ran two simple experiments. The first experiment

recorded the rate of time increase for a program resulting from the standard mapping,

with external events, but with no reactive rule or reactive rule integrity constraint, and so

the only reasoning involved the causal theory, including its frame axiom. The experiment

was made for increasing numbers of fluents and/or steps. The second experiment com-

pared the overall time for running individual calls to the standard mapped program for

n varying from 0 up to a given maximum with that for running the incremental mapped

program for the same given maximum. The results are shown in Tables B1 and B2 in

the Appendix. It is clear from the results of the first experiment that the overhead of

using the frame axiom is linear in the value of the maximum timestamp and linear in

the number of fluents, which is as expected, but acceptable. The results of the second

experiment show that there is no gain in using the incremental mapping.

Note also that the Hybrid HKA framework would not require long time frames in each

run of the ASP part, and moreover it would reduce the need for reasoning with the frame

axiom by limiting it only to the future events. Another motivation for considering the

incremental approach was that it could allow for external events to be added by the user

at each time step at the time they happen. However, the Hybrid HKA achieves this in

a more flexible way, and moreover incorporates prospective reasoning as well. Therefore,

although the use of incremental clingo seemed an obvious mode for the translation, we

did not find any particular advantage, and did not pursue it further, but for completeness

we have described it in the Appendix.

7.3 Other approaches to reactivity in logic programming

Reactivity, in the context of KELPS, has a specific meaning (see Section 2.1.4). In Kowal-

ski and Sadri (2015) (Section 7) and Kowalski and Sadri (2016) (Section 6) KELPS has

been compared extensively with related work, such as abductive logic programming, event

calculus, MetateM, constraint handling rules, production systems, transaction logic, ac-

tive databases, agent languages and reactive systems programming languages.

Reactivity has also been explored in Action Logics. The paper (Baral and Son 1998)

describes reactive control theories, where each control rule has on the left-hand side

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 407

(analogous to our antecedent) a conjunction of fluents all referring to the same time,

and on the right-hand side (analogous to our consequent) a conjunction of actions all

to be performed at the same time. The language is quite restrictive in comparison to

KELPS, and its purpose is to show the correctness of such reactive control with respect

to causal theories of action. Reactivity has been incorporated in two extensions of the

Action Language A, which added triggers, initially to give a language AT
o (Tran and

Baral 2004), and then further extended to a language AT
∞ (Nam and Baral 2007). The

triggers in AT
o have the restricted syntax of fluents holding in a single state triggering an

action that must take place at the time it is triggered. AT
∞ provides more flexibility than

AT
o by allowing the triggered action to take place at the same time it is triggered or later.

Separately from, and independently of, the reactive rules, AT
∞ allows for event orderings.

However, in KELPS this is incorporated in the consequents of reactive rules making the

event orderings related to the context of the triggers and reactions. In addition KELPS

allows histories of states and events in antecedents and consequents of reactive rules. One

similar aspect between AT
∞ and KELPS is that the definition of state transitions in AT

∞
captures the intuition that if an action occurs then it must have been triggered. This

intuition is similar to the notion of supportedness of actions in KELPS.

In the work described in this paper we use ASP to generate KELPS reactive models,

and to our knowledge there is no other work that incorporates such reactivity in ASP.

But there is other work that uses ASP to incorporate different perspectives of reactivity.

We briefly review these below.

The oclingo system (Gebser et al . 2011) was an early “reactive” answer set solver,

whose technology has been incorporated into clingo 4. This solver generates answer sets

incrementally, taking into account new information in real-time. It is reactive to the

extent that the answer sets grow and change, as new information is acquired. Vaseqi

and Delgrande (2013) suggest using this technology as a “situational awareness” tool in

maritime traffic domains. This allows new information to be acquired (and inferred) over

time, and thus it allows managing the histories that form dynamically over several time

steps.

In Ribeiro et al . (2013) the authors also propose using ASP for reactive reasoning.

However, their notion of reactivity is about the efficiency of reasoning and generation

of models. They achieve this efficiency by dividing the agent knowledge into modules.

