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Abstract

A regular semigroup S is said to be locally inverse if each local submonoid eSe, with e an idempotent,
is an inverse semigroup. In this paper we apply known covering theorems for inverse semigroups and a
covering theorem for locally inverse semigroups due to the author to obtain some covering theorems
for locally inverse semigroups. The techniques developed here permit us to give an alternative proof
for, and slight strengthening of, an important covering theorem for locally inverse semigroups due to
F. Pastijn.

1980 Marhematics subject classification (Amer. Math. Soc.): 20 M 10.

1. Introduction

A number of recent papers have dealt with the structure of locally inverse
semigroups. This class of semigroups consists of all regular semigroups S in which
each local subsemigroup eSe, with ¢ an idempotent, is an inverse semigroup.
Locally inverse semigroups are exceedingly prevalent and include, as well as
inverse semigroups, all regular semigroups which are subdirect products of
completely O-simple semigroups, and all normal bands. They have been char-
acterized by Nambooripad [13] as those regular semigroupls on which the natural
partial order is compatible with multiplication. Thus they inherit many of the
pleasant-properties of inverse semigroups.

F. J. Pastijn [16] has given an important structure theorem for locally inverse
semigroups. He shows that any locally inverse semigroup is a homomorphic image
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of an order ideal and subsemigroup of a semigroup which, in a sense, generalizes
the construction of a P-semigroup, which has proved to be useful in describing
inverse semigroups (McAlister [7], [8]), by replacing the group which acts on a
semilattice by a completely simple semigroup. The homomorphism which arises in
Pastijn’s theorem is special in that the inverse image of each idempotent is a
completely simple semigroup.

The author [10] has given an alternative covering theorem for locally inverse
semigroups. More precisely, he has shown that any locally inverse semigroup is a
homomorphic image of the semigroup of regular eclements in a Rees matrix
semigroup over an inverse semigroup. In this case, the homomorphism is special
in that it is one-to-one on each local subsemigroup. It is thus close to being an
isomorphism; the inverse image of each idempotent is a rectangular band. In this
paper we shall use this covering theorem to obtain a number of division theorems
for locally inverse semigroups, which include Pastijn’s theorem which was men-
tioned above. Our proofs depend on known properties of inverse semigroups and
on some preliminary results on quasi-ideals, which we shall derive; the arguments
are thus directly of a semigroup theoretic nature. Pastijn’s, by contrast, depend on
a deep analysis of the structure of the biordered set of idempotents of a locally
inverse semigroup. This research was partly carried out while the author was
visiting Marquette University, Milwaukee in October 1983. He is grateful to the
Mathematics Department there for their hospitality.

2. Quasi-ideals and inverse semigroups

A subsemigroup Q of a semigroup S is said to be a quasi-ideal of S if
QSQ <€ Q. In this paper, we shall be primarily concerned with quasi-ideals of
regular semigroups, which are themselves regular. We shall say that such a
subsemigroup is a regular quasi-ideal.

The idempotents in any semigroup S admit a natural partial order < which is
defined as follows: e < fif and only if e = ef = fe. A set 4 of idempotents of S is
called an order ideal of the set E of idempotents of S if e < a, with a in 4,
implies e € A. We shall say that 4 is a biorder ideal of E if it is an order ideal
and, in addition, for a, b € A, we have S(a, b) N A # 0. Here S(a, b) denotes
the sandwich set of a and b; thus S(a, b) = (g € E: ab = agb, ga = g = bg).

PROPOSITION 2.1. Let S be a regular semigroup and let Q be a quasi-ideal of S.
Then the set E, of idempotents of Q is a biorder ideal of Eg. The set Reg(Q) of
regular elements of Q is a regular quasi-ideal of S. Indeed

Reg(Q) = {a € S:aa’, a'a € E, for some inverse a’ ofa}.
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Conversely, suppose that F is a biorder ideal of E; and set Q = {a € §S:
aa’, a’a € F for some inverse a’ of a}. Then Q is a regular quasi-ideal of S and
F = E,. Further Q = U{uSv: u,v € F}.

