
J. Functional Programming 9 (5): 483–525, September 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

483

Combinators for program generation

PETER THIEMANN

Institut für Informatik, Universität Freiburg,

Universitätsgelände Flugplatz, D-79110 Freiburg, Germany

(e-mail: thiemann@informatik.uni-freiburg.de)

Abstract

We present a general method to transform a compositional specification of a specializer for

a functional programming language into a set of combinators that can be used to perform

the same specialization more efficiently. The main transformation steps are the transition to

higher-order abstract syntax and untagging. All transformation steps are proved correct. The

resulting combinators can be implemented in any functional language, typed or untyped,

pure or impure. They may also be considered as forming a domain-specific language for

meta-programming. We demonstrate the generality of the method by applying it to several

specializers of increasing strength. We demonstrate its efficiency by comparing it with a

traditional specialization system based on self-application.

Capsule Review

The first partial evaluators (specializers) worked interpretively: given a program p and partial

input s, the specializer executed those of p’s operations depending only on s, and generated

residual code for the remainder. A recent trend is the compilative approach, building a

generating extension p-gen from p. (The concept first arose from specializer self-application.)

The generating extension, when run on s as input, yields the result of specializing p to known

input s.

Surprise: building the generating extension, instead of writing an interpretive specializer,

yields both faster specialization and better residual code quality, when specializing strongly

typed programs. Their construction, however, remained something of a black art, and ques-

tions of correctness and reasons for these advantages were for some time obscure.

This paper gives insight into the nature of generating extensions, shows how systematically

to derive one in combinator form from a compositional specializer, contains a number of

correctness proofs, and is the basis of an implementation, whose empirical behavior is also

described.

1 Introduction

A specializer for a functional programming language is often presented in a de-

notational style, that is, as a compositional interpreter of a two-level version of

the language, where the interpreter itself is written in a functional programming

language. In a two-level functional language (Nielson and Nielson, 1992; Jones et

al., 1993), every syntactic construct comes in two versions, one which is executed by

the specializer “at specialization-time” and one for which the specializer generates

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

484 P. Thiemann

code. The former constructs are called static and the latter ones dynamic, they are

often indicated by underlining or by annotating the standard construct with D.

Typically, we do not want to program in a two-level language. Instead, we leave

the task of transforming an ordinary program of the source language into a two-

level program to a binding-time analysis that inserts the annotations for us, given a

classification of the free variables according to their binding time, i.e. static if their

value is available at specialization-time and otherwise dynamic. This approach is

called offline partial evaluation (Jones et al., 1993; Consel and Danvy, 1993).

Using essentially an interpreter to perform specialization has a number of weak-

nesses that affect the efficiency of specialization:

• The interpreter performs syntax dispatch: it examines each expression to decide

which construct it is and whether it is static or dynamic. Based on the outcome

the interpreter chooses one particular branch to process the construct.

• The interpreter manipulates an explicit environment to implement the binding

mechanism of the source language.

• If the interpreter is written in a statically typed language then it cannot

manipulate values of the source language directly. Instead it must employ an

encoding via a universal type (Launchbury, 1991).

The first two of these weaknesses can be avoided if the source language is also

the implementation language of the specializer. In this case, we can specialize the

specializer with respect to the source program and obtain a generating extension for

the source program (Futamura, 1971). The generating extension takes the values

classified as static as parameters and returns the source program specialized with

respect to these values. Specializing with generating extensions is usually faster

than specializing directly, typically by a factor of three to four in current practice

(Bondorf, 1991). The cause of the speedup is the removal of the syntax dispatch and

the resolution of some environment manipulations due to specialization.

We can also repeat the step and speed up the construction of the generating ex-

tension by creating a generating extension for the specializer first, i.e. by specializing

the specializer with respect to itself (Turchin, 1979). The product is called cogen for

historical reasons. It maps a two-level source program to its generating extension.

While specializing with a specialized specializer addresses the first two efficiency

issues and works well in untyped languages, it is less satisfactory for typed languages.

Each specialization step adds one level of encoding (in the universal type) to the

program and the values. Therefore, a cogen takes a doubly encoded source program

as an argument and the specialized programs work on encoded values, too, which is

clearly undesirable (Launchbury, 1991).

Launchbury and Holst (1991) discovered a way out of this problem. Instead

of writing a specializer, they propose to program the transformation from two-

level source program to generating extension – a cogen – directly from scratch. A

generating extension constructed thus does not require encoding of the values but it

can use them directly. Hence, this approach addresses all three problems satisfactorily

and it has been exercised successfully later on for a variety of languages (Birkedal

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 485

and Welinder, 1993;Glück and Jøergensen, 1995; Draves, 1996; Jøergensen and

Leuschel, 1996; Andersen, 1994).

However, the construction of these “hand-written cogens” is ad hoc, and it is not

clear why this approach solves the problems and what is the exact relation to the

specializer.

1.1 Contribution

The contribution of this paper is the clarification of the advantages of writing a cogen

by hand and a formal explanation of why it resolves the above-named weaknesses

of the interpreter-based approach to specialization. To do so we exhibit a provably

correct step-by-step method to derive the building bricks for generating extensions

from a denotational specification of the specializer in a statically typed language.

Each brick is actually a combinator that implements the specialization-time action

of a particular construct of the two-level source language. As a consequence, the

hand-written cogen becomes trivial: it just replaces each syntax constructor by

the combinator that implements its specialization-time action. In other words, we

re-interpret a two-level program as its own generating extension.

The proposed method is generally applicable to functional languages, no matter

whether they are typed or untyped, pure or impure. It results in a highly efficient

way of doing offline partial evaluation. The derived combinators are of independent

interest because they can be used for meta-programming in a typed language. The

method also provides guidance as how to come up with an efficient prototype

implementation of a domain-specific language which is defined in a compositional

style. For example, parser combinators (Hutton, 1992) could be derived from a

parsing function using the same conceptual steps.

After introducing some notational preliminaries and fixing a programming lan-

guage for our investigation (section 2), we present a simple specializer for the lambda

calculus in section 3. The first transformation step removes the syntax dispatch (sec-

tion 4). Even the correctness of this simple step requires some care, because different

runs of the same specialization give only α-convertible specialized programs in gen-

eral. The second transformation step in section 5 removes the explicit environment

by introducing higher-order abstract syntax. Again, this transformation step involves

a non-trivial correctness proof involving the semantics of the implementation lan-

guage. In addition, we observe that higher-order syntax is also advantageous to use

in the specialized program because it improves modularity and eases the implemen-

tation in pure languages. The third transformation step in section 6 removes the

need for the universal type. The correctness of this step depends upon the binding-

time analysis that was used to construct the two-level program. We show that the

type checker of the implementation language rejects generating extensions with a

binding-time mismatch and we formally relate the results computed before and after

the transformation. Thus our combinators can be used for meta-programming in a

typed language.

Although we introduce the transformation steps with a very simple specializer,

section 7 demonstrates that the same methods apply to more powerful and practically

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

486 P. Thiemann

type ident = string

type (’a,’b) env = (’a * ’b) list

let rec lookup ((y,v)::r) x = if x = y then v else lookup r x

let upd r x y = (x,y)::r

let gensym_counter = ref 0

let gensym_reset () = gensym_counter := 0

let gensym () =

begin

incr gensym_counter;

"x"^string_of_int (!gensym_counter)

end

Fig. 1. Some library functions.

relevant specializers. Section 8 shows how to extend the combinators to encompass

all syntactic constructs of a small functional language. It also discusses the issue of

program point specialization. Section 9 shows the connection between the derived

combinators, the recursive formulation, and the fold functionals associated with the

abstract syntax of the two-level language. Section 10 documents that specialization

using generating extensions constructed from the derived combinators is about

three times faster than specialization using generating extensions constructed with a

traditional cogen, even in the untyped language Scheme. Finally, we discuss related

work in section 11, and conclude in section 12.

This paper grew out of earlier work on program generation for untyped languages

(Thiemann, 1996a).

2 Preliminaries

We are using OCaml notation (Leroy, 1997) for all code in this paper. It is, however,

straightforward to rewrite it for an untyped language like Scheme (Kelsey et al., 1998)

or for a pure language like Haskell (Haskell, 1997). The code has been type-checked

with the OCaml system and all of it – except the code in section 7.2 – has been tested

using OCaml. In the example runs, the system’s prompt is # and all subsequent text

up to the next ;; comprises the input. Responses of the system have the form

- : 〈inferred type 〉 = 〈value 〉
The use of typewriter font marks concrete syntax in the text. Figure 1 defines

some types and functions that are shared by all programs in the rest of the paper.

The type ident is the type of identifiers, represented by strings. The type (’a, ’b)

env is the type of finite functions from ’a to ’b, which we will use as environments.

The functions lookup and upd implement environment lookup and update. The

gensym group of definitions implements a facility to generate unique strings. The

main function is gensym : unit -> string which generates a new string to be

used as a fresh identifier.

We write e[f := g] for the substitution of g for f in e where e, f, and g are

syntactic objects. For functions g, dom(g) is the domain of g and g[x 7→ y] is defined

by g[x 7→ y](x) = y and g[x 7→ y](z) = g(z) if x 6= z.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 487

type exp =

Var of ident

| Lam of ident * exp

| App of exp * exp

| LamD of ident * exp

| AppD of exp * exp

type value =

Fun of (value -> value)

| Code of exp

(* spec : exp -> (ident, value) env -> value *)

let rec spec e r =

match e with

Var x ->

lookup r x

| Lam (x, e) ->

Fun (fun y -> spec e (upd r x y))

| App (f, a) ->

let Fun ff = spec f r in

ff (spec a r)

| LamD (x, e) ->

let xx = gensym () in

let Code body = spec e (upd r x (Code (Var xx))) in

Code (Lam (xx, body))

| AppD (f, a) ->

let Code ff = spec f r in

let Code aa = spec a r in

Code (App (ff, aa))

Fig. 2. A fragment of Lambdamix.

3 A simple specializer

The starting point of our investigation is a simple specializer for the pure lambda

calculus, in the spirit of Lambdamix (Gomard, 1992). Figure 2 shows its definition

in denotational style, i.e. as an interpreter for two-level expressions in a functional

programming language.

The datatype exp defines the abstract syntax of expressions in a two-level lambda

calculus (Nielson and Nielson, 1992): there are variables Var, lambda abstractions

Lam, applications App, and in addition, there are dynamic lambda abstractions LamD

and applications AppD. FV(e) is the set of free variables of e : exp with the cases

for LamD and AppD defined as for Lam and App.

The datatype value defines the domain of semantic values. A semantic value is

either Fun f where f is a function mapping value to value or it is Code e where e

is a piece of generated (specialized) code of type exp using only the Var, Lam, and

App constructors.
The specializer spec is straightforward. It is a function that maps a two-level

expression e : exp and an environment r : (ident, value) env to a value. The
interpretation of Var, Lam, and App follows the standard semantics of lambda cal-

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

488 P. Thiemann

culus. The interpretation of a dynamic lambda generates a new identifier, then it
specializes the body of the lambda, and finally it puts both together and returns a
lambda abstraction. The case for the dynamic application specializes the subexpres-
sions and puts them together to an application expression. Some care must be taken
to properly inject into and project out of the value type. Here are some examples.

spec (App (Lam ("x", (Var "x")), LamD ("x", (Var "x")))) [] ;;

- : value = Code (Lam ("x1", Var "x1"))

spec (LamD ("x", LamD ("y", App (Lam ("x", (Var "x")), (Var "y"))))) [] ;;

- : value = Code (Lam ("x5", Lam ("x6", Var "x6")))

The environment provides static or dynamic values for free variables. First, we

bind "i" to the static identity function, which works nicely, but then we bind it to a

dynamic variable, which results in an error due to a binding-time mismatch: "i" is

used as a function and the case for App tries to match the Fun constructor against

Code (Var "id").

spec (LamD ("x", LamD ("y", App (Var "i", (Var "y")))))

[("i", Fun (fun z -> z))] ;;

- : value = Code (Lam ("x1", Lam ("x2", Var "x2")))

spec (LamD ("x", LamD ("y", App (Var "i", (Var "y")))))

[("i", Code (Var "id"))] ;;

Uncaught exception: Match_failure("", 150, 156)

Although we could model this error explicitly by adding another alternative to the

type value, we refrain from doing so to avoid further cluttering of the code.