Only relevant modules are solved at any given step, avoiding the computational cost of

generating irrelevant knowledge. In this sense the agent can then “react” more quickly to

its given situation. The ASP modules form a tree-like hierarchy, starting at a “root” and

spreading to “leaves”. The root and the internal nodes represent the agent’s knowledge

about itself (meta-knowledge), and the leaves represent “elementary knowledge” (such

as what actions should be taken). At every step, the reasoning process starts at the root,

which determines the next module(s) to solve; this process continues until leaf nodes

are reached. The meta-reasoning determines what the agent needs to know in the given

context. It is not necessary to reason about all available knowledge at every step.

In Costantini (2011) the author uses ASP in conjunction with Observe-Think-Act

agents. For each possible external event, a “reactive ASP module” defines the different

ways in which the agent might react to it. Each module contains a constraint, satisfied

only when the relevant external event occurs. When the relevant event occurs, the result-

ing set of models indicates possible reaction strategies. In this work the ASP modules can

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

408 K. Broda et al.

be triggered only by single events. By contrast, in KELPS, and consequently in Reactive

ASP, a reactive rule can be triggered by a conjunction of events and conditions. In fact,

in KELPS and in Reactive ASP a reactive rule is in general triggered by a history of

events and state conditions, and the reactions, in general, are plans extending over peri-

ods of time. In Reactive ASP, moreover, using weak constraints and prospection we can

compare different models to determine which action plan has the most desirable future

ramifications.

In Costantini et al . (2015) the authors describe a combined architecture between DALI

agents (Costantini and Tocchio 2004) and an answer set program that performs planning

tasks and determines what actions the agent can take. However, these modules do not

indicate which action will lead to the best outcome, nor do they provide the reactive or

prospective reasoning of the KELPS-Reactive ASP hybrid.

In a more recent position paper (Dyoub et al . 2018) the authors argue for a modular

design also exploiting features of ASP in combination with agent architectures. No specific

design is given, but in principle our hybrid architecture can be said to be motivated by

similar considerations. In fact, the authors seem to be of the opinion that ASP is not

a “fully appropriate modelling tool for the dynamic flexible functioning of agents as

concerns reactivity, proactivity and communication”.

In Section 5 we discussed how our formalisation of reactivity in ASP lends itself to

prospection. We saw that no further notation or functionality was required to cater for

this. The use of clingo and the approach to modelling KELPS agents allows us to look

into the future for a given time frame and also to take into account not only the present

information and its ramifications, but also any known information about the future and

its ramifications.

A logic programming system called ACORDA for prospective reasoning is proposed

in Pereira and Lopes (2009) and applied to modelling multi-agent intention recognition

in Anh and Pereira (2011) and morality in Pereira and Saptawijaya (2011). In the latter

the authors formalise classic trolley problems, where action or inaction in diverting a

trolley has implications in terms of lives saved. In their system abductive hypotheses

are generated for solving goals. Then some reasoning is performed from the abducibles

to obtain relevant consequences, which can then be compared according to specified

preferences. This work does not use temporal information and does not specify how far

into the future one wishes to prospect. Moreover, it does not incorporate knowledge about

known future events or states. Another significant difference with our work is that, as

well as exploring the consequences of abductions29, we explore their other ramifications

in terms of triggering a chain of new reactions in the future, via the reactive rules and

changes of state.

Specific applications of reactivity that KELPS/LPS can be and has been considered

for are formalisation and monitoring of policies as well as active updates in databases. It

would be interesting to consider how Reactive ASP might be exploited for such applica-

tions, for example as described in Eiter et al . (2004). Moreover, KELPS/LPS provides an

aspect of stream processing, as described in Section 2.1.2. The KELPS OS monitors the

stream of states and incoming and self-generated events and actions, to check whether

29 In our framework these are potential actions that are considered for execution.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 409

an instance of a reactive rule antecedent has become true and to determine if any ac-

tions have become necessary. It processes the stream on the fly, that is, as it receives

it. It would be interesting to see how Reactive ASP might be exploited to do stream

reasoning, for example as in Beck et al . (2018).

A different formalism using equilibrium temporal logic to model reactive rules is de-

scribed in Cabalar et al . (2018). A recent system called tclingo, presented in Cabalar

et al . (2018) and based on temporal Equilibrium Logic (Aguado et al . 2013), has some

similarities to KELPS. Specifically, the temporal rules are restricted as in KELPS such

that antecedent atoms contain no future operators and consequent atoms contain no past

operators. However, the logic is propositional and thus appears to be less expressive than

KELPS.