PROOF. Let Q be a quasi-ideal of S and let a € E,, with f € Eg and f< a.
Then f = af = fa so f = afa € QSQ; thus, since Q is a quasi-ideal, f € E,, which
is therefore an order ideal of Es. If a, b € E,, then, since S is regular, ab has an
inverse x in S. Then g = bxa € S(a, b) N E,,. Thus E, is a biorder ideal of Ej.

If a is a regular element of Q, with inverse a’ € Q, then aa’, a'a € E,,.
Conversely, if aa’, a'a € E,, then a = aa’.a.a’a € QSQ; thus, since Q is a
quasi-ideal, a is a regular element of Q. Hence Reg(Q) is as described in the
statement of the proposition; that it is a regular quasi-ideal will follow from the
second part of the proof.

Let F be a biorder ideal of Eg and denote by Q the set {a € S: aa’, a’a € F for
some inverse a’ of a}. For a, b € Q and x € S, axb has an inverse of the form
b’ya’ for any inverses a’ of a and b’ of b. Hence, if aa’, a’a, bb’, b’b are in F, we
have axb.b’ya’ < aa’ so that axb.b’ya’ € F and similarly b’ya’.axb € F. Hence
QSQ < Q and, since S is regular, this is enough to show that @ is a subsemigroup
of S, and hence a quasi-ideal of S. Clearly Q is regular so it is a regular
quasi-ideal of S.

Clearly, F C E, so it remains to show the converse inclusion. Let e € E,. Then
there is an invese e’ of e such that both ee’, e’e € F. Let f = ee’ and h = e’e.
Then, since F is a biorder ideal, F N S(h, f) # @. Suppose g belongs to this
intersection; then eg = e( fg) = fg = g and also we have ge = (gh)e = gh = g so
that e = ehfe = ehgfe = ege = g. Thus e € F so that F is the set of idempotents
of Q.

The final statement of the proposition is easily seen to hold since Q is a regular
quasi-ideal.

COROLLARY 2.2. There is an order isomorphism between the partially ordered set
of regular quasi-ideals of a regular semigroup S and the set of biorder ideals of E.

COROLLARY 2.3. Let S be an inverse semigroup. Then the regular quasi-ideals of
S form a complete lattice, under intersection, isomorphic to the lattice of order ideals
of E. The regular quasi-ideal corresponding to the order ideal F of Eg is {a-€ §:
aa ', a"'a € F}.

Proposition 2.1 shows that the regular quasi-ideals of a regular semigroup are
completely determined by their idempotents. We next turn to a result involving
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congruences on quasi-ideals which we shall apply to obtain a useful embedding
theorem for inverse semigroups.

PROPOSITION 2.4. Let Q be a regular quasi-ideal in a regular semigroup S. Then
any idempotent separating congruence p on Q can be extended to an idempotent
separating congruence on S.

PROOEF. Let us denote by p* the congruence on S generated by p. Then T. E.
Hall, [4; Corollary 6], has shown that p* is idempotent separating. Now, for
s,t €8, (s,t) € p* if and only if thereisachains = s, > 5, > --- - s, = tof
elementary transformations from s to ¢, where s, = 5,,, means s, = u,a,v,,
S;41 = u;b,v, where (a,, b;) € p.

Suppose that 5; € Q; we show that s, ; € Q and s,, s5,,, are p-related. Since p
and p* are idempotent separating and (a,, b,) € p we have s, | = s5,5/s,,,5/s, =
s;s{u;a.a;b,ala;v;sis, where s/ is an inverse of s, contained in Q. Because Q is a
quasi-ideal of S, w, = s;s/ua;a; and z; = aja,v;s;s] are in Q, so s,,, is in Q.
Hence, since (a;, b;) € p, it follows that (w;b,z,, w,a;z,) € p. Thatis (s, ,, 5;) € p.
Consequently, if s € Q and (s, ¢) € p* thent € Q and (s, 1) € p.

ReMARKS. (1) T. E. Hall [S] as shown that the set Reg(eS) of regular elements
of eS, e an idempotent, forms a subsemigroup in any regular semigroup S. Since
eS is a quasi-ideal, this follows immediately from Proposition 1.1. Indeed Reg(eS)
is a quasi-ideal of S, Reg(eS) = U{uSv: u, v are idempotents in eS }.

