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Abstract. The purpose of this paper is to investigate a conjecture about the universality of the
circular distribution made by Robert Coleman. The algebraic property of the universal distri-
bution is the main ingredient in studying Euler system of Kolyvagin and Rubin. We study the
universality of the circular distribution by using the Iwasawa theory and the theory of the
Euler systems. The conjecture is a characterization of Euler systems in the case of number
field. The results here assert that Euler systems are essentially made out of cyclotomic units.
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1. Introduction

Let n be a positive integer. Let y, be the set of nth roots of unity in a fixed algebraic
closure @ of Q. Let u,, = U,en 4, and W=, \ {1}, Wi = tieo \ {1}, where N is the
set of positive integers. A Galois equivariant map f from % to Q" is called a circular
distribution if

[[/10=Ae)  foreeu; anddeN.

=

By ¢ we denote the set of all circular distributions. We give a natural
R :=lim Z[Gal(@(_un)/@)] module structure on €. Let @ be the Galois equivariant
map from p to Q" defined by

OO =1-¢ Lleu.

Then one can show that ® is a circular distribution. Coleman raised a question of
whether € is the cyclic R-module generated by ®. Coleman showed that the question
is not true by finding some mysterious examples in € but not in R®. More precisely
for any finite set of odd primes S, let &g be the Galois equivariant map on % defined
by

1, if nis divisible by all and only those primes in S,
otherwise.

Es(C) = { N

Then ég € €\ R® and, hence, € # RD ([13]).
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By imposing some congruence relations on € such that the above examples do not
satisfy, Coleman defined an R-submodule § of € as follows. Let § be the R sub-
module of € such that for each prime number /and n e N, (n, /) = 1,

f(e0) = f(0) modulo primes over (/) for all e € uj,{ € p.

Then one can see that ® € § and, hence, R® C . The above examples of Coleman
show that &g € €\ F as well as € # § ([13]). We are now ready to introduce the fol-
lowing conjecture made by Coleman.

CONJECTURE (Coleman). % = R®.

To approach the proof of the conjecture, we want to show that the values of % and
R® in the i are equal for all n. We denote by C'(n) the group of cyclotomic numbers
of Q(u,), i.e., C'(n) is the group generated by 1 —{, { € u over the group ring
Z|Gal(Q(u,)/Q)]. Note that RD() := {g({) | g € RO, { € w3} = C'(n). Let F(n,) =
(O feF Cep,). In [14], we were able to show that Greenberg’s conjecture
implies F(u,) = C(n) for all n € N. Without Greenberg’s conjecture, we can use
the argument of Euler systems ([13, 14]). The following fact is due to Rubin. For
each p1d(n). Fu,) ®Z, = C(n) ® Z,.

In this paper, we extend this result to the cyclotomic Z,-extensions using Iwasawa
theory. Let E(n) be the group of global units of Q(u,). We let &'(n) be the multipli-
cative subgroup of Q(u,)* generated by {f({)|fe €, (e} and let C(n) =
&'(n) N E(n). We now state the main theorems. Notice that even if the following the-
orems are about &, the theorems are also true for §.

THEOREM A. Let p be a prime number such that (¢p(n),p)=1. Then
8(C(w,y)/Cnp" ) ® Z,) = 1 for all r and the indices [C(np") : C(np")] are bounded
independently of r.

THEOREM B. Let f€ € and p be an odd prime number. Then there is a positive
integer c independent of n and f, such that

A=A =) with (1), » | € l(iLn Z|Gal(Q(u,)/ Q)]

NOTATIONS

E'(n) = the group generated by p-units of Q(u,)™, p|n.

C'(n) = the subgroup of @(u,)™ generated by 1 —( for { € p.

¢'(n) = the multiplicative subgroup of Q(u,)* generated by {f({)|f € €, { € u*}.
E(n) = the group of global units of Q(y,).

C(n) = C'(n) N E(n), and Cn) = € (n) N En).

E, = the group of global units of Q(x,)".