8 Conclusion and future work

This paper has described how the form of reactivity captured within the KELPS system

(Kowalski and Sadri 2016) can be implemented in ASP. Moreover, it has shown that the

resulting ASP representation is, in some respects, more flexible than KELPS in that it

allows for proactive and pre-emptive behaviour and prospective reasoning. In addition,

a Hybrid KELPS/ASP that combines the advantages of both frameworks was described.

Although the mapping to ASP required to include explicitly a frame axiom, this has

not caused particular runtime problems. We acknowledge that in case of simulations

with a very large number of constants and/or a very long time span, the running time

or grounding of the answer set program could become a problem. However, our intention

is not to deal with long timespans. For example in the proposed Hybrid the timespan

would relate to the prospective future. Moreover, one of our motivations to model KELPS

in ASP was to facilitate the implementation of various analysis tools by exploiting the

representation, for instance to detect inconsistencies in a Reactive ASP program. This too

does not need a long timestamp. Such analysis tools would be useful because the presence

of temporal constraints and action pre-conditions in KELPS makes it difficult to judge

a priori if the reactive rules are satisfiable, and there is a need for an automated system

that makes this decision. For example, the reactive rule constraint could be modified by

adding a head atom as in

badRule(ID,Args,Ts):-ant(ID,Args,Ts),not consTrue(ID,Args,Ts),time(Ts).

to detect cases where an antecedent of some reactive rule is true but the corresponding

consequent cannot be satisfied. Minimising occurrences of badRule atoms would show if

this kind of inconsistency can happen and under what circumstances.

We also will extend the implementation of Reactive ASP to include the full LPS,

including conditional clauses in the causal theory and complex events. Recent work, such

as Suchan and Bhatt (2019), has addressed the problem of detecting complex events from

video. Such approaches could contribute to a longer term goal, namely a more complex

reasoning system encompassing detection of external events as well as reasoning about

the ramifications of the events. Reactive ASP will also allow us to have more expressive

clauses in the causal theory, whereby for example pre-conditions of actions can refer to

histories of past events and states. Of interest also, is the potential to learn reactive rules

due to the systematic structure of the resulting ASP program. In our future work we

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

410 K. Broda et al.

will use the state-of-the-art inductive learning system ILASP (Law et al . 2016) to learn

reactive rules given example models of the expected behaviour.

Acknowledgements

We thank the anonymous reviewers for their helpful and insightful comments. We also

thank Bob Kowalski for useful discussions on an early draft of the paper.

References

Aguado, F., Cabalar, P., Dieguez, M., Perez, G. and Vidal, C. 2013. Temporal equilib-
rium logic: a survey. Journal of Applied Non-Classical Logics 23, 1–2, 2–24.

Alferes, J., Banti, F. and Brogi, A. 2006. An event-condition-action logic programming
language. In 10th European Conference on Logics in Artificial Intelligence, 29–42.

Anh, H. and Pereira, L. 2011. Intention-based decision making with evolution prospection.
In Progress in Artificial Intelligence, 15th Portuguese International Conference on Artifical
Intelligence (EPIA 2011), 254–267.

Baral, C. and Son, T. C. 1998. Relating theories of actions and reactive control. Electronic
Transactions on Artificial Intelligence 2, 211–271.

Beck, H., Dao-Tran, M. and Eiter, T. 2018. LARS: A logic-based framework for analytic
reasoning over streams. Artificial Intelligence 261, 16–70.

Berstel-Da Silva, B. 2012. Formalizing both refraction-based and sequential executions of
production rule programs. In Rules on the Web: Research and Applications, A. Bikakis and
A. Giurca, Eds. Springer Berlin Heidelberg, 47–61.

Brewka, G. 2013. Towards reactive multi-context systems. In Logic Programming and Non-
monotonic Reasoning, LPNMR 2013.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Commun. ACM 54, 12, 92–103.

Cabalar, P., Kaminski, R., Schaub, T. and Schuhmann, A. 2018. Temporal answer set
programming on finite traces. Theory and Practice of Logic Programming 18, 3–4, 406–420.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T., et al. 2020. Asp-core-2 input language
format. Theory and Practice of Logic Programming 20, 2, 29–309.