Starting from this simple specializer we develop our library of combinators.

4 Combinators for specialization

Our declared aim is to re-interpret a two-level expression as its own generating
extension. In the first step, we define for each syntax constructor a combinator that
performs the associated specialization-time action. For example, the combinator for
the constructor Lam is the right side of the definition of spec (Lam (x, e)) after
moving the parameters to the right side in the obvious way, i.e. fun (x, e) -> fun
r -> Fun (fun y -> e (upd r x y)). If we name this function lam and proceed
analogously for the remaining syntax constructors then we only have to replace the
syntax constructors by these functions to obtain a generating extension. Figure 3
shows the resulting library of combinators. Here are the examples, rewritten to use
the combinators:

app (lam ("x", (var "x")), lamD ("x", (var "x"))) [] ;;

- : value = Code (Lam ("x8", Var "x8"))

lamD ("x", lamD ("y", app (lam ("x", (var "x")), (var "y")))) [] ;;

- : value = Code (Lam ("x9", Lam ("x10", Var "x10")))

Just as with spec, the environment provides input and we can provoke errors by

confusing the binding times.

lamD ("x", lamD ("y", app (var "i", (var "y"))))

[("i", Fun (fun z -> z))] ;;

- : value = Code (Lam ("x5", Lam ("x6", Var "x6")))

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 489
(*

type envcomp = (ident, value) env -> value

var : ident -> envcomp

lam : ident * envcomp -> envcomp

app : envcomp * envcomp -> envcomp

lamD : envcomp * envcomp -> envcomp

appD : envcomp * envcomp -> envcomp

*)

let var x =

fun r ->

lookup r x

let lam (x, e) =

fun r ->

Fun (fun y -> e (upd r x y))

let app (f, a) =

fun r ->

let Fun ff = f r in

ff (a r)

let lamD (x, e) =

fun r ->

let xx = gensym () in

let Code body = e (upd r x (Code (Var xx))) in

Code (Lam (xx, body))

let appD (f, a) =

fun r ->

let Code ff = f r in

let Code aa = a r in

Code (App (ff, aa))

Fig. 3. Simple combinators.

lamD ("x", lamD ("y", app (var "i", (var "y"))))

[("i", Code (Var "id"))] ;;

Uncaught exception: Match_failure("", 36, 42)

4.1 Correctness

Establishing the correctness means to show that for all e : exp, spec e = e′, where

e′ is obtained from e by replacing Var by var, Lam by lam, App by app, and so forth.

Henceforth, we write this kind of replacement as e[Var := var, . . .].

The symbol = stands for equality of denotations in an arbitrary monadic model.

That is, either both sides are undefined, or both sides are defined and have the

same value. The notion of a monadic model specifically includes models with

store effects as the implementation of gensym requires. The computational lambda

calculus (Moggi, 1988) provides a suitable theory for transforming expressions in

the presence of such monadic effects. We recall some axioms of the calculus, as far

as we need them in the proofs.

• Extensionality: if e has function type then e = fun x -> e x.

• βV : if v is a syntactic value then (fun x -> e) v = e[x := v].

• letV : if v is a syntactic value then let x = v in e = e[x := v].

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

490 P. Thiemann

Informally, syntactic values are variables (since OCaml is call-by-value), constants,

lambda abstractions, and data constructors applied to syntactic values. Using these

equations, it is straightforward to transform spec e into e’. By extensionality, it

suffices to prove the following lemma.

Lemma

Suppose

1. e : exp;

2. e′ = e[Var := var, . . .];

3. r : (ident, value) env.

Then spec e r = e′ r.

Proof

Straightforward induction on e. We show two representative cases.

Case Var x.

e′ r
=

var x r

= definition, βV

lookup r x

= definition, βV

spec (Var x) r

Case LamD (x, e).

lamD (x, e′) r

= definition, βV

let xx = gensym () in

let Code body = e′ (upd r x (Code (Var xx))) in

Code (Lam (xx, body))

= letV

let xx = gensym () in

let r’ = upd r x (Code (Var xx)) in

let Code body = e′ r’ in

Code (Lam (xx, body))

= by induction

let xx = gensym () in

let r’ = upd r x (Code (Var xx)) in

let Code body = spec e r’ in

Code (Lam (xx, body))

= letV

let xx = gensym () in

let Code body = spec e (upd r x (Code (Var xx))) in

Code (Lam (xx, body))

= definition, βV

spec (LamD (x, e)) r

q

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 491

4.2 Discussion

What have we gained in this step? We have got rid of the syntax dispatch during

specialization: at each expression, spec has to determine the top-most constructor

of its argument e, which selects the right side with which it has to proceed. Using

the combinators eliminates this test-and-select part completely.

Preparing a generating extension in traditional style by specializing spec with

respect to e would also remove the syntax dispatch. In addition, it would resolve

the environment lookups because it would unfold the definitions of the combinators

– we address this issue in the next section. However, the combinators evade the

encoding of the program due to self-application.

5 Introducing higher-order abstract syntax

When we look back at the examples of the previous section, we find that the

generating extensions are combinator terms with constants. However, they implement

the binding constructs Lam and LamD and they do so by explicitly manipulating an

environment r. It seems rather wasteful to do so in a functional programming

language, the implementation of which is optimized towards handling bindings

efficiently.

Higher-order abstract syntax (Pfenning and Elliott, 1988) is a technique conceived

exactly for the purpose of moving the handling of binding operations to the meta-

language (which is in our case the underlying functional language implementation).

The idea is to represent binding constructs by syntax constructors that have argu-

ments with functional type. For example, a higher-order syntax version of the exp

datatype looks like this:

type hexp =

HVar of ident

| HLam of (ident -> hexp)

| HApp of hexp * hexp

| HLamD of (ident -> hexp)

| HAppD of hexp * hexp

The two binding constructs each have a function as an argument that maps an

ident to an hexp, that is, applied to an identifier, the argument function returns

the body of the HLam or HLamD with the identifier substituted as appropriate. Here

is the encoding of Lam ("x", Var "x") in higher-order abstract syntax:

HLam (fun x -> HVar x)

Figure 5 defines a function Φ that maps an e : exp into its higher-order represen-

tation and its inverse Ψ. Despite giving their definition in OCaml we will use them

to express syntactic transformations in formal proofs. It is not hard to modify the

specializer spec to process expressions in hexp instead of in exp (Thiemann, 1996a)

and then convert the modified specializer to combinators as we did in the first step.

We won’t do that here, because it would divert from the straight course. Instead, we

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

492 P. Thiemann

(*

hvar : value -> value

hlam : (value -> value) -> value

happ : value * value -> value

hlamD : (value -> value) -> value

happD : value * value -> value

*)

let hvar x =

x

let hlam x_e =

Fun (fun y -> x_e y)

let happ (f, a) =

let Fun ff = f in

ff a

let hlamD x_e =

let xx = gensym () in

let Code body = x_e (Code (Var xx)) in

Code (Lam (xx, body))

let happD (f, a) =

let Code ff = f in

let Code aa = a in

Code (App (ff, aa))

Fig. 4. Higher-order abstract syntax for source programs.

apply the idea directly to the combinators var, lam, etc., that we already have (see

figure 3).

Figure 4 shows the result. The most important point is the disappearance of

the environment r. In the interpretation of a variable, the binding operation in the

implementation language has already replaced the variable by its value, so hvar is the

identity function at type value -> value. The type of hlam is (value -> value)

-> value, so the functional argument maps the value of a variable to the value of

the body: it is itself the function. In principle, we could eta-reduce fun y -> x_e y

to x_e but we leave it as it is to enable comparison with the specializers in section 7.

hlamD works similarly to hlam and happ and happD are completely unsurprising.

The types given for the combinators in figure 4 are not the most general ones, but

they are the types at which we use the combinators in a generating extension.
Let’s have a look at our examples:

happ (hlam (fun x -> hvar x), hlamD (fun x -> hvar x)) ;;

- : value = Code (Lam ("x1", Var "x1"))

hlamD (fun x -> hlamD (fun y -> happ (hlam (fun x -> hvar x), hvar y))) ;;

- : value = Code (Lam ("x2", Lam ("x3", Var "x3")))

Everything seems to work as before, we do not even have to supply an environ-

ment. But how do we specify static or dynamic input? Since there is no simulated

environment, we have to bind the input values to “real” variables:

let i = Fun (fun z -> z) in

hlamD (fun x -> hlamD (fun y -> happ (hvar i, hvar y))) ;;

- : value = Code (Lam ("x4", Lam ("x5", Var "x5")))

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 493

let rec Φ e δ =

match e with

Var x -> HVar (lookup δ x)

| Lam (x, e) -> HLam (fun y -> Φ e (upd δ x y))

| App (f, a) -> HApp (Φ f δ, Φ a δ)

| LamD (x, e) -> HLamD (fun y -> Φ e (upd δ x y))

| AppD (f, a) -> HAppD (Φ f δ, Φ a δ)

let rec Ψ h =

match h with

HVar x -> Var x

| HLam x_e ->

let xx = gensym () in

Lam (xx, Ψ (x_e xx))

| HApp (f, a) ->

App (Ψ f, Ψ a)

| HLamD x_e ->

let xx = gensym () in

LamD (xx, Ψ (x_e xx))

| HAppD (f, a) ->

AppD (Ψ f, Ψ a)

Fig. 5. Mapping first-order syntax into higher-order syntax and back.

J·K : mlexpr→ (ident→ mlexpr)→ mlexprJxK ρ = ρ(x)JcK ρ = cJfun x -> eK ρ = fun x -> JeK ρ[x 7→ x] fresh(ρ, x)Jf aK ρ = JfK ρ (JaK ρ)Jlet x = h in eK ρ = let x = JhK ρ in JeK ρ[x 7→ x] fresh(ρ, x)Jlet C x = h in eK ρ = let C x = JhK ρ in JeK ρ[x 7→ x] fresh(ρ, x)

mlexpr is the type of OCaml abstract syntax.

fresh(ρ, x) = ∀y ∈ dom(ρ).Fρ(y 6= x)

Fig. 6. Translation to environment-passing style.

let i = Code (Var "id") in

hlamD (fun x -> hlamD (fun y -> happ (hvar i, hvar y))) ;;

Uncaught exception: Match_failure("", 24, 30)

5.1 Correctness

Since the idea seems to work well in practice, we set out to develop a correctness

proof for this step. To state the correctness requires us to relate the explicit envi-

ronment r that is passed around by the var, lam, . . . combinators with the implicit

environment that the underlying implementation passes around for the hvar, hlam,

. . . combinators. We need to appeal to the semantics of the implementation language

to establish such a relation.