€, =CmNQu,)" and C, = C(n) N Q(u,)*.
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C, = the group of cyclotomic units of Q(u,)".
Cl, = the p-part of the ideal class group of Q(u,)".
(We use similar notations for the ¥ i.e., & (1), §(n) and F,.)

2. Main Results

Let n = nop, (n9, p) = 1. Let A = Gal(Q(u,)" /Q) be the Galois group of the maximal
totally real subfield Q(u,)" = Q(, + ¢, 1 of the nth cyclotomic field Q(u,) over Q.
Let

k= k(] C kl C kz c---C koo = Uren kr = UI‘EN@(ﬂnIJ")+

denote the cyclotomic Z,-extension of k = Q(u,)*. If 1 A — @; is a @:-Valued
character of A, let Q,(x) be the field generated by the values of y over Q,. If
LA — @ are p-adic characters, we say y is conjugate to y over Q, if there is a
o€ G(@p / @,,) such that y = oys. Let Z be the set of conjugacy classes of p-adic char-
acters of A. Then each element in Z corresponds to an isomorphism class of an irre-
ducible Z,-representation of A. Let Z,(y) be the ring of integers of Q,(y). Let M be a
Z,[Al-module. We let M* := M ®z,1a1 Z,(y) be the y-part of M where G acts via .
Let e, be the idempotent of Z,[A] corresponding to y,

= A Z Tra,p/a, 10719,
o€

where Tr g, ()0, is the trace map from Q,(y) to Q,. The group ring Z,[A] decomposes
as a product of discrete valuation rings, Z,[A] =][,ze¢,Z,[A] =],z Z)(2),
M”* =e,M and M =[],z M. For each prime p of Q(u,,)" over p, let U be the
group of principal units in the completion @(unp )p of @(,unp) at p. For a given
submodule M of E,, let M'=MnN [, Uy under the natural inclusion of
M to Qu,, )p and M be the topologlcal closure of M' in lep

MRZ,—~MC lep U1 The 1somorphlsm follows from the fact that Leopoldt con-
jecture is true in abellan case. Let Ey = hm Enp @oo = hm @,,,,r Coo = hm C”,,,
Cly = hm Cl,yr, with respect to the norm rnaps For each ﬁnltely generated A-mod-
ule N, the structure theorem of finitely generated A-modules asserts that there is
a pseudo-isomorphism, N ~ A" x [],.; A/B}", where *}3; are the prime ideals of height
1. We denote by char(N) the product of all these prime ideals %3;; char(N) = [, B/".

In fact, since the prime ideals p of height 1 in A are (p) and the ideals generated by an
irreducible Weierstrass polynomial F(f) over Z,, we can write

~ A x HA/p’"" X HA/F}"".

iel jel”
Let x be a Z)-valued even character of Gal(Q(x,,)/Q). When k = <I;l>(,up)Jr we have

Iwasawa’s main conjecture char((Ens/Coo)’) = char(CI%). The following generalized
form of Iwasawa’s main conjecture was proven by Mazur and Wiles [11].
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THEOREM 2.1 (Mazur and Wiles). Let pto(n) then for all even irreducible
Z,-character y of A we obtain char((Es/Cx)*) = char(CI%).

The proof of Iwasawa’s main conjecture was simplified by the use of Euler systems
by Rubin ([12, 13]) and this was extended to the generalized form by Greither
(cf. (J6]). We need the following lemma due to Coleman which is Lemma 4.1 of
[14] to apply Rubin’s arguments in [13]. For number fields K C L, we write Ny g
for the norm from L to K.

LEMMA 2.2(= Lemma 4.1 of [14]). Let J(t) be the set of positive square free
integers divisible only by primes £ = 1(mod ¢). If F is an Abelian number field of
conductor t then the function on J (t), a(L) = Ney,,)/r,) S HE‘L e) is an Euler system
for F for any { € y,.

_ We state a crucial theorem which shows the characteristic ideal, char(@Oo /Caso) of
€o0/Cwo is trivial. Thus we can see that the growth of the p-part of the quotient
&,/ Cyy is bounded in the Z,-tower.