Clark, K. 2018. Rule control of teleo-reactive, multi-tasking, communicating robotic agents.
In Proceedings of 15th International Conference on Informatics in Control, Automation and
Robotics, ICINCO 2018, 5–15.

Clark, K. and Robinson, P. 2015. Robotic agent programming in teleoR. In Proceedings of
IEEE International Conference on Robotics and Automation, 5040–5047.

Costantini, S. 2011. Answer set modules for logical agents. In Datalog Reloaded: First Inter-
national Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers,
37–58.

Costantini, S., De Gasperis, G. and Nazzicone, G. 2015. Exploration of unknown territory
via dali agents and asp modules. In Distributed Computing and Artificial Intelligence, 12th
International Conference. Springer, 285–292.

Costantini, S. and Tocchio, A. 2004. The DALI logic programming agent-oriented language.
In 9th European Conference on Logics in Artificial Intelligence, 685–688.

Deane, G. 2016. Preferential description logics: Reasoning in the presence of inconsistencies.
Ph.D. thesis, Imperial College London.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 411

Dyoub, A., Costantini, S. and De Gasperis, G. 2018. Answer set programming and agents.
The Knowledge Engineering Review 33.

Eiter, T., Fink, M., Sabbatini, G. and Tompits, H. 2004. Declarative Update Policies for
Nonmonotonic Knowledge Bases. Springer Berlin Heidelberg, 85–129.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Fernandes, A., Williams, M. and Paton, N. 1997. A logic-based integration of active and
deductive databases. New Generation Computing 15, 2, 205–244.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. J. Logic Programming,
Special Issue on Constraint Logic Programming 37, 1–3, 95–138.

Gebser, M., Grote, T., Kaminski, R. and Schaub, T. 2011. Reactive answer set program-
ming. In Logic Programming and Nonmonotonic Reasoning, J. P. Delgrande and W. Faber,
Eds. 54–66.

Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,
Schaub, T., Thiele, S. and Wanko, P. 2019. Potassco user guide, version 2.2.0. Institute
for Informatics, University of Potsdam, 2nd ed.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, O. 2019b. Multi-shot asp solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2013. Answer Set Solving in
Practice. Morgan & Claypool.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019a. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gelfond, M. 2007. Chapter 7 answer sets. In Handbook of Knowledge Representation, F. van
Harmalen, V. Lifschita, and B. Porter, Eds. Elsevier Science.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
ICLP/SLP, vol. 88, 1070–1080.

Gurevich, Y. 2000a. Sequential abstract-state machines capture sequential algorithms. ACM
Trans. Comput. Logic 1, 1, 77–111.

Gurevich, Y. 2000b. Sequential abstract-state machines capture sequential algorithms. ACM
Transactions on Computational Logic, 77–111.

Kowalski, R. and Sadri, F. 1999. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence 25, 391–419.

Kowalski, R. and Sadri, F. 2011. Abductive logic programming agents with destructive
databases. Annals of Mathematics and Artificial Intelligence 62, 1–2, 129–58.

Kowalski, R. and Sadri, F. 2015. Reactive computing as model generation. New Generation
Computing 33, 1, 33–67.

Kowalski, R. and Sadri, F. 2016. Programming in logic without logic programming. Theory
and Practice of Logic Programming 16, 3, 269–295.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. NewGeneration Com-
puting 4, 67–95.

Lausen, G., Ludäscher, B. and May, W. 1998. On active deductive databases: The statelog
approach. Transactions and Change in Logic Databases, 69–106.

Law, L., Russo, A. and Broda, K. 2015. Simplified reduct for choice rules in ASP, technical
report DTR2015-2, imperial college london.

Law, M., Russo, A. and Broda, K. 2016. Iterative learning of answer set programs from
context dependent examples. Theory and Practice of Logic Programming 16, 834–848.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In Proceedings of the Eleventh
International Conference on Logic Programming, 23–37.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

412 K. Broda et al.

Mancarella, P., Terreni, G., Sadri, F., Toni, F. and Endriss, U. 2009. The CIFF proof
procedure for abductive logic programming with constraints: Theory, implementation and
experiments. Theory and Practice of Logic Programming 9, 6, 691–750.

McCarthy, J. 1998. Elaboration tolerance. In In Working Papers of the Fourth International
Symposium on Logical Formalizations of Commonsense Reasoning, Commonsense-1998.