Fortunately, for our purposes it is sufficient to define a translation from the im-

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

494 P. Thiemann

plementation language into itself that makes the environment manipulation explicit

while leaving the other aspects (e.g. store manipulation) implicit. Figure 6 defines the

part of this transformation that we need to state and prove the correctness result. As

it stands, it essentially performs α-conversion. The cases cover variables x, constants c

including constructors, lambda abstraction fun x -> e, application f a, let expres-

sion, and let expression with pattern matching let C x = h in e where C must

be a data constructor. The translation is purely syntactic. For r : (ident, value)

env, we write dom(r) for the set of all x : ident such that lookup r x is defined.

Theorem 1

Suppose

1. e : exp is a metavariable standing for an expression;

2. r : (ident, value) env with dom(r) ⊇ FV(e);

3. δ : ident → ident is an injective syntactic mapping;

4. ρ : ident → mlexpr is a syntactic environment;

5. e′ = e[Var := var, . . .];

6. e′′ = (Φ e δ)[HVar := hvar, HLam := hlam, . . .];

7. δ(dom(r)) = dom(ρ);

8. for all x ∈ dom(r), lookup r x = ρ(δ(x)).

Then e′ r = Je′′K ρ.

Proof

By induction on e. In the proof, we regard Φ, δ, ρ, and J·K as compile-time

entities that operate on syntax. In addition, we apply equations valid in the

computational lambda calculus. Finally, we use lookup (upd r x y) x = y and

lookup (upd r x y) z = lookup r z if x 6= z.

We abbreviate (Φ e δ)[HVar := hvar, HLam := hlam, . . .] by Φhvar e δ.

Case Var x. The left side transforms into the right side as follows:

var x r

=

(fun r -> lookup r x) r

=

lookup r x

=

ρ(δ(x))

= Jδ(x)K ρ
= Jhvar (δ(x))K ρ
= JΦhvar (Var x) δK ρ

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 495

Case Lam (x, e). The left side transforms into the right side as follows:

lam (x, e) r

=

(fun r -> Fun (fun y -> e (upd r x y))) r

=

Fun (fun y -> e (upd r x y))

= using the axioms for lookup and induction

Fun (fun y -> JΦhvar e δ[x 7→ y]K ρ[y 7→ y])

= JFun (fun y -> (fun z -> Φhvar e δ[x 7→ z]) y)K ρ
= Jhlam (fun z -> Φhvar e δ[x 7→ z])K ρ
= JΦhvar (Lam (x, e)) δK ρ

The inductive step requires that for all w∈dom(upd r x y), lookup (upd r x y) w =

ρ[y 7→ y](δ[x 7→ y](w)). For w = x, the left side is lookup (upd r x y) x = y and

the right side is ρ[y 7→ y](δ[x 7→ y](x)) = ρ[y 7→ y](y) = y. For w 6= x, the

assumption for r, ρ, and δ applies.

Case App (f, a). The left side transforms into the right side as follows:

app (f, a) r

=

(fun r -> let Fun ff = f r in ff (a r)) r

=

let Fun ff = f r in ff (a r)

= induction applied to a and f

let Fun ff = JΦhvar f δK ρ in ff (JΦhvar a δK ρ[ff 7→ ff])

= Jlet Fun ff = Φhvar f δ in ff Φhvar a δK ρ
= Jhapp (Φhvar f δ, Φhvar a δ)K ρ
= JΦhvar (App (f, a)) δK ρ

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

496 P. Thiemann

let rec value2hvalue val d =

match val with

Fun f -> HFun (fun hv -> value2hvalue (f (hvalue2value hv d)) d)

| Code e -> Φ e d

and hvalue2value hval d =

match hval with

HFun f -> Fun (fun v -> hvalue2value (f (value2hvalue v d)) d)

| HCode e -> Ψ e

Fig. 7. Conversion from hvalue to value and back.

Case LamD (x, e). The left side transforms as follows:

lamD (x, e) r

=

(fun r ->

let xx = gensym () in

let Code body = e (upd r x (Code (Var xx))) in

Code (Lam (xx, body))) r

=

let xx = gensym () in

let Code body = e (upd r x (Code (Var xx))) in

Code (Lam (xx, body))

= induction

let xx = gensym () in

let Code body = JΦhvar e δ[x 7→ y]K ρ[xx 7→ xx, y 7→ Code (Var xx)] in

Code (Lam (xx, body))

=

let xx = gensym () in

let Code body = (fun y -> JΦhvar e δ[x 7→ y]K ρ[xx 7→ xx, y 7→ y])

(Code (Var xx)) in

Code (Lam (xx, body))

=

let xx = gensym () in

let Code body =J(fun y -> Φhvar e δ[x 7→ y]) (Code (Var xx))K ρ[xx 7→ xx] in

Code (Lam (xx, body))

= JhlamD (fun y -> Φhvar e δ[x 7→ y])K ρ
= JΦhvar (LamD (x, e)) δK ρ

The inductive step requires a calculation similar to that in Case Lam (x, e).

Case AppD (f, a). Identical to case App (f, a). q

5.2 Generated code

It is also possible to use higher-order syntax for the generated code. Indeed, this leads

to further simplification because it allows us to avoid the issue of generating new

identifiers in the specializer. First, we have to redefine the set of semantic values to

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 497

(*

hhvar : hvalue -> hvalue

hhlam : (hvalue -> hvalue) -> hvalue

hhapp : hvalue * hvalue -> hvalue

hhlamD : (hvalue -> hvalue) -> hvalue

hhappD : hvalue * hvalue -> hvalue

*)

let hhvar x =

x

let hhlam x_e =

HFun (fun y -> x_e y)

let hhapp (f, a) =

let HFun ff = f in

ff a

let hhlamD x_e =

HCode (HLam (fun xx ->

let HCode body = x_e (HCode (HVar xx)) in

body))

let hhappD (f, a) =

let HCode ff = f in

let HCode aa = a in

HCode (HApp (ff, aa))

Fig. 8. Higher-order syntax for specialized code.

type hvalue =

HFun of (hvalue -> hvalue)

| HCode of hexp

Next, we have to change the combinators. Except for the new constructor names,

only the combinator for LamD really changes with respect to the hvar set. For

reference, figure 8 shows all combinators in this style.

This form of output might be advantageous to perform subsequent program

transformations on the generated code. However, if we do not have a clever compiler

that deals directly with input in terms of hexp or if we want to print the generated

code then we need to convert it to a first-order representation at some point. For

these purposes we use the Ψ function from figure 5, and it is routine to show that

the hvar-style combinators behave in the same way as the hhvar-style combinators

composed with a conversion from hvalue to value.

Proposition 1

Suppose e : exp and

1. δ : ident→ ident with dom(δ) = FV(e) and δ(x) = x for all x ∈ FV(e);

2. e’ = (Φ e δ)[HVar := hvar, . . .];

3. e’’ = (Φ e δ)[HVar := hhvar, . . .].

Then e’ = hvalue2value e’’ δ where hvalue2value is defined in figure 7.

For the rest of the article we stick to this higher-order formulation, which is more

concise.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

498 P. Thiemann

(*

huvar : ’a -> ’a

hulam : (’a -> ’b) -> (’a -> ’b)

huapp : (’a -> ’b) * ’a -> ’b

hulamD : (hexp -> hexp) -> hexp

huappD : hexp * hexp -> hexp

*)

let huvar x =

x

let hulam x_e =

fun y -> x_e y

let huapp (f, a) =

f a

let hulamD x_e =

HLam (fun xx -> x_e (HVar xx))

let huappD (f, a) =

HApp (f, a)

Fig. 9. Combinators in higher-order syntax without tagging.

5.3 Discussion

The technique of this section, the transformation to higher-order abstract syntax,

provides the means to replace the simulated (or interpreted) environment by the

compiled binding mechanism of the underlying implementation. This step is a

significant improvement over a cogen generated by self-application. Applied to the

generated code, higher-order abstract syntax serves to separate the issues of code

generation and name generation. This separation simplifies the implementation of

the combinators in a pure language like Haskell, where name generation requires

passing around a state argument (either explicitly or implicitly using a monad). In

addition, it simplifies the correctness proof of the next transformation step.

6 Removing tags

The last of the alleged advantages of the handwritten-cogen approach is the fact that

generating extensions produced by a handwritten cogen do not require a universal

type. However, our last revision of the combinators still requires encoded input and

it still performs tag manipulation. In this step, we remove the tags – again by lifting

them to the meta-level – and discuss the implications.

It turns out that if we want to get rid of the universal type, we need to know

something about the type of the expression that we specialize. Up to now, every

combinator returns objects of type value and there is no restriction on the combi-

nation of the combinators. For example, the types of happ and happD are identical,

as are the types of hlam and hlamD. It is easy to confuse them as the following

expression shows:

happ (hlamD (fun x -> hvar x), hlamD (fun x -> hvar x))

This is an expression of type value which raises an exception when executed: happ

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 499

(Var)

τ(x) = t

τ ` Var x : t

(Abstr)

τ[x 7→ t2] ` e : t1

τ ` Lam (x, e) : t2 → t1

(Apply)

τ ` f : t2 → t1 τ ` a : t2

τ ` App (f, a) : t1

(Abstr-dyn)

τ[x 7→ D] ` e : D

τ ` LamD (x, e) : D

(Apply-dyn)

τ ` f : D τ ` a : D

τ ` App (f, a) : D

Fig. 10. Well-formed two-level expressions section 8.3.

expects its first argument to be Fun ff whereas hlamD returns Code e, for some

expression e.

Removing the tagging from the hvar set of combinators leads to the combinators

in figure 9. With this set of combinators, the type checker rejects the transcription

of the above expression.

huapp (hulamD (fun x -> huvar x), hulamD (fun x -> huvar x));;

Characters 7-59:

This expression has type hexp * hexp but is here used with

type (’a -> ’b) * ’a

In fact, the expression which we tried to specialize has a binding-time mismatch:

the outermost application is static, but its function argument is dynamic. Our

observation of the type error leads to the proposition that a thus constructed

generating extension is type correct if the underlying two-level expression obeys

some well-formedness criterion. This proposition is indeed true and we turn to

formalizing it.

6.1 Typability

First, we define when a two-level expression is well-formed. We adopt the criterion

of Gomard (1992), who has formalized the well-formedness of two-level expressions

using a partial type system (Gomard, 1990). In his system (extracted from (Jones et

al., 1993, section 8.3) and restricted to the present setting), the type language is

t ::= D | t→ t

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

500 P. Thiemann

and a type environment τ is a mapping from program variables to types. The type

D is the type of an arbitrary dynamic expression, and t2 → t1 is the type of a static

function that maps values of type t2 to values of type t1.

Figure 10 defines the typing rules for the judgement τ ` e : t (in type environment

τ, e is well-formed with type t). The rules for variables (Var), lambda abstraction

(Abstr), and application (Apply) are standard for a simply typed lambda calculus.

The rule (Abstr-dyn) requests that the variable and the body of a dynamic abstrac-

tion must be dynamic. The rule (Apply-dyn) states that both the function part f

and the argument part a of a dynamic application must be dynamic. Gomard (1990)

has shown that every lambda expression has a type in this system, the untypable

parts receiving type D. Gomard (1992), Palsberg (1993) and Moggi (1998) address

the semantic correctness of the type system with respect to spec, i.e. spec does not

confuse Code with Fun on well-formed expressions.