THEOREM 2.3. Let pt¢(n). char(€o/Cs) = 1.

Proof. Rubin’s arguments in his proof of Theorem 2.3.3 in [12] together with
Lemma 2.2 show that char(Cly) | char(Es/ @oo).

Since

char(Cly) = char(En/Cs) (Thm 2.1)
and
char(Es/ @oo) | char(Es/Cso),
Theorem 2.3 follows. [

For a given finitely generated A-module N, N ~ A" x [[,.; A/p™ x []
Iwasawa invariants are defined by,

A/F}", the

jel

ranka(N) =r, u(N)=> my MN)=)_ nideg(F)).

iel jeJ

The classical Iwasawa invariants 4,(k), w,(k), v,(k) are defined for the p-primary part
of the ideal class groups in a Z,-extension of any number field k (cf. [7]). For the tor-
sion A-module Cl,, Ferrero and Washington showed that the Iwasawa invariant
(k) = p(Cl) of the cyclotomic Zy-extension ky~/k vanishes for abelian number
fields (cf. [3]). Moreover Iwasawa showed that the Iwasawa invariants A(Cl,,) and
JM(Es/Cs) are equal.

Theorem 2.3 together with Ferrero and Washington’s theorem tell us that the Iwa-
sawa invariants, )u(@oo/éoo) as well as ,u(@oo/C_'oo) are equal to 0. This means that
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ﬁ(@np,- / é,1pr') is bounded ind_ependen:dy of r. We know the natural inclusion maps are
injective (cf. [5], H%(Gpn, Cupm) = Copn);

O — @np"/énpf‘ — @npl“FI /énpr+l .

Therefore they are isomorphisms and the operator on @np"“’ / C_'np,-+k norm to
&,/ C_',wr followed by inclusion is the multiplication by p¥. Hence, the inverse limit
of @,,,,r /Cyy with respect to the norm maps is zero; lim(@n,,r /Cyy) = 1. Let Frob, be
the Frobenius map at p, Frob,({,) = () for all <-(u,p) = 1. For ecach element
f in €, the sequence (f({;)),en can be made a norm coherent sequence
Rl Drens 7= (Rl Myeny With respect to the norm maps, No(tyy)/Qty).
This argument together with l(iLn(@,,pr /Cuy) =1 lead to,

THEOREM 2.4. Suppose that pt¢(n). Then

@np"

ﬁ(a®2p> =1, forallr.

As an immediate corollary we have

COROLLARY 2.5. (G /Gy ®2,) =1, for all r.
For a prime /{¢(np?), we consider the Z,-extension Q(prpe) of Q(u,,,). Applying

Theorem 2.4, the indices #(C,,p/Copr ® Z;) =1 for all s.
Since H(Gpris s Copre ® Zj) = Cppr ® Z;, we conclude

THEOREM 2.6. Suppose that [t $(np?). Then 8(C,p/Coy ® Z)) = 1, for all r.

Suppose now that /(% p) | ¢(np?). To bound the [-part 8Cp /Copr ® Z)) of
8(€,,r/Cypr), we need the following theorem of Washington.

THEOREM 2.7 (Washington). Let k be an Abelian number field and K/k the
cyclotomic Z,-extension of k. Let | # p be a prime and let I be the exact power of |
dividing hy,. Then e, is bounded independently of n.

From Washington’s theorem, we have that #(€,,-/C,, ® Z;) is bounded indepen-
dently of r. Hence, Washington’s theorem and Theorem 2.6 imply that §(€,,r/C,,r) is
bounded independently of r. To finish the proof of Theorem A we need a lemma.

Let j be the complex conjugation. For any n € E(n), we have

/= (=4)" = (1 =)
for some a € Z, and n(1 — {,)"“ lies in E,. Hence, E(n) = E,&(n). The natural map

induces the following isomorphism E(n)/&(n) = E,/E,. Moreover, E (n) and G(n)
can be written, as
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Em=Eme [[(1-{w)’ and Cm) =Cme [0 -{w)

pe®n pe®n

This provides us the proof of the following lemma.