(2) If Q = eSe for some idempotent e € S then every congruence on Q extends
to a congruence on S (T. E. Hall and P. R. Jones [8; Proposition 4.5]). This need
not be the case for larger quasi-ideals. For example, let

S =#(G; (1,2}, {1,2}; P)

be a completely simple semigroup over a group G, with identity 1, and with
sandwich matrix P = (}1), wherea # 1. Then 0 = {(1, g, j): g € G,j = 1,2} is
a regular quasi-ideal of S and the relation p defined by

(1,g,i)p(1, h, j) ifandonlyif g=nh

is a congruence on Q which cannot be extended to a congruence p* on S. For
(1,1,1)p(1,1, 2) would imply that

(1,1,1) = (1,1,1)(2,1,1) p*(1,1,2)(2,1,1) = (1, a, 1)

which would contradict the assertion that p* N (Q X Q) = p.
Let G be a group and let X be a semilattice on which G acts by automorphisms,
on the left, and let Y be an ideal of X. Then one can construct an inverse
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semigroup P(G, X,Y) as follows: P(G, X,Y)={(a,g) € YX G: gle Y},
with (a, g)(b, h) = (a A gb, gh), where A denotes the meet operation in X. It is
easy to see that P(G, X, Y) is a quasi-ideal of the semidirect product P(G, X, X)
of X by G. Indeed it is the quasi-ideal whose semilattice of idempotents is
{11 x Y. -

N. R. Reilly and W. D. Munn [17; Theorem 5.3] have strengthened the author’s
division theorem for inverse semigroups [7; Theorem 2.5] to show that every
inverse semigroup is an idempotent separating homomorphic image of a semi-
group P(G, X, Y) constructed as above. Since P(G, X, Y) is a quasi-ideal of the
larger semigroup P(G, X, X), their result can be stated in the form “Every
inverse semigroup is an idempotent separating homomorphic image of a quasi-
ideal in the semidirect product of a semilattice by a group.” Their result, in turn,
can be strengthened by adjoining an identity to X, if it does not already contain
one. For P(G, X,Y) is still a quasi-ideal of P(G, X!, X1), while the latter is
factorizable in the sense of Chen and Hseih [1]; that is, each element is under a
unit. We can use this, together with Proposition 2.4, to obtain the following
theorem.

THEOREM 2.5. Every inverse semigroup can be embedded as a quasi-ideal in a
factorizable inverse semigroup.

PROOF. Let S be an inverse semigroup. Then, by Munn and Reilly’s result
which was quoted above, S is an idempotent separating homomorphic image of
P(G, X, Y) for some group G, semilattice X, and ideal Y of X. By Proposition
1.4, the corresponding idempotent separating congruence p on P(G, X, Y) can be
extended to a congruence p* on P(G, X', X!). Let T denote the quotient
semigroup P(G, X', X')/p*. Then, since P(G, X,Y) is a quasi-ideal of
P(G, X', X'), S can be embedded as a quasi-ideal in 7. Further, since
P(G, X', X1) is factorizable, so is 7.

REMARK. Ideas similar to those involved in Proposition 2.4 and Theorem 2.5
will be found in [9; Section 5]. What was called a heavy subsemigroup in [9] is, by
Proposition 2.1 here, exactly a quasi-ideal.

3. Locally inverse semigroups

A regular semigroup S is said to be locally inverse if eSe is inverse for each
idempotent e in S. Division theorems for locally inverse semigroups have been
given by F. J. Pastijn [16] and the author [10]. In this section we shall use the
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results of Section 1 to derive Pastijn’s result, and some other division theorems,
from that of McAlister. We shall now describe the latter.

Let T be any regular semigroup and let I, A be non-empty sets. Let P be a
A X I matrix over T. Then the Rees matrix semigroup #(T; I, A; P) over T need
not be regular. However the set of regular elements forms a subsemigroup
RM = RM (T, I, A; P), which we call a regular Rees matrix semigroup over T, as
in {10]. The triple (i, a, A) belongs to #.# if and only if a has an inverse in
Pr,;Tp, for somej € I, p € A. If T is inverse then #.4 is locally inverse and, in
this case, (i, a, \) € A if and only if a € p;;'Tp, ' for somej € I, p € A.