Nam, T. and Baral, C. 2007. Reasoning about non-immediate triggers in biological networks.
Annals of Mathematics and Artificial Intelligence 51, 2–4, 267–293.

Nilsson, N. 1994. Teleo-reactive programs for agent control. Journal of Artificial Intelligence
Research 30.

Paschke, A., Boley, H., Zhao, Z., Teymourian, K. and Athan, T. 2012. Reaction ruleML
1.0: Standardized semantic seaction sules. In Rules on the Web: Research and Applications.
Springer Berlin Heidelberg, 100–119.

Pereira, L. and Lopes, G. 2009. Prospective logic agents. International Journal of Reasoning-
based Intelligent Systems 1, 3–4, 200–208.

Pereira, L. and Saptawijaya, A. 2011. Modelling morality with prospective logic, 98–421.

Rao, A. 2009. Agentspeak (l): BDI agents speak out in a logical computable language. Agents
Breaking Away , 42–55.

Rao, A. and Georgeff, M. 1995. BDI agents: From theory to practice. In International
Conference on Multiagent Systems, 312–319.

Ribeiro, T., Inoue, K. and Bourgne, G. 2013. Combining answer set programs for adaptive
and reactive reasoning. Theory and Practice of Logic Programming 13, 4–5.

Russell, S. and Norvig, P. 2003. Artificial Intelligence – A Modern Approach, 2nd ed. Prentice
Hall Series in Artificial Intelligence. Prentice Hall.

Sanchez, P., Alvarez, B., Morales, J. and Navarro, P. J. 2016. From teleo-reactive spec-
ifications to architectural components: A model-driven approach. Journal of Systems and
Software 117, 317–333.

Suchan, J. and Bhatt, M. and Varadarajan, S. 2019. Out of sight but not out of mind:
An answer set programming based online abduction framework for visual sensemaking in
autonomous driving. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-2019. International Joint Conferences on Artificial Intelligence
Organization, 1879–1885.

Tran, N. and Baral, C. 2004. Reasoning about triggered actions in ansprolog and its ap-
plication to molecular interactions in cells. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Ninth International Conference (KR 2004), Whistler, Canada,
D. Dubois, C. A. Welty, and M. Williams, Eds. AAAI Press, 554–564.

Vaseqi, Z. and Delgrande, J. 2013. An application of answer set programming for situational
analysis in a maritime traffic domain. Advances in Artificial Intelligence. In 26th Canadian
Conference on Artificial Intelligence, 315–22.

Wielemaker, J., Riguzzi, F., Kowalski, R., Lager, T., Sadri, F. and Calejo, M. 2019.
Using swish to realize interactive web-based tutorials for logic-based languages. Theory and
Practice of Logic Programming 19, 2, 229–261.

Zaniolo, C. 2003. On the unification of active databases and deductive databases. Advances
in Databases, 23–39.

Appendix A Prospective reasoning example

Figure A1 shows the mapping to ASP of the example in Figure 5 in Section 5.2.

Line 3 corresponds to ext∗ and lines 17 and 18 represent the preferences mentioned in

Section 5.2.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 413

Fig. A1. Prospective behaviour choosing a drink.

Appendix B Alternative KELPS simulation

This section presents an alternative incremental style mapping from n-distant KELPS to

ASP (called multi-shot). As in Section 3 we will consider n-distant KELPS frameworks

and throughout we use as an example the KELPS framework shown in Figure B1. We

assume that for the n-distance version appropriate temporal constraints are added to the

two reactive rules, according to Definition 3.1.

B.1 An incremental (multi-shot) mapping for computing n-distant models

In this appendix we make use of clingo 4 to incrementally increase the time frame, and

to incrementally generate groundings. We use a predicate maxRange/1 to represent the

horizon for the increasing timespan.

The mapping from n-distant KELPS to Reactive ASP given in Section 3 employed

a global time frame from time 0 to time n. We refer to that mapping as fglobal. In

this section we describe a second, incremental mapping, which we refer to as finc. The

difference between the two mappings can most clearly be seen at a qualitative level by

considering the translation of a very simple reactive rule of the form

R : event(T)→ action(T1) ∧ T + 1 < T1 (B1)

by ant and cons rules as well as a reactive rule constraint. First of all, recall that using

fglobal the translation would include the rules

ant(id,(Ts),Ts):-happens(event,Ts),time(Ts).

cons(id,(T),T,Ts):-ant(id,(T),T),happens(action,Ts),T+1<Ts,time(Ts).