For example, the term LamD ("x", Var "x") has type D, so the term App (LamD

("x", Var "x"), LamD ("x", Var "x")) is not typable in our system because

the (Apply) rule expects the first expression to be of type t2 → t1 whereas it has

type D.

However, the term App (Lam ("x", Var "x"), LamD ("x", Var "x")) is ty-

pable with type D since τ ` Lam ("x", Var "x") : D → D is derivable.

With the above type system in place, we are left with defining a translation of the

partial types t to ML types, before we can state the connection precisely.

Definition 1

The translation T maps partial types to ML types.

T JDK = hexp

T Jt2 → t1K = T Jt2K -> T Jt1K
We will not state the typing rules of the implementation language, they are just the

standard ML typing rules that prove judgements of the form A `ML e : t where t

is a type defined by

t ::= ’a | int | hexp | t * t | t -> t

We also use ’b as an ML type variable.

Now we can state the connection between well-formedness of a two-level expres-

sion and typability of the corresponding generating extension.

Theorem 2

Suppose e : exp and

1. δ : ident→ ident injective with dom(δ) = FV(e);

2. τ ` e : t;

3. e’ = Φhuvar e δ = (Φ e δ)[HVar := huvar, . . .];

4. the type environment A is defined by dom(A) = δ(dom(τ)) and A(δ(x)) =

T Jτ(x)K for all x ∈ dom(τ).

Then A `ML e’ :T JtK.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 501

Proof

By induction on e. The typing rules of the implementation language are the syntax-

directed ML typing rules (Clément et al., 1986). In the proof, we call the variable

rule (ML-var), the application rule (ML-app), the abstraction rule (ML-abs), and

the pair introduction rule (ML-pair).

Case Var x. If τ ` Var x : t it must be due to the (Var) rule. Hence τ(x) = t.

Since e’ = δ(x) and A(δ(x)) = T JtK we conclude by the (ML-var) rule that

A `ML δ(x) : T JtK. With (ML-var) applied to huvar : ∀ ’a . ’a -> ’a and

(ML-app) we finally get A `ML huvar δ(x) :T JtK.
Case Lam (x, e). The last rule in the derivation of τ ` Lam (x, e) : t must have

been (Abstr):

τ[x 7→ t2] ` e : t1

τ ` Lam (x, e) : t2 → t1

so t = t2 → t1. Furthermore,

Φhuvar(Lam (x, e))δ

= hulam (fun y -> Φhuvar e δ[x 7→ y])

Since δ[x 7→ y](x) = y, we can apply induction to get

A[y 7→ T Jt2K] `ML Φhuvar e δ[x 7→ y] :T Jt1K
Applying the (ML-abs) rule results in

A `ML fun y -> Φhuvar e δ[x 7→ y] :T Jt2K -> T Jt1K
Using hulam : ∀ ’a . ∀ ’b . (’a -> ’b) -> (’a -> ’b), the (ML-var) rule

and the (ML-app) rule, we have that

A `ML hulam (fun y -> Φhuvar e δ[x 7→ y]) :T Jt2K -> T Jt1K
We conclude by observing T Jt2 → t1K =T Jt2K -> T Jt1K.
Case App (f, a). The last rule in the derivation of τ ` App (f, a) : t must have

been (Apply):

τ ` f : t2 → t τ ` a : t2

τ ` App (f, a) : t

By induction,

A `ML Φhuvar f δ :T Jt2 → tK
and

A `ML Φhuvar a δ :T Jt2K .

Using T Jt2 → tK =T Jt2K -> T JtK and the (ML-pair) rule gets us

A `ML (Φhuvar f δ, Φhuvar a δ) : (T Jt2K -> T JtK) * T Jt2K

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

502 P. Thiemann

Finally, apply (ML-var) using huapp : ∀ ’a . ∀ ’b . (’a -> ’b) * ’a -> ’b

and the (ML-app) rule to get

A `ML huapp (Φhuvar f δ, Φhuvar a δ) :T JtK
which concludes this case.

Case LamD (x, e). The last rule in the derivation must have been (Abstr-dyn)

τ[x 7→ D] ` e : D

τ ` LamD (x, e) : D

Furthermore,

Φhuvar (LamD (x, e)) δ

= hulamD (fun y -> Φhuvar e δ[x 7→ y])

Now, by induction and since δ[x 7→ y](x) = y and T JDK = hexp

A[y 7→ hexp] `ML Φhuvar e δ[x 7→ y] : hexp

Applying the (ML-abs) rule results in

A `ML fun y -> Φhuvar e δ[x 7→ y] : hexp -> hexp

and using hulamD : (hexp -> hexp) -> hexp and the (ML-app) rule, we have

that

A `ML hulamD (fun y -> Φhuvar e δ[x 7→ y]) : hexp

We conclude by observing again that T JDK = hexp.

Case AppD (f, a). (Similar to case App (f, a)) The last rule in the derivation of

τ ` App (f, a) : D must have been (Apply-dyn):

τ ` f : D τ ` a : D

τ ` AppD (f, a) : D

By induction,

A `ML Φhuvar f δ : hexp

and

A `ML Φhuvar a δ : hexp.

Since huappD : hexp * hexp -> hexp the (ML-pair) rule and the (ML-app) rule

are applicable leading to

A `ML huappD (Φhuvar f δ, Φhuvar a δ) : hexp

which concludes this case. q

The proof demonstrates that the implementation language must be polymorphic.

Otherwise, there would be restrictions on the use of huvar, hulam, and huapp that

would render them useless.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 503

6.2 Correctness

It remains to show that the hhvar and the huvar combinators indeed compute “the

same” answer. Since their types are different, we have to look for a suitable relation

between the results of using them. It turns out that we can use techniques developed

for proving representation independence to establish such a relation. To this end, we

define a relation ∼ which is indexed by partial types. It is reminiscent of a logical

relation (Mitchell, 1996, chapter 8).

To define the relation, let H : hvalue, k, h : hexp, F : hvalue, f : hvalue

-> hvalue, and g :T Jt2 → t1K.
• H ∼D h iff H = HCode k and k = h using equality in the computational

lambda calculus, and

• F ∼t2→t1 g iff F = HFun f and, for all x : hvalue, y :T Jt2K, x ∼t2 y implies

fx ∼t1 gy.

If we show that a generating extension constructed with the hhvar combinators

is related by ∼D to a huvar-generating extension for the same two-level program

then we know that both yield the same specialized program.

Theorem 3

Suppose

1. τ ` e : t;

2. δ1, δ2 : ident→ ident;

3. FV(e) ⊆ dom(δ1);

4. FV(e) ⊆ dom(δ2);

5. for all x ∈ FV(e) with τ(x) = t′, δ1(x) ∼t′ δ2(x).

Then Φhhvar e δ1 ∼t Φhuvar e δ2.

Proof

We use induction on e.

Case Var x. In this case, τ(x) = t by rule (Var), that is t′ = t.

Φhhvar (Var x) δ1

=

hhvar (δ1(x))

=

δ1(x)

∼t by assumption

δ2(x)

=

huvar (δ2(x))

=

Φhuvar e δ2

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

504 P. Thiemann

Case Lam (x, e). In this case, t = t2 → t1 and τ[x 7→ t2] ` e : t1 by rule (Abstr).

Φhhvar (Lam (x, e)) δ1

=

hhlam (fun x -> Φhhvar e δ1[x 7→ x])

=

HFun (fun x -> (fun x -> Φhhvar e δ1[x 7→ x]) x)

=

HFun (fun x -> Φhhvar e δ1[x 7→ x])

Supposing that x ∼t2 y, induction yields that

Φhhvar e δ1[x 7→ x] ∼t1 Φhuvar e δ2[x 7→ y].

Therefore, appealing to βV yields

(fun x -> Φhhvar e δ1[x 7→ x]) x ∼t1 (fun y -> Φhuvar e δ2[x 7→ y]) y

and the proof proceeds as follows by definition of ∼t2→t1 :
HFun (fun x -> Φhhvar e δ1[x 7→ x])

∼t2→t1
fun y -> Φhuvar e δ2[x 7→ y]

=

hulam (fun y -> Φhuvar e δ2[x 7→ y])

=

Φhuvar (Lam (x, e)) δ2

Case App (f, a). In this case, t = t1 and rule (Apply) yields that τ ` f : t2 → t1
and τ ` a : t2.

Φhhvar (App (f, a)) δ1

=

hhapp (Φhhvar f δ1, Φhhvar a δ1)

=

let HFun ff = Φhhvar f δ1 in ff (Φhhvar a δ1)

By induction, Φhhvar f δ1 ∼t2→t1 Φhuvar f δ2 and Φhhvar a δ1 ∼t2 Φhuvar a δ2. There-

fore, by definition of ∼t2→t1 , if Φhhvar f δ1 = HFun ff then ff (Φhhvar a δ1) ∼t1
Φhuvar f δ2(Φhuvar a δ2). That is,

let HFun ff = Φhhvar f δ1 in ff (Φhhvar a δ1)

∼t1
Φhuvar f δ2(Φhuvar a δ2)

=

huapp (Φhuvar f δ2, Φhuvar a δ2)

=

Φhuvar (App (f, a)) δ2

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 505

Case LamD (x, e). In this case, t = D and rule (Abstr-dyn) yields that τ[x 7→ D] `
e : D.

Φhhvar (LamD (x, e)) δ1

=

hhlamD (fun x -> Φhhvar e δ1[x 7→ x])

=

HCode (HLam (fun xx ->

let HCode body = (fun x -> Φhhvar e δ1[x 7→ x]) (HCode (HVar xx))

in body))

Given x ∼D y, induction yields that

Φhhvar e δ1[x 7→ x] ∼D Φhuvar e δ1[x 7→ y].

Since HCode (HVar xx) ∼D HVar xx, this means

(fun x -> Φhhvar e δ1[x 7→ x]) (HCode (HVar xx))

∼D
(fun y -> Φhuvar e δ2[x 7→ y]) (HVar xx)

If (fun x -> Φhhvar e δ1[x 7→ x]) (HCode (HVar xx)) = HCode body then

HCode body ∼D (fun y -> Φhuvar e δ2[x 7→ y]) (HVar xx)

Hence,

HCode (HLam (fun xx ->

let HCode body = (fun x -> Φhhvar e δ1[x 7→ x]) (HCode (HVar xx))

in body))

∼D
HLam (fun xx -> body)

=

HLam (fun xx -> (fun y -> Φhuvar e δ2[x 7→ y]) (HVar xx))

=

hulamD (fun y -> Φhuvar e δ2[x 7→ y])

=

Φhuvar (LamD (x, e)) δ2

Case AppD (f, a). Similar. q

6.3 Discussion

We have shown that removing the tagging operations from the generating extension

does not affect its typability. We found that polymorphic type-checking of the

generating extension is an additional test for the well-formedness of the underlying

two-level expression. In consequence, it is safe to compile generating extensions with

type checking turned off if the well-formedness has been established.

As an additional benefit, the mapping from annotated expressions to a combinator

expression may be improved to drop huvar, hulam, and huapp and directly use

variables, lambda abstractions, and applications of the implementation language. In

this case, a simply typed implementation language is sufficient.

Alternatively, if we adopt the improved mapping, polymorphic type-checking

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

506 P. Thiemann

of the translated two-level expression gives rise to an improved well-formedness

criterion. Actually, there are combinator terms composed from the huvar combi-

nators which are ML-typable despite being rejected by Gomard’s type system for

well-formedness. An example of such a term is

let id = fun x -> x in

(id (fun x -> x)) (id (hulamD (fun x -> x)));;

- : exp = Lam ("x1", Var "x1")

Therefore, we might define well-formedness of a two-level expression via ML-

typability of its improved translation to the huvar combinators.