Theorem 3.1 shows that regular Rees matrix semigroups over inverse semi-
groups form a good model for all locally inverse semigroups. To state it we need
to introduce the notion of a local isomorphism between semigroups. A homomor-
phism 8 of a regular semigroup S onto a semigroup T is said to be a local
isomorphism if it is one-to-one on each local submonoid eSe, where e is idempo-
tent.

THEOREM 3.1 [10]. A regular semigroup is locally inverse if and only if it is a
locally isomorphic image of a regular Rees matrix semigroup over an inverse
semigroup.

The regular Rees matrix semigroup produced in the proof of Theorem 3.1 is
square; that is, 7 = A. Further, it is normalized in the sense that p;, is idempotent
and p,; € p,Tp;, for each i, j € I. Because of this normalization, the elements of
RM are easy to describe. The triple (i, a, j) is there if and only if a € p, Tp, .

Suppose now that T is any inverse semigroup and let U be a factorizable
inverse semigroup containing 7T as a quasi-ideal; by Theorem 2.5, such exists. If P
is any A X I matrix over T then we can form a new A X I matrix Q over U by
choosing a unit g,; > p,;, for each A € A, i € I. Note that, if p,, is idempotent
then g,; is the identity of U. A natural question would be whether or not
RM(T, I, A; P) is a quasi-ideal of A (T; I, A; P), which is a considerably
simpler semigroup. Unfortunately, this need not be the case. However it is true
under relatively mild restrictions on P.

LEMMA 3.2. Suppose that each entry of P7'PP™' = {p\.,p, ;pi: i, j,k €T,
A, p, v € A} is maximal in the natural partial ordering on T. Then, with the
notation introduced above, RM(T; I, A; P) is a regular quasi-ideal of

RM(U; I, A; Q)= H(U; I, A\; Q).
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Proor. First, we note that, since each member of Q is invertible,
RM(U; I; N; Q) =M (U; I, A; Q).

Let (i, a, A), (j, b, ) be in RA(T; I, A; P) and let (k, ¢, ») € A(U; I, A; Q).
Then a € p,;'Tand b € Tp,' forsomep € A and h € I. But

(;', a,\)(k,c,v)(j, b,p) = (i,w,p) where w = aqy.cq, b€ TUT.

Thus, since T is a quasi-ideal of U, w € T. Further, sincea € p,;'T and b € T, p‘u‘j1
we have w € p,;'Tp, . Hence (i, w, p) € ZM(T; I, A; P).

To complete the proof, it remains to show that the multiplication on
RM(T; I, A; P) is that inherited from #(U; I, A; Q). For this it suffices to
show for i, j € I; A, p € A we have py'p\,p.;'t = pxjanpa'- But, since py, is
under g,, the left side is clearly smaller than the right side of this equation. On the
other hand, the right side belongs to S and so, since each element of P~'PP~1is
maximal in S, equality must in fact hold.

Our next lemma shows that, by taking an idempotent separating coextension of
S, we can ensure that the hypotheses of Lemma 3.2 are satisfied. This will permit
us to give an alternative proof of Pastijn’s theorem [16; Theorem 2.16].

LEMMA 3.3. Let S be an inverse semigroup and let X be any non-empty subset of
S. Then there is an inverse semigroup T, an idempotent separating homomorphism 8
of T onto S and a subset Y of T such that each element of Y~ 'YY ! is maximal in T
and further X = Y4.

PROOF. Let G be any non-trivial group. Then direct, if tedious, verification
shows that T = S X G is an inverse semigroup under the multiplication
(st,g), ifss<ul,
(st,gh), ifss=u?,
(st,h), ifss>ut
(st,1), otherwise.

(s, 8)(t, h) =

The mapping 6 which sends (s, g) to g is clearly an idempotent separating
homomorphism of T onto S. Further, (s, g) < (¢, h) implies (s, g) =
(ss7 1, 1)(t, h) with ss™! < 117! so that, from the multiplication above, (s, g) =
(ss7,1). Thus each (s, g), with g different from 1, is maximal. Hence, to
construct Y, we need only choose g # 1andset Y = X X {g}.