:-ant(Id,X,Ts),not consTrue(Id,X,Ts),time(Ts).

consTrue(Id,X,Ts):-cons(Id,X,Ts,Ts1),time(Ts1).

supported(action,Ts):-ant(id,(T),T),T+1<Ts,time(Ts).

(B2)

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

414 K. Broda et al.

Fig. B1. KELPS Framework for exemplifying incremental simulation.

Note that (in this example) in the definition of cons the head of the rule has a timestamp

that is at least two timestamps after the timestamp of the matching ant in the body, but

all appropriate groundings of the rules are considered at once. In particular, this means

that the time variables are constrained to be in the range [0, . . . , n], as given by the facts

time(0..n).

On the other hand, the basic mapping finc (for a fixed value of n given by maxRange(n))

enlists the parameterised subprogram feature of clingo 4. The resulting (multi-shot) pro-

gram consists of two subprograms (or modules), which we call base and cycle(t) de-

clared by the #external program command and whose grounding is under control of a

procedure “Control” (shown in Figure B3 and described in subsection B.2). The base

subprogram is a standard ASP program representing the initial state, the auxiliary facts

Aux and Cpost. The cycle(t) subprogram consists of rules for ant, cons and supported,

the reactive rule integrity constraint, and the choice rule, as well as the event theory ET

and Cpre. The timestamp argument for all these is t. The procedure Control will gen-

erate an instantiation of cycle(t) for each value of t in the program’s overall time

frame (i.e. t =1,2,3,. . . n), where n is fixed by a maxRange fact in the module base. Each

new instantiation is added incrementally to the pre-existing program. So, if the program

models n cycles, it will eventually include the modules base and cycle(1), cycle(2),...,

cycle(n). The (ground) program is resolved after each cumulative expansion. Consider-

ing the reactive rule in (B1), but now using the mapping finc, the mapped rules, which

will be in cycle(t), will have the form in (B3)

ant(id,(t),t):-happens(event,t).

cons(id,(T),T,t):-ant(id,(T),T),happens(action,t),T+1<t.

:-query(t), ant(Id,X,T),not consTrue(Id,X,T,t).

consTrue(Id,X,T,t):-cons(Id,X,T,T1).

supported(action,t):-ant(id,(T),T),T+1<t.

(B3)

As before, in the definitions of ant and cons the final parameter (t) is the timestamp

at which the head atom of rule becomes true. The atom query(t) is an external atom

declared in ASP by the command #external query(t) and whose truth value can be ma-

nipulated by the procedure Control (see Figure B3). Consider, for example, the grounding

of the constraint when t=3 and query(3)=True, which will require that for every pre-

viously true ground instance of ant(ID,X,T) (i.e. T≤ 3), there must be a true atom

cons(ID,X,T,T1), where T1 takes a value in the range [0, . . . , 3]. There was a previous

grounding of the constraint, when t=2 and query(2)= True, which required for every

previously true ground instance of ant(ID,X,T) (i.e. T≤ 2), that there must be a true

atom cons(ID,X,T,T1), where T1 takes a value in the range [0, . . . , 2]. It can be seen that

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 415

Fig. B2. Translation by finc of example in Figure B1.

for each value of t the constraint requires that for all previous true atoms of ant(ID,X,T)

(T≤t) there must be a true atom cons(ID,X,T,T1), where T1 takes a value in the range

[0,...,t]. Eventually, when t=n the same set of instances of the constraint will have

been considered as for the global mapping.

Using this incremental grounding, finc, the mapped rules for the example in Figure B1

are shown in Figure B2. To map the observed external events ext∗ = {a(1), b(5), c(9)},
the facts happens(a,1), happens(b,5) and happens(c,9) can be made available to the

modules cycle(1), cycle(5) and cycle(9), as shown in Lines 6a-6c in Figure B2. The

maximum timespan is fixed by Lines 1a and 1b (for illustration we used 10). This can be

overrridden by another value on the program call to clingo. The extratime atom used

in the body of the definition for supported in Line 14 ensures that there is adequate

future time for the remaining parts of the (consequent of the reactive) rule to be made

true. Here, the existential variable T2 is a time in the future of t, and is constrained to

be within the maximum range of 10.