Finally, we have reaped some benefit from the higher-order representation of

the output. If the combinators had involved name generation then establishing a

relation between the two formulations would have been substantially harder.

7 Generalizing

In the past three sections, we have witnessed a transformation from a simple special-

izer into equally powerful, but more efficient combinators for program generation.

Using these combinators, we can eliminate the syntax dispatch in the specializer,

the cost of an explicit environment, and finally the cost of tagging and untagging

operations.

But we started from a very simple specializer! Does the same technique work for

other styles of offline partial evaluation? Indeed, it works for all partial evaluators

that have a compositional specification. Since Lambdamix-style specialization is

of little practical use, the rest of this section discusses the transformation for two

examples that extend the capabilities of the simple specializer: continuation-based

partial evaluation (Bondorf, 1992) and continuation-based partial evaluation in

direct style (Lawall and Danvy, 1994). Continuation-based partial evaluators and

generalizations thereof are the method of choice for specializing pure and impure

functional programs (Dussart and Thiemann1, 1997; Thiemann, 1998).

7.1 Continuation-based partial evaluation

Suppose we add a Let expression to the syntax of two-level expressions and extend

the Lambdamix specializer (Fig. 2) so that Let (x, h, e) is equivalent to App

(Lam (x, e), h) and LetD (x, h, e) is equivalent to AppD (LamD (x, e), h),

the difference being that LetD (x, h, e) generates a Let expression instead of a

β-redex:

let rec spec e r =

match e with

...

| Let (x, h, e) ->

spec e (upd r x (spec h r))

| LetD (x, h, e) ->

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 507

let xx = gensym () in

let Code hh = spec h r in

let Code ee = spec e (upd r x (Code (Var xx))) in

Code (Let (xx, hh, ee))

Let’s try to specialize something:

spec (LamD ("q",

App (LetD ("id", AppD (Var "q", Var "q"),

Lam ("z", Var "z")),

Var "q"))) [];;

Uncaught exception: Match_failure("", 578, 585)

Evidently, this term has a binding-time mismatch! The intervening LetD expres-
sion stops us from reducing App (Lam ("z", Var "z"), Var "q"). However,
the unannotated expressions App (Let ("id", App (Var "q", Var "q"), Lam
("z", Var "z")), Var "q") and Let ("id", AppD (Var "q", Var "q"), App
(Lam ("z", Var "z"), Var "q")) cannot be distinguished in the call-by-value
lambda calculus1 and the two-level version of the latter specializes successfully:

spec (LamD ("q",

LetD ("id", AppD (Var "q", Var "q"),

App (Lam ("z", Var "z"),

Var "q")))) [];;

- : value =

Code (Lam ("x13", Let ("x14", App (Var "x13", Var "x13"), Var "x13")))

Continuation-based specialization grew out of the desire to treat expressions like

the two considered above in the same way, by somehow dragging the specialization of

the context of a LetD expression into its body. Continuations are a means to achieve

this feat and Bondorf (Bondorf, 1992) defines a specializer using continuations that

treats our two expressions in the same way.

Figure 11 shows the essential part of Bondorf’s specializer. The domain of seman-

tic values cvalue changes as expected for a continuation semantics (Schmidt, 1986;

Mosses, 1990). The specializer cspec now maps an expression e : exp, an environ-

ment r : (ident, cvalue) env, and a continuation c : (cvalue -> cvalue) to

a result of type cvalue.

The interpretation of Var, Lam, and App is just like in a continuation seman-

tics for a call-by-value lambda calculus (omitting the trivial Let) (Schmidt, 1986;

Mosses, 1990). The interpretation of the dynamic constructs is slightly different:

LamD specializes its body using the identity continuation (fun z -> z) and passes

the constructed Lam to its continuation, AppD is treated like a primitive operation in

a continuation semantics, and LetD first specializes the header h then it constructs

the Let expression and specializes its body e using its own continuation. Since the

continuation c performs the specialization of the context of the LetD, this special-

izer essentially generates the specialized code for the context inside the body of the

generated Let expression.

1 They are observationally equivalent, but cannot be proved equal in the call-by-value lambda calculus.
However, they can be proved equal in the computational lambda calculus (Sabry and Felleisen, 1993).

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

508 P. Thiemann

type cvalue =

CFun of (cvalue -> (cvalue -> cvalue) -> cvalue)

| CCode of exp

(* cspec : exp -> (ident, cvalue) env -> (cvalue -> cvalue) -> cvalue *)

let rec cspec e r c =

match e with

Var x ->

c (lookup r x)

| Lam (x, e) ->

c (CFun (fun y -> cspec e (upd r x y)))

| App (f, a) ->

cspec f r (fun (CFun ff) ->

cspec a r (fun aa ->

ff aa c))

| LamD (x, e) ->

let xx = gensym () in

let CCode body = cspec e (upd r x (CCode (Var xx))) (fun z -> z) in

c (CCode (Lam (xx, body)))

| AppD (f, a) ->

cspec f r (fun (CCode ff) ->

cspec a r (fun (CCode aa) ->

c (CCode (App (ff, aa)))))

| LetD (x, h, e) ->

let xx = gensym () in

cspec h r (fun (CCode hh) ->

let CCode ee = cspec e (upd r x (CCode (Var xx))) c in

CCode (Let (xx, hh, ee)))

Fig. 11. Bondorf’s specializer using continuations (Bondorf, 1992, figures 4–6).

This devious treatment of the LetD cures exactly the problem that we had before.

With this specializer, our example works out fine:

cspec (LamD ("q", App (LetD ("id", AppD (Var "q", Var "q"),

Lam ("z", Var "z")),

Var "q"))) [] (fun x -> x);;

- : cvalue =

CCode (Lam ("x1", Let ("x2", App (Var "x1", Var "x1"), Var "x1")))

The specializer cspec looks considerably more involved than the simple Lamb-

damix specializer from Fig. 2. However, all three transformation steps work just the

same as before. Figure 12 shows the result. Most combinators are by now familiar,

except the hucletD combinator: it takes a pair corresponding to the header expres-

sion h and a function x_e that maps the binding for the variable to the specialization

function for the body. The transcription to the new combinators of our example

shows the use of hucletD and it demonstrates that the transformation has preserved

the special behavior of cspec (outHOAS is the OCaml name for Ψ):

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 509

(*

type ’a comp = (’a -> hexp) -> hexp

hucvar : ’a -> ’a comp

huclam : (’a -> ’b comp) -> (’a -> ’b comp) comp

hucapp : (’a -> ’b comp) comp * ’a comp -> ’b comp

huclamD : (hexp -> hexp comp) -> hexp comp

hucappD : hexp comp * hexp comp -> hexp comp

hucletD : hexp comp * (hexp -> ’a comp) -> ’a comp

*)

let hucvar x =

fun c ->

c x

let huclam x_e =

fun c ->

c (fun y -> x_e y)

let hucapp (f, a) =

fun c ->

f (fun ff ->

a (fun aa ->

ff aa c))

let huclamD x_e =

fun c ->

c (HLam (fun xx -> x_e (HVar xx) (fun z -> z)))

let hucappD (f, a) =

fun c ->

f (fun ff ->

a (fun aa ->

c (HApp (ff, aa))))

let hucletD (h, x_e) =

fun c ->

h (fun hh ->

HLet (hh, fun xx -> x_e (HVar xx) c))

Fig. 12. Combinators from Bondorf’s specializer.

(Let-dyn)

τ `′ h : D τ[x 7→ D] `′ e : t

τ `′ LetD (x, h, e) : t

Fig. 13. Well-formedness of LetD for cspec.

outHOAS

(huclamD (fun q ->

hucapp (hucletD (hucappD (hucvar q, hucvar q),

fun id -> huclam (fun z -> hucvar z)),

hucvar q)) (fun x -> x));;

- : exp = Lam ("x3", Let ("x4", App (Var "x3", Var "x3"), Var "x3"))

Following the transformations, we can prove adaptions of Theorem 5.1 (the

transformation to higher-order abstract syntax) and Theorem 6.1 (the connection

between well-formedness and typability of the generating extension).

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

510 P. Thiemann

While statement and proof of Theorem 5.1 only require routine changes (and

therefore, we do not state it here), we need some new definitions to state the adapted

Theorem 6.1.

Figure 13 defines a typing rule for the LetD which is suitable for cspec (). The

remaining rules for the judgement τ `′ e : t are the ones from figure 10 with `
replaced by `′.

In addition, the translation from partial types to ML types needs to take

continuation-passing into account. This is a standard transformation on types (Hat-

cliff and Danvy, 1994).

Definition 2

The translationsV and C map partial types into ML types assuming a Plotkin-style

transformation to call-by-value continuation-passing style (CPS).

V JDK = hexp

V Jt2 → t1K = V Jt2K -> C Jt1K
C JtK = (V JtK -> hexp) -> hexp = V JtK comp

V translates the types of values whereas C translates the types of computations

that accept a continuation and pass their value to it. The intuition of using hexp as

the type of the answers in C is that the final answer of a specializer is specialized

code of type hexp.

Now we can state the adaption of Theorem 6.1 for continuation-based specializa-

tion.

Theorem 4

Suppose e : exp and

1. δ : ident→ ident injective with dom(δ) = FV(e);

2. τ `′ e : t;

3. e’ = Φhucvar e δ;

4. the type environment A is defined by dom(A) = δ(dom(τ)) and A(δ(x)) =

V Jτ(x)K for all x ∈ dom(τ).

Then A `ML e’ : C JtK.
Proof

By induction on the derivation of τ `′ e : t. q

The huvar set of combinators for the simple specializer (figure 9) has the intriguing

property that a clever translation from two-level expressions to combinators can

eliminate the huvar, hulam, and huapp combinators. While there seems to be no

chance to eliminate the huclam and hucapp combinators, the hucvar combinator

can be eliminated at the price of modifying the combinators once again. The idea

goes back to Reynolds’s CPS translation for a call-by-value language. Instead of

having

let hucvar x = fun c -> c x

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 511

(* dspec : exp -> (ident, value) env -> value *)

let rec dspec e r =

match e with

...

| LamD (x, e) ->

let xx = gensym () in

let Code body =

reset (fun () -> dspec e (upd r x (Code (Var xx)))) in

Code (Lam (xx, body))

| AppD (f, a) ->

let Code ff = dspec f r in

let Code aa = dspec a r in

Code (App (ff, aa))

| LetD (x, h, e) ->

let xx = gensym () in

shift (fun k ->

let Code hh = dspec h r in

let Code body =

reset (fun () -> k (dspec e (upd r x (Code (Var xx))))) in

Code (Let (xx, hh, body)))

Fig. 14. Lawall and Danvy’s (1994) specializer.

where the variable transforms itself into a computation that accepts a continuation

c, we bind variables to computations in the first place, that is, in the cases for Lam,

LamD, and LetD. We only show the case for Lam and leave the remaining cases as an

exercise.

let hurcvar x = x

let hurclam x_e =

fun c ->

c (fun y -> x_e (fun c -> c y))

By the way, instead of changing the Lam case, we could also change the App case to

achieve the same goal, but with slightly different typing properties.