LEMMA 2.8. For all n,
E'(n)/C(n) = En)/C(n) = E,/C,,

and

E'(n)/F(n) = E(n)/Fn) = E,/F-

Theorem 2.6 together with Lemma 2.8 complete the proof of Theorem A.
As a corollary to Theorem A, we can obtain the following theorem.

THEOREM 2.9. For each f € €, there is a constant ¢ independent of f and s so that
SCm)" can be written

SCp) = (=)™, with 1y, € Tim Z[Gal(@(gn)/Q)]-

To prove Theorem 2.9 we need to compute the annihilators of cyclotomic units in
the group ring, Ry := Z[Gal(Q(u,.)/Q)]. Using this, for each norm coherent
sequence o, = (1 — Cpm)“('”) in the p-tower, we can find representatives of a(m) in
1<£n Ry For each ¢ € Gal(Q(y,»)/Q) we denote by ¢ = o; when o({,») = Z,; Let
v; = 0; —o_; and let

] Au 20, when k =1
Wk == kvy —vg,, when k # 1.

PROPOSITION 2.10. The annihilator A(p™) of 1 —{ in the group ring Ry is
generated by the following set as Z-module:

Spm =A{w1, wr | 3<k<p” (k,p)=1, k odd number}.
Proof. Let ¢, be the map ¢,.: Ryn —> C'(p™) defined by ¢,,»(a) = (1 — {,n)"
and @, be the map followed by the projection map from C'(p™ to C’(p’“)/,upm,

@yt Rym —> C'(p’”)/up,,,. Write A(p™) = Ker(¢,) for the annihilators of (1 — {,)
in R,n and A,» = Ker(¢,»). Then we have the following diagram:

0 AP —— Ry ——  C(p") 0

l | |

0 Ay s Ry COM/Epp s 0

By the snake lemma we see that the cokernel of the map from A(p™) to Ay~ has
order 2p™. Now, C(p™)/p,m and Ry are free Z-modules of rank ¢(p™)/2, o(p™),
respectively. By comparing the rank in the second row, we can see that
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Gi:={v | 1 <i<p” (ip)=1, i: odd number} is a Z-basis for A4,». We also
define the following Z-independent set G, in A(p™), Gr:= {wy,
we | 3<k<p” (k,p)=1, k:odd number}. We let 4= (a;) be a @(p")/2x
@(p™)/2 matrix defined in the following way: w; =) a;v;, where w; and v; are
ordered as above. Then 4 can be written,

4 o o o ... 2
3 -1 0 0 - 0
5 0 -1 0 0--- 0

P-4 0 0 - -1 0
=2 0 0 0 - -1

The absolute value of the determinant is 2p™ which shows that G, is a Z-basis for
A(p™) from the above diagram. O

Proposition 2.10 tells us that we can lift each annihilators of A, in p-tower.

LEMMA 2.11. Let lim A(p™) be the inverse limit of A(p™) with respect to restriction
maps. Then the natural projection map from lim A(p™) to A(p™) is surjective

lim A(p") — A(p™) — 0.
Proof. Each element of the set S,» in Proposition 2.10 lifts to an element of the
Set Spm+1 . |:|

Using Lemma 2.11, we show the following proposition.

PROPOSITION 2.12. For any f € ¥ and prime p, there exist an r = (r,) € lim Ryn
such that for all m, f({,m) = (1 = ()™ if and only if §m = Cpn for all n. -
Proof. Let f({;m) =(1 —{m)". The natural restriction map ry,: Ry —> Rym
takes u,s to u» modulo the annihilators in Ry of 1 —{,» whenever s > m by the
norm coherent property of f({,). Thus ry,(us) — u, in A(p™). This element can be
lifted to get u € l(igi R,» by Lemma 2.11. O

From Proposition 2.12 and Theorem A, there is a constant ¢ such that
SCm) =0 =)™, with ry, € l(iLn Ryn.

This completes the proof of Theorem 2.9 which is Theorem B.
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