B.2 The procedural control

To implement the incremental variant of Reactive ASP we have used clingo 4 (Gebser

et al . 2019), with a simple Lua script, similar to that given in Gebser et al . (2019b) (see

Figure B3). The input max to the procedure is extracted from the constant m on Line

1a of the ASP program.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

416 K. Broda et al.

Fig. B3. Pseudocode procedural control.

In the first cycle (t = 0) the base program is solved, capturing the initial state, Aux
and information about post-conditions of events. In the next cycle (t = 1) the procedure

does the following steps. It sets query(1) to True, effectively “activating” the reactive

rule constraint for the time frame 0 to 1 (see Lines 8a and 8b in Figure B2) and attempts

to find the program’s answer sets. To look for answer sets in subsequent time frames

(t = 1, . . . ,max) it is necessary to “switch off” the constraint for the time frame 0 to 1

and to re-try it with an expanded time frame. To this end, the procedural control sets

query(1) to False, sets query(2) to True and adds the instantiated cycle(2), and

tries to find an answer set without redoing the grounding of the previous iteration. This

loop continues until t=max.30

By way of illustration, some relevant parts of the output of the program in Figure B2

with the control in Figure B3 are described next for the value of the constant m set to 7.

There is one answer set for t = 0, namely {holds(p,0)}.31 There is no answer set for t = 1

or t = 2 because the agent cannot yet satisfy the reactive rule triggered by happens(a,1).

However, for t = 3 the agent can perform the actions a1 and a2 and satisfy the rule

consequent of the reactive rule with identifier 1. The resulting answer set includes the

atoms {happens(a,1),happens(a1,2),happens(a2,3),holds(p,0), holds(p,1)}. For t = 4

there are two answer sets, depending on whether action a1 occurs at time 2, or time 3.

For t = 5 there is no answer set since there is no time to perform b1 to satisfy the reactive

rule with identifier 2. Moreover, in order for b1 to occur the fluent p must be true in the

previous time instant, hence action a1 must not have occurred at least until time 6. This

prevents any answer set for t = 6 as there is no time to satisfy reactive rule with identifier

1. There is an answer set for t = 7, namely {happens(a,1),happens(a1,6),happens(a2,7),
happens(b,5),happens(b1,6),holds(p,0),holds(p,1),holds(p,2),holds(p,3),holds(p,4),

30 Notice that an added advantage of such a procedure is that from t=1 onwards external events at time
t may be added within the loop to cycle(t), as the knowledge of their occurrence becomes available,
allowing a more reactive and situated behaviour as in KELPS. As we saw in Section 6 this was also
possible in the Hybrid KELPS/ASP variant.

31 Note that the answer set includes facts in the base subprogram. Also, for ease of reading we only show
the facts for holds and happens in the answer sets.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

Reactive Answer Set Programming 417

Table B1. Results of Experiment 1a (left) and Experiment 1b (right)

#fluents Time(s) #fluents Time(s) n Time(s) n Time(s)

20 0.038 120 0.232 100 0.199 600 1.193
40 0.074 140 0.267 200 0.377 700 1.394
60 0.109 160 0.303 300 0.579 800 1.698
80 0.140 180 0.333 400 0.784 900 1.816
100 0.184 200 0.366 500 0.997 1000 2.06

holds(p,5)}. Note that for each value of t, where there is an answer set it corresponds

to a t-distant KELPS reactive model - and vice versa.

B.3 Experiments

We show here results of two experiments. The first experiment checks the impact of the

explicit frame axiom in the standard mapping of Section 3, while the second experiment

compares the standard mapping with the incremental version of Section B.1.

The first experiment (actually two sub-experiments 1a and 1b), involved a standard

mapping program with the potential to vary the number of fluents. Specifically, the fluents

belonged to {p(X), q(X), r(X), s(X), t(X), j(X) : 1 ≤ X ≤ 200}. There were 6 external

events, {c, d, e, f, g, h}, each having 9 occurrences at varying times between 1 and 100.