Instead of adapting and proving Theorem 7.1 for this modification (which amounts

to redefining A to be A(δ(x)) = C Jτ(x)K) we conclude with running our example

using the last set of combinators:

outHOAS

(hurclamD (fun q ->

hurcapp (hurcletD (hurcappD (q, q),

fun id -> hurclam (fun z -> z)),

q))

(fun x -> x));;

- : exp = Lam ("x7", Let ("x8", App (Var "x7", Var "x7"), Var "x7"))

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

512 P. Thiemann

(*

hudlamD : (hexp -> hexp) -> hexp

hudappD : hexp * hexp -> hexp

hudletD : hexp * (hexp -> ’a) -> ’a

*)

let hudlamD x_e =

HLam (fun xx -> reset (fun () -> x_e (HVar xx)))

let hudappD (f, a) =

HApp (f, a)

let hudletD (h, x_e) =

shift (fun k ->

HLet (h, fun xx -> reset (fun () -> k (x_e (HVar xx)))))

Fig. 15. Combinators for continuation-based specialization in direct style.

7.2 Continuation-based specialization in direct style

Lawall and Danvy (1994) show how to achieve the beneficial effect of Bondorf’s

specializer without using continuations. The conceptual price is high, since they make

use of control operators in the implementation. However, the investment pays back

in terms of improved performance of the specializer. Therefore, let’s see whether

their style of specialization is amenable to combinator-based program generation,

too.

First, we put their main tools on the table: the control operators shift and reset

(Danvy and Filinski, 1990, 1992). They have the following effect: reset expects a pa-

rameterless function thunk, it runs thunk and “sets a marker” to delimit its context.

shift expects a function, say f, as its argument and passes to f another function that

corresponds to the context of shift f up to the next enclosing reset. At the same

time, shift removes this context. A few examples serve to clarify their operation.

1 + reset (fun () -> 10 * shift (fun k -> 41))

- : int = 42

k is bound to the captured context fun z -> 10 * z. However, this example dis-

cards k, so the multiplication by 10 never happens. The next examples show that

we can use k like any other function:

1 + reset (fun () -> 10 * shift (fun k -> k 41));;

- : int = 411

1 + reset (fun () -> 10 * shift (fun k -> k (k 41)));;

- : int = 4101

Exactly this mechanism can relocate the specialization of the context of a LetD into

its body. Figure 14 shows how (Lawall and Danvy, 1994). It omits the cases for

Var, Lam, and App: they are identical to figure 2. In the case for LamD the reset

delimits the specialization of the body. The type of reset here is (unit -> value)

-> value. The case for AppD remains unchanged. In the case for LetD the shift

abstracts the specialization of the context of the LetD and binds it to k. After

specializing the header h and the original body e, the application of k specializes

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 513

the context of e inside the body of the generated Let. The type of shift here is

((value -> value) -> value) -> value.

The types assumed for shift and reset are not the most general ones. However,

a discussion of their typing properties is not in the scope of this paper. We refer to

Gunter et al. (1995) for a discussion of the typing of control operators.

From figure 14 we derive – just as before – the combinator representation. Figure

15 shows the result for the LamD, AppD, and LetD cases. There are no surprises,

except that the typings of the control operators are now reset : (unit -> hexp)

-> hexp and shift : ((’a -> hexp) -> hexp) -> ’a, because we have stripped

away the tags.

Lawall and Danvy (1994) show that cspec and dspec are connected via a CPS

translation. Just the same is true for the hucvar and hudvar combinators: The

hucvar combinators are the images of the hudvar combinators under Danvy and

Filinski’s (1990, 1992) extended CPS translation.

OCaml type-checks these combinators but it is not possible to run them properly.

The implementation neither supports shift/reset nor call/cc, which can be used

to implement them (Filinski, 1994). However, we are using their transcription to

Scheme successfully in our specialization system (see section 10).

8 Extending

In this section, we discuss various issues involved in extending the concepts intro-

duced in the last sections to a specializer for a full language. Our main concern is

coverage: Can we provide combinators for all constructs of the language?

Another concern would be support for program point specialization and memo-

ization. Since memoization involves comparison of static data, we have to find for

each datatype a representation that can be compared for equality. The main problem

here is with functions. However, once we have such a representation, we simply re-

place the Lam combinator with the constructor of the representation and enhance the

App combinator with a destructor of the representation. Thiemann (1996) presents

such a representation for typed and untyped functional programming languages. We

will not discuss it here.

Back to coverage of language constructs: Our guideline here is the work on

Lambdamix (Gomard, 1992; Jones et al., 1993), and we simply exhibit combinator

implementations for constants, lifting, fixpoint, conditional, and primitive operations.

We consider two of the variants, namely for the huvar set (simple combinators with

higher-order syntax, untagged, figure 9) and for the hucvar set (combinators with

higher-order syntax, untagged, for continuation-based specialization, figure 12). For

conciseness we use

type ’a comp = (’a -> hexp) -> hexp

in the type signatures for the hucvar combinators. None of the constructs is a

binding construct, so the syntax representation of the output does not matter. It is

straightforward to extend our technical results to the full language.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

514 P. Thiemann

Constants. These are straightforward to integrate. We extend the syntax and give

the two implementations. The huccon combinator works like the constant case in a

continuation semantics.

type exp = ... | Con of int

(*

hucon : int -> int

huccon : int -> int comp

*)

let hucon i = i

let huccon i =

fun c -> c i

Lifting. This means to propagate a value at specialization time to its syntactic

representation in the specialized program. Again, it is straightforward to implement.

The huclift combinator works like a unary primitive in a continuation semantics.

type exp = ... | Lift of exp

(*

hulift : int -> hexp

huclift : int comp -> hexp comp

*)

let hulift e =

Con e

let huclift e =

fun c -> e (fun i -> c (Con i))

Fixpoint. Here we have to restrict the argument of the fixpoint operator to have

functional type because our implementation language is call-by-value. If our imple-

mentation were for a non-strict language like Haskell, this restriction would not be

necessary. Otherwise, we just extend the syntax and give the implementation.

type exp = ... | Fix of exp | FixD of exp

(*

fixv : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

hufix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b

*)

let rec fixv f = f (fun x -> fixv f x)

let hufix e = fixv e

The continuation semantics requires a fixpoint operator in continuation-passing style
which will then serve as the implementation for hucfix.

(*

fixvc : ((’a -> ’b comp) -> (’a -> ’b comp) comp) -> (’a -> ’b comp) comp

hucfix : ((’a -> ’b comp) -> (’a -> ’b comp) comp) -> (’a -> ’b comp) comp

*)

let rec fixvc f = fun c -> f (fun x c -> fixvc f (fun g -> g x c)) c

let hucfix e = fixvc e

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 515

The dynamic versions of the fixpoint operator are much simpler, they just build

a Fix expression.

(*

hufixD : hexp -> hexp

hucfixD : hexp comp -> hexp comp

*)

let hufixD e =

Fix e

let hucfixD e =

fun c -> e (fun ee -> c (Fix ee))

Conditional. The syntax extends as follows:

type exp = ... | If of exp * exp * exp | IfD of exp * exp * exp

Here, we encounter the first small problem in the huvar combinators. The problem

is that every function that replaces If evaluates both branches of the conditional,

which breaks the semantics. There are two ways out of the problem:

1. The translation encapsulates the branches in thunks (i.e. functions of type

unit -> ’a) and uses

(* huif : int * (unit -> ’a) * (unit -> ’a) -> ’a *)

let huif (i, t’, e’) =

if i!=0 then t’ () else e’ ()

or

2. the translation uses the implementation language’s if directly.

The latter is the simplest solution, so we stick to that. The dynamic case just builds

an If expression.

let huifD (i, t, e) =

If (i, t, e)

However, this combinator is not suitable for use with the hudvar set of combinators

because Lawall and Danvy’s (1994) specializer places resets on top of the branches

of the conditional. The solution is to have the translation insert thunks on the

branches of the dynamic conditional:

(* hudifD : exp * (unit -> exp) * (unit -> exp) -> exp *)

let hudifD (i, t’, e’) =

If (i, reset t’, reset e’)

In continuation-passing style, the problem with the non-strictness of the If

disappears since the arguments to the hucif function are themselves functions that

expect a continuation.

(*

int comp * (’a comp) * (’a comp) -> ’a comp

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

516 P. Thiemann

*)

let hucif (i, t, e) =

fun c -> i (fun ii ->

if ii != 0 then t c else e c)

The dynamic case is handled like in Bondorf’s (1992) specializer: the combinator

specializes the condition and constructs the specializations of the branches using the

identity continuation.

let hucifD (i, t, e) =

fun c -> i (fun ii ->

c (If (ii, t (fun z -> z), e (fun z -> z))))

Primitive operations. For simplicity, we restrict the discussion here to the case of

unary primitives. The generalization is straightforward.

The syntactic representation of a primitive includes its name as a string, the

function itself of type int -> int, and the argument expression. The string only

serves to please human readers, the combinators never inspect it.

type exp = ... | Prim of string * (int -> int) * exp

| PrimD of string * (int -> int) * exp

Both cases are simple.

(*

huprim : string * (int -> int) * int -> int

hucprim : string * (int -> int) * int comp -> int comp

*)

let huprim (_, p, i) =

p i

let hucprim (_, p, e) =

fun c -> e (fun i -> c (p i))

Functions with a differing number of arguments may be handled using

Prim’ of string * (int list -> int) * exp list

The implementation of huprim does not change with this signature. The implemen-

tation of hucprim gets a little bit tedious, but it is still straightforward.

In the dynamic case, the simple specializer just rebuilds the expression and the

continuation-based specializer performs a primitive operation.

(*

huprimD : string * (int -> int) * hexp -> hexp

hucprimD : string * (int -> int) * hexp comp -> hexp comp

*)

let huprimD (s, p, e) =

Prim (s, p, e)

let hucprimD (s, p, e) =

fun c -> e (fun ee -> c (Prim (s, p, ee)))

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 517

9 Folding

The astute reader might have expected a connection between the combinators that

we derived and the recursive spec functions in terms of a fold functional. Indeed,

we could rephrase the result of Lemma 4.1 in Sec. 4 as

spec = foldexp(var, lam, . . .)

where foldexp is the fold functional for the exp datatype (Sheard and Fegaras,

1993). Unfortunately, we cannot apply the standard theorems about fold functionals

because spec and the var combinators involve state manipulation due to the use of

gensym.

The hvar set of combinators also has a connection to a fold functional. However,

it is not the fold functional associated to the hexp type because the types do not

work out. To be usable for folding over hexp only occurrences of hexp in the types

of the constructors should have been replaced by value, but in fact the occurrences

of ident have been replaced by value, too. The right type for folding with the hvar

combinators is

type ’a phexp =

PHPlace of ’a

| PHLam of (’a phexp -> ’a phexp)

| PHApp of ’a phexp * ’a phexp

| PHLamD of (’a phexp -> ’a phexp)

| PHAppD of ’a phexp * ’a phexp

which is parameterized over the domain ’a of semantic values. The difference is

that variables have no explicit representation, i.e. the encoding of Lam ("x", Var

"x") is PHLam (fun x -> x). Fegaras and Sheard (1996) explain how to construct

a fold over ’a phexp where ’a phexp can occur negatively in the argument type

of a constructor. They also explain the rôle of the PHPlace constructor. However,

the connection to the fold functional is less gratifying this time, because it does not

yield the correctness proof of the transformation step for free.

10 Performance

In this section we report comparative measurements between four methods for doing

offline partial evaluation:

• specialization directly with Similix (Bondorf, 1993), a partial evaluator for

Scheme;

• specialization with a generating extension produced by a Similix-generated

cogen (using double self-application);

• specialization with a generating extension composed of hucvar-style combi-

nators;

• specialization with a generating extension composed of hudvar-style combi-

nators.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

518 P. Thiemann

program size description

app 67 list append

ctors 167 partially-static constructors

lambda 133 partially-static functions

cps-lr 727 functional LR-parser using continuations

(Sperber and Thiemann, 1995)

direct-lr 1581 functional LR-parser in direct style (Sperber

and Thiemann, 1995)

scheme1 6625 interpreter for higher-order rec. equations

(Thiemann, 1995)

Fig. 16. Benchmark programs (size = number of cons cells + number of atoms).

Similix PGG ratios

program gen comp spec
spec
comp CPS DS Sim

CPS
Sim
DS

CPS
DS

app 177.6 6.7 13.3 1.98 1.4 1.0 4.78 6.70 1.40

ctors 368.6 12.3 27.4 2.22 3.1 5.3 3.96 2.32 0.58

lambda 476.5 20.4 32.2 1.57 5.4 6.5 3.77 3.13 0.83

direct-lr 6690 13090 10840 0.82 3970 3910 3.29 3.34 1.01

cps-lr 3770 10810 9870 0.91 3360 3390 3.21 3.18 0.99

scheme1 26360 560 2370 4.23 390 180 1.43 3.11 2.16

Fig. 17. Runtimes for the benchmarks (in ms).

All specializers have comparable features, i.e. all perform continuation-based special-

ization, they perform polyvariant program point specialization, and handle partially

static data. There is no postprocessing (we have turned it off in Similix, since it

contributes massively to specialization time). To get a sensible comparison, we have

implemented all of the combinators in Scheme (Kelsey et al., 1998) as part of the

PGG system (Thiemann, 1999). Our implementation of the hudvar combinators

uses Filinski’s (1994) implementation of shift and reset.

Figure 16 describes the benchmark programs. Three of them (app, ctors, and

lambda) are artificial programs that test specific features. The remaining three are

realistic examples: we have used cps-lr and direct-lr in previous work on parser

generation (Sperber and Thiemann, 1995) and scheme1 to generate higher-order

online specializers (Thiemann and Glueck, 1995). The times are measured on an

IBM 43P with 64MB main memory running AIX 4.1.4 using the ,time command

of the Scheme 48 system version 0.44 (Kelsey and Rees, 1995) with -h 4000000

heap space.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 519

Figure 17 displays the timing data. All times are given in milliseconds. They

include garbage collection if any, but exclude loading and compiling programs.

They do not include preprocessing and binding-time analysis, which is about the

same for all systems. There is one row for each program. The first column gives the

name of the benchmark. The next four columns give timings for Similix as follows:

gen time to generate the generating extension.

comp time to run the generating extension on a representative input.2

spec time to specialize directly with Similix on the same input.
spec
comp ratio of time spec divided by time comp.

The next two columns give timings for the PGG system.

CPS indicates a specialization run using the hucvar-style combinators.

DS indicates a specialization run using the combinators in hudvar-style.

The final three columns contain ratios between Similix times and PGG times.

Sim
CPS

Similix time for comp divided by PGG time for CPS.

Sim
DS

Similix time for comp divided by PGG time for DS.

CPS
DS

PGG time for CPS divided by PGG time for DS.

The PGG system does not have to create a generating extension from the binding-

time annotated program; it simply outputs the annotated program at the end of

the binding-time analysis. Hence, the generate column is only applicable to Similix.

The PGG-constructed generating extensions in hudvar style are faster than Similix’

generating extensions by a factor between 2.3 and 6.7, with an average of 3.63. The

generating extensions using the hucvar-style combinators are faster than Similix’

by a factor between 1.4 and 4.8, the average being about 3.4. In the comparison

of the hucvar-style combinators with the hudvar-style combinators, the hucvar

versions vary between being twice as fast and half as fast as the corresponding

hudvar versions with an average of 1.16. This makes a strong case for the hudvar-

style combinators, although the figures are positively influenced by the fact that

Scheme 48 has a fast implementation of call/cc (which is used to implement shift

and reset (Filinski, 1994)). Other implementations could give different results, i.e.

less favorable for the hudvar-style combinators.

Interestingly, the speedup of specialize vs. compile for Similix ranges between 0.82

(specializing with Similix’ generating extension is slower than specializing directly)

and 4.23 with the slow cases being the parsers.

11 Related work

The construction of combinators for generating extensions relies on a compositional

specification of the specializer. This facilitates moving the syntax dispatch to the

2 The Similix-generated generating extensions that we used to measure specialization times were of
course produced with postprocessing. Otherwise they would compile significantly slower.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

520 P. Thiemann

meta-level by re-interpreting the syntax constructors as functions that perform

specialization. Holst (1989) is the first to construct generating extensions by re-

interpreting the syntax constructors of a two-level program using Scheme macros.

The development of these macros is ad-hoc and does not consider typing issues.

The next key point is to exploit the binding mechanism of the implementation

language using higher-order abstract syntax. The idea of higher-order abstract syntax

can be traced back to Church (1940). It was popularized by Pfenning and Elliott

(1988). Mogensen (1992 a, 1992 b, 1995) has used higher-order abstract syntax to

develop efficient self-interpreters and specializers for the pure lambda calculus. The

present work is yet another indication of the value of higher-order abstract syntax

in program transformation.

Hand-written program-generator generators are not new. Beckman and others

(Beckman et al., 1976) already describe a program generator for online special-

ization. Their motivation was the lack of self-applicable specializers at that time.

Romanenko (1988) gives some recipes to construct compilers from binding-time

annotated interpreters. These recipes bear some similarity to the combinator def-

initions that we derived from the Lambdamix specializer. Romanenko discovered

them by inspection of compilers produced by a self-applicable specializer, not by

derivation. Hence, he does not present any correctness arguments. Since then a

number of papers report hand-written program-generator generators for a variety

of functional languages (Launchbury and Holst, 1991; Birkedal and Welinder,1993;

Glueck and Jørgensen, 1995; Draves, 1996), all of them using ad-hoc methods.

Of them, Launchbury and Holst (1991) were the first to realize the potential for

efficiently specializing programs in statically typed languages. Bondorf and Dussart

(1994) construct a hand-written continuation-based cogen and prove its equivalence

to Bondorf’s specializer (Bondorf,1992), Lawall and Danvy (1995) present equivalent

continuation-based cogens in the style of cspec and dspec. Both works have tedious

equivalence proofs with respect to a continuation-based specializer. In contrast, our

combinators have a simple and direct derivation from the specializer.

Glück and Jørgensen (1995) consider a cogen for multi-level specialization and

multi-level binding-time analysis (1996). However, their work is for an untyped

language, they only cover the simple spec-style specialization, and they do not state

a formal connection to a specializer. It is straightforward to extend our work to

multi-level specialization (see Thiemann (1996)).

Thiemann and Sperber (1997) demonstrate another approach to program gener-

ation in a language with an extension of Haskell-style overloading. They have only

one combinator for each syntax constructor, but its type is overloaded so that it

can act for the static case as well as for the dynamic case, depending on the context

of use. They argue that this approach can eliminate the need for a binding-time

analysis.

The general approach of this work in also transferable to other programming

paradigms: Leuschel and Jørgensen (1996) demonstrate the feasibility of hand-

written program-generator generators for logic programming. The C-mix special-

ization system (Andersen, 1994) constructs generating extensions directly from two-

level programs. The Tempo system (Consel and Noël, 1996) goes one step further

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 521

in constructing generating extensions for run-time code generation from two-level

programs. A similar approach is used by Sperber and Thiemann (1997).

Wand (1982) has introduced combinator-based compilation. He expresses a contin-

uation semantics of a programming language in terms of combinators. The compiled

program is obtained by re-interpreting the semantic combinators as instructions of

a stack machine. He performs optimizations by rewriting the combinator term using

rules derived from the original semantics. The similarities of his method to our

approach lie in the re-interpretation of the combinators, which is possible due to

the compositionality of the semantics and which yields the correctness-by-derivation

property. In both cases, the compiled (specialized) programs are expressed in terms

of the combinators. However, we are concerned with performing a source-to-source

program transformation, not with transforming a program into a form suitable for

efficient execution on a stack machine. Hence, we abstract entire right sides of the

definition of the specializer into combinators.

Finally, we could view the combinators as a domain-specific programming lan-

guage for writing program generators. The polymorphic type-checking of the im-

plementation language would test the well-formedness as outlined in section 6, thus

removing the need for an extra binding-time analysis. Compared to a dedicated

language for meta-programming (like MetaML – Taha and Sheard, 1997), our ap-

proach has the disadvantage that it does not enforce the generated program to be

well-typed. However, we prefer having the binding-time analysis figure out the static

and dynamic parts for us rather than constructing the program generator by hand.

12 Conclusion

We have presented a simple and general methodology for constructing combinators

for specialization from a denotational specification of a specializer. The method

relies on the compositionality of the specification, higher-order abstract syntax,

and untagging. We exhibit three corresponding transformation steps and prove

their correctness. The resulting set of combinators serves to re-interpret the syntax

constructors of a two-level program, thus turning it into its own generating extension.

We have applied the methodology to derive combinators for standard specializa-

tion and for continuation-based specialization (once using continuations and once

using control operators).

The implementation of our combinators in other functional programming lan-

guages, typed or untyped, pure or impure, is straightforward. This is mainly due

to our decoupling of program generation and name generation. For example, in a

Haskell implementation only the final printing part of the system has to be written

in monadic style to perform name generation. All other parts of the specialization

are pure.

We have shown that specialization combinators facilitate efficient program spe-

cialization. Our full-blown specialization system for Scheme outperforms a self-

applicable specializer by a factor of three for realistic examples.

We believe that it is simpler to construct combinators for specialization than

to write a self-applicable specializer. First, the programmer does not have to be

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

522 P. Thiemann

wary of binding times while constructing the underlying specializer. Secondly, the

underlying specializer can freely exploit all features of the language, it is not

restricted to “specializable” features. Thirdly, specialization using the combinators

is more efficient than using generating extensions from a self-applicable specializer

as we have demonstrated. And finally, the correctness proof with respect to the

specializer reduces to the correctness of the transformation steps that we have done

once and for all in this work.

Acknowledgements

Thanks to Olivier Danvy, Dirk Dussart, Robert Glück, Jesper Jørgensen and Julia

Lawall for discussions and suggestions about the precursor to this work (Thiemann,

1996). Thanks also to the reviewers for their comments that helped to improve this

work.

References

Andersen, L. O. (1994) Program Analysis and Specialization for the C Programming Language.

PhD thesis, DIKU, University of Copenhagen. (DIKU report 94/19.)

Beckman, L., Haraldsson, A., Oskarsson, Ö. and Sandewall, E. (1976) A partial evaluator,

and its use as a programming tool. Artificial Intelligence, 7(4), 319–357.

Birkedal, L. and Welinder, M. (1993) Partial evaluation of Standard ML. Rapport 93/22,

DIKU, University of Copenhagen.

Bondorf, A. (1991) Automatic autoprojection of higher order recursive equations. Science of

Computer Programming, 17, 3–34.

Bondorf, A. (1992) Improving binding times without explicit CPS-conversion. Proc. 1992

ACM Conference on Lisp and Functional Programming, pp. 1–10. San Francisco, CA.

Bondorf, A. (1993) Similix 5.0 Manual. DIKU, University of Copenhagen.