The action post-conditions were initiates(c, p(X)), initiates(d, q(X)), initiates(e, r(X)),

initiates(f, s(X)), initiates(g, t(X)), initiates(h, j(X)), and terminates(c, q(X)),

terminates(d, r(X)), terminates(e, p(X)), terminates(f, j(X)), terminates(g, s(X)),

terminates(h, t(X)), for 1 ≤ X ≤ 200.32 There were no reactive rules.

Experiment 1a fixed the maximum timestamp at 200 and varied the number of fluents

by changing the number of indices (X) in steps of 20 up to 200. Experiment 1b fixed the

number of fluents at 1200 (X = 200) and ran for maximum timestamps (n) varying from

100 up to 1000 in steps of 100. Results of both experiments are shown in Table B1. It is

clear that, as expected, the total runtime varies linearly with the number of fluents and

with the maximum timestamp.

The second experiment compared run times of the standard mapping from Section 3

with those of the incremental version. The program was an extended version of that

shown in Figure B2, with external events a(1) . . . a(3) and b(1) . . . b(3) occurring at various

times. In this experiment, as in Figure B2, there is again one nullary fluent p. Just as in

Figure B2, where the event a triggers events a1 and a2, in this extended version event

a(I) triggers a1(I) and a2(I). The reactive rules are the same except that the events a,

a1, a2, b and b1 are modified by adding an index ranging from 1 to 3 and adjustments

made accordingly. The experiment ran the standard Reactive ASP code for every value of

maximum timestamp between 1 and 50 and accumulated the execution times in groups

of 10 or 20. It compared the results for the incremental translation for maxRange (m)

values in {10, 20, 40, 50}. The results are shown in Table B2.

32 For example, given the facts index(1..20), the rule initiates(c,p(X)):-index(X) will generate
initiates(c,p(1)), initiates(c,p(2)) up to initiates(c,p(20)).

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

418 K. Broda et al.

Table B2. Results of Experiment 2

m Total Standard Time(s) Incremental Time(s)

10 0.07 0.04
20 0.185 0.21
40 6.065 8.28
50 171.865 287.8

The external events occurred at the following times: {(a(1), 1), (b(1), 5), (a(2), 11),
(b(2), 15), (a(3), 32), (b(3), 35), (c, 9), (c, 19), (c, 29), (c, 39), (c, 49)}. All indexed a1 events

terminate fluent p and all indexed b1 events require the fluent p to hold at the previous

time. The purpose of event c was to (re)initiate the fluent p after it had been terminated,

ready for each subsequent pair of events a and b. Additionally, some constraints were

imposed to limit the number of occurrences of actions a1(I), a2(I), b1(I), I ∈ {1, 2, 3},
to a maximum of one each and to ensure that the reactions a1(I), a2(I) and b1(I) to an

occurrence of events a(I) and b(I) occur before the occurrence of a and b with the next

index (i.e. a(I +1) and b(I +1)) – see equation (B4), shown for the incremental version.

:-happens(a1(X),T),happens(a1(X),t),T<t,index(X).

:-happens(a2(X),T),happens(a2(X),t),T<t,index(X).

:-happens(b1(X),T),happens(b1(X),t),T<t,index(X).

:-happens(b1(X),t),happens(a2(X),T1),t>T1,index(X).

(B4)

The results show that the cumulative time for n standard runs is lower than the

incremental time. As mentioned earlier, it is to be expected that the times be comparable

as the incremental program has to re-evaluate the set of models for each value of t up to

n. The results show there is a small additional overhead.

https://doi.org/10.1017/S147106842100051X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842100051X

	Introduction
	Background
	KELPS
	Answer set programming

	Mapping KELPS to ASP
	Basics of mapping KELPS to ASP
	Mapping the reactive rules
	Mapping supportedness
	Summary

	Formal results
	Reactive ASP functionality beyond KELPS
	Relaxing reactivity to provide a variety of other models
	Prospective reasoning

	An integrated KELPS and reactive ASP framework
	Discussion and related work
	Brief review of reactive ASP
	A possible alternative incremental ASP mapping
	Other approaches to reactivity in logic programming

	Conclusion and future work
	References
	Appendix A Prospective reasoning example
	Appendix B Alternative KELPS simulation
	B.1 An incremental (multi-shot) mapping for computing n-distant models
	B.2 The procedural control
	B.3 Experiments