Bondorf, A. and Dussart, D. (1994) Improving CPS-based partial evaluation: Writing cogen

by hand. In: P. Sestoft and H. Søndergaard, editors, Proc. ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-Based Program Manipulation PEPM ’94, pp. 1–10.

Orlando, FL. (University of Melbourne, Australia. Technical Report 94/9, Department of

Computer Science.)

Church, A. (1940) A formulation of the simple theory of types. J. Symbolic Logic, 5, 56–68.

Clément, D, Despeyroux, J., Despeyroux, T. and Kahn, G. (1986) A simple applicative

language: Mini-ML. ACM Conference on LISP and Functional Programming, pp. 13–27.

Consel, C. and Danvy, O. (1993) Tutorial notes on partial evaluation. Proc. 20th Annual

ACM Symposium on Principles of Programming Languages, pp. 493–501. Charleston, SC.

ACM Press.

Consel, C. and Noël, F. (1996) A general approach for run-time specialization and its appli-

cation to C. Proc. 23rd Annual ACM Symposium on Principles of Programming Languages,

pp. 145–156. St. Petersburg, FL. ACM Press.

Danvy, O. and Filinski, A. (1990) Abstracting control. Proc. 1990 ACM Conference on Lisp

and Functional Programming, pp. 151–160. Nice, France. ACM Press.

Danvy, O. and Filinski, A. (1992) Representing control: A study of the CPS transformation.

Mathematical Structures in Comput. Sci., 2, 361–391.

Danvy, O., Glück, R. and Thiemann, P. editors (1996) Dagstuhl Seminar on Partial Evaluation

1996: Lecture Notes in Computer Science 1110, Schloß Dagstuhl, Germany. Springer-Verlag.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 523

Draves, S. (1996) Compiler generation for interactive graphics using intermediate code.

In Danvy et al., editors, Dagstuhl Seminar on Partial Evaluation 1996: Lecture Notes in

Computer Science 1110, pp. 95–114. Schloß Dagstuhl, Germany. Springer-Verlag.

Fegaras, L. and Sheard, T. (1996) Revisiting catamorphisms over datatypes with embedded

functions (or, programs from outer space). Proc. 23rd Annual ACM Symposium on Principles

of Programming Languages, pp. 284–294. St. Petersburg, FL. ACM Press.

Filinski, A. (1994) Representing monads. Proc. 21st Annual ACM Symposium on Principles of

Programming Languages, pp. 446–457. Portland, OG. ACM Press.

Futamura, Y. (1971) Partial evaluation of computation process – an approach to a compiler-

compiler. Systems, Computers, Controls, 2(5), 45–50.

Glück, R., and Jørgensen, J. (1995) Efficient multi-level generating extensions for program

specialization. In: D. Swierstra and M. Hermenegildo, editors, International Symposium

on Programming Languages, Implementations, Logics and Programs (PLILP ’95): Lecture

Notes in Computer Science 982, pp. 259–278. Utrecht, The Netherlands. Springer-Verlag.

Glück, R., and Jörgensen, J. (1996) Fast multi-level binding-time analysis for multiple

program specialization. PSI-96: Andrei Ershov Second International Memorial Conference,

Perspectives of System Informatics: Lecture Notes in Computer Science 1181, Novosibirsk,

Russia. Springer-Verlag.

Gomard, C. K. (1990) Partial type inference for untyped functional programs. Proc. 1990

ACM Conference on Lisp and Functional Programming, pp. 282–287. Nice, France. ACM

Press.

Gomard, C. K. (1992) A self-applicable partial evaluator for the lambda-calculus. ACM

Trans. Programming Languages and Systems, 14(2), 147–172.

Gunter, C. A., Rémy, D. and Riecke, J. G. (1995) A generalization of exceptions and control

in ML-like languages. In: S. Peyton Jones, editor, Proc. Functional Programming Languages

and Computer Architecture 1995, pp. 12–23. La Jolla, CA. ACM Press.

Haskell 1.4, a non-strict, purely functional language (April 1997)

http://haskell.systemsz.cs.yale.edu/onlinereport/.

Hatcliff, J. and Danvy, O. (1994) A generic account of continuation-passing styles. Proc. 21st

Annual ACM Symposium on Principles of Programming Languages, pp. 458–471. Portland,

OG. ACM Press.

Holstm C. K. (1989) Syntactic currying. Student report, DIKU, University of Copenhagen.

Hutton, G. (1992) Higher-order functions for parsing. J. Functional Programming, 2(3),

323–344.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program

Generation. Prentice-Hall.

Jørgensen, J. and Leuschel, M. (1996) Efficiently generating efficient generating extensions

in Prolog. In Danvy et al., editors, Dagstuhl Seminar on Partial Evaluation 1996: Lecture

Notes in Computer Science 1110, pp. 238–262. Schloß Dagstuhl, Germany. Springer-Verlag.

Kelsey, R., Clinger, W. and Rees, J. (1998) Revised5 report on the algorithmic language

Scheme. SIGPLAN Notices, 33(9), 26–76.

Kelsey, R. A. and Rees, J. A. (1995) A tractable Scheme implementation. Lisp and Symbolic

Computation, 7(4), 315–335.

Launchbury, J. (1991) A strongly-typed self-applicable partial evaluator. In: J. Hughes, editor,

Proc. Functional Programming Languages and Computer Architecture 1991: Lecture Notes

in Computer Science 523, pp. 145–164. Cambridge, MA. Springer-Verlag.

Launchbury, J. and Holst, C. K. (1991) Handwriting cogen to avoid problems with static

typing. Draft Proceedings, 4th Annual Glasgow Workshop on Functional Programming, pp.

210–218, Skye, Scotland.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

524 P. Thiemann

Lawall, J. L. and Danvy, O. (1994) Continuation-based partial evaluation. Proc. 1994 ACM

Conference on Lisp and Functional Programming, pp. 227–238, Orlando, FL. ACM Press.

Lawall, J. L. and Danvy, O. (1995) Continuation-based partial

evaluation. Technical Report Technical Report CS-95-178, Bran-

deis University, Waltham, Massachusetts. (Extended version from

ftp://ftp.brics.dk/pub/danvy/Papers/lawall-danvy-lfp94-extended.ps.gz.)

Leroy, X. (1997) The Objective Caml system release 1.07, Documentation and user’s manual.

INRIA, France. From http://pauillac.inria.fr/caml.

Proc. 1990 ACM Conference on Lisp and Functional Programming, Nice, France. ACM Press.

Mitchell, J. C. (1996) Foundations for Programming Languages. MIT Press.

Mogensen, T. Æ. (1992a) Efficient self-interpretation in lambda calculus. J. Functional

Programming, 2(3), 345–364.

Mogensen, T. Æ. (1992b) Self-applicable partial evaluation for pure lambda calculus. In: C.

Consel, editor, Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based

Program Manipulation PEPM ’92, pp. 116–121. San Francisco, CA. Yale University.

Mogensen, T. Æ. (1995) Self-applicable online partial evaluation of pure lambda calculus. In:

W. Scherlis, editor, Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

Based Program Manipulation PEPM ’95, pp. 39–44. La Jolla, CA. ACM Press.

Moggi, E. (1988) Computational lambda-calculus and monads. Technical Report ECS-LFCS-

88-86, University of Edinburgh.

Moggi, E. (1998) Functor categories and two-level languages. In: M. Nivat and A. Arnold,

editors, Foundations of Software Science and Computation Structures, FoSSaCS’98: Lecture

Notes in Computer Science, Lisbon, Portugal.

Mosses, P. D. (1990) Denotational Semantics, volume B of Handbook of Theoretical Computer

Science, chapter 11. Elsevier.

Nielson, F. and Nielson, H. R. (1992) Two-Level Functional Languages, volume 34 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press.

Palsberg, J. (1993) Correctness of binding-time analysis. J. Functional Programming, 3(3),

347–364.

Pfenning, F. and Elliott, C. (1988) Higher-order abstract syntax. Proc. Conference on Pro-

gramming Language Design and Implementation ’88, pp. 199–208, Atlanta, GA. ACM Press.

Romanenko, S. A. (1988) A compiler generator produced by a self-applicable specializer can

have a surprisingly natural and understandable structure. In: D. Bjorner, A. P. Ershov

and N. D. Jones, editors, Partial Evaluation and Mixed Computation, pp. 445–463. North-

Holland.

Sabry, A. and Felleisen, M. (1993) Reasoning about programs in continuation-passing style.

Lisp and Symbolic Computation, 6(3/4), 289–360.

Schmidt, D. A. (1986) Denotational Semantics, A Methodology for Software Development. Allyn

and Bacon.

Sheard, T. and Fegaras, L. (1993) A fold for all seasons. In: Arvind, editor, Proc. Func-

tional Programming Languages and Computer Architecture 1993, pp. 233–242. Copenhagen,

Denmark. ACM Press.

Sperber, M. and Thiemann, P. (1995) The essence of LR parsing. In Scherlis, W., editor,

Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation PEPM ’95, pp. 146–155. La Jolla, CA. ACM Press.

Sperber, M. and Thiemann, P. (1997) Two for the price of one: Composing partial evaluation

and compilation. Proc. of the ACM SIGPLAN ’97 Conference on Programming Language

Design and Implementation, pp. 215–225. Las Vegas, NV. ACM Press.

Taha, W. and Sheard, T. (1997) Multi-stage programming with explicit annotations. In:

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

Combinators for program generation 525

C. Consel, editor, Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

Based Program Manipulation PEPM ’97, pp. 203–217. Amsterdam, The Netherlands. ACM

Press.

Thiemann, P. (1996a) Cogen in six lines. In: R. K. Dybvig, editor, Proc. International

Conference on Functional Programming 1996, pp. 180–189. Philadelphia, PA. ACM Press.

Thiemann, P. (1996b) Implementing memoization for partial evaluation. In: H. Kuchen and

D. Swierstra, editors, International Symposium on Programming Languages, Implementations,

Logics and Programs (PLILP ’96): Lecture Notes in Computer Science 1140, pp. 198–212.

Aachen, Germany. Springer-Verlag.

Thiemann, P. (1998) A generic framework for specialization. In: C. Hankin, editor, Proc. 7th

European Symposium on Programming: Lecture Notes in Computer Science 1381, pp. 267–

281. Lissabon, Portugal. Springer-Verlag.

Thiemann, P. (1999) The PGG System – User Manual. Universität Freiburg, Germany.

(Available from http://www.informatik.uni-freiburg.de/proglang/software/pgg/.

Thiemann, P. and Dussart, D. (1996) Partial evaluation for higher-order languages with state.

Berichte des Wilhelm-Schickard-Instituts WSI-97-XX, Universität Tübingen.

Thiemann, P. and Glück, R. (1995) The generation of a higher-order online partial evaluator.

In: M. Takeichi and T. Ida, editors, Fuji International Workshop on Functional and Logic

Programming, pp. 239–253. World Scientific.

Thiemann, P. and Sperber, M. (1997) Program generation with class. In: M. Jarke, K. Pasedach

and K. Pohl, editors, Proceedings Informatik’97, Reihe Informatik aktuell. Springer-Verlag.

Turchin, W. F. (1979) A supercompiler system based on the language Refal. SIGPLAN

Notices, 14(2), 46–54.

Wand, M. (1982) Deriving target code as a representation of continuation semantics. ACM

Trans. Programming Languages and Systems, 4(3), 496–517.

https://doi.org/10.1017/S0956796899003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003469