ReEMARK. The fact that T in the lemma above is an inverse semigroup may be

determined directly. Alternatively, it can be regarded as a coextension of a
semilattice of groups, in which the linking homomorphisms are trivial, by the
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inverse semigroup S. The coextension theories given in [2] or [3] can then be
applied to show that T is in fact an inverse semigroup.

For ease of terminology in the statement of the next theorem, and later, we
shall say that a Rees matrix semigroup #(S; I, A; P) is classical if S is a monoid
and each entry of P is a unit in S.

A homomorphism § of a regular semigroup S onto a regular semigroup T is
said to be strictly compatible if the inverse image of each idempotent of S is a
completely simple subsemigroup of T. Clearly each local isomorphism and each
idempotent separating homomorphism is strictly compatible, as is any composi-
tion of these.

LEMMA 3.4. Let S and T be inverse semigroups and let 8 be a homomorphism of T
onto S. Let I and A be non-empty sets and let Q, P be A X I matrices over T and S
respectively such that Q8 = P. Then the mapping ¢ defined by setting (i,t, \)¢ =
(i, t8, \) is a homomorphism of RM(T; 1, A; Q) onto RAMA(S; I, A; P). It is
idempotent separating if 0 is idempotent separating.

PrROOF. Since Q# = P, it is immediate that ¢ is a homomorphism of
M(T; I, A; Q) onto A(S; I, A; P) and hence maps #A(T; I, A; Q) into
RM(S; I, A; P). Conversely, suppose that (i, s, A) belongs to ZA4(S; I, A; P);

then s € p,;'Spy;! for somej € I, A € A. Thus there exists ¢ € g,,'Tgx;' such that

t0 = 5. Then (i,t, \YE R#A(S; I, A; P) and (i,t, \)¢ = (i, 5, A) so that ¢ is
onto.

Suppose now that (i, x, A) and (i, y, A) are idempotents and that (i, x, A)¢ =
(i, y, A\)¢. Then x = xq,,x, y = yq,,y and x8 = yf together imply (xq,,)8 =
(¥q,,;)8 where these are idempotents, so that since § is idempotent separating
xqy; = yq,;- Dually g,,x = q,;y and so we obtain the equalities x = xg,,x =
Yq\,x = yq,;y = y. Hence ¢ is idempotent separating.

THEOREM 3.5. Let S be a regular semigroup. Then the following statements are
equivalent:

(1) S is locally inverse;

(ii) S is a strictly compatible homomorphic image of a regular quasi-ideal in a
classical Rees matrix semigroup over the semidirect product of a semilattice by a
group;

(iii) S is a strictly compatible homomorphic image of a regular quasi-ideal in a
classical Rees matrix semigroup over an E-unitary inverse monoid.

ProOF. We shall show that (i) implies (iii), which clearly implies (i1). Finally,
since each regular subsemigroup and homomorphic image of a locally inverse
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semigroup is itself a locally inverse semigrou, it is immediate that (ii) implies that
(1) holds.

By Theorem 3.1, S is a locally isomorphic image of a regular Rees matrix
semigroup 24 (T; I, A; P) over an inverse semigroup 7. By Lemma 3.3, there is
an inverse semigroup U, an idempotent separating homomorphism § of U onto T
and a matrix Q over U such that Q6 = P and each member of Q !QQ ' is
maximal in U. By Lemma 3.4, the homomorphism § extends to a homomorphism
of ZA (U, I, A; Q)onto A (T; I, A; P).

By Lemma 3.2, Z4(U; I, A; Q) is a regular quasi-ideal in a classical Rees
matrix semigroup A(V; I, A; L) over a factorizable inverse semigroup. This
factorizable inverse semigroup, in turn, is an idempotent separating homomor-
phism image of a semidirect product of a semilattice by a group. The latter
idempotent separating homomorphism extends, by Lemma 3.4, to give
A (V; I, A; L) as an idempotent separating homomorphic image of a classical
Rees matrix semigroup over a semidirect product of a semilattice by a group.
Since the inverse image of a regular quasi-ideal is a regular quasi-ideal, it follows
that 24 (U; I, A; Q) is an idempotent separating homomorphic image of a
regular quasi-ideal in a classical Rees matrix semigroup over a semidirect product
of a semilattice by a group. Hence, since the composition of idempotent separat-
ing homomorphisms is idempotent separating, #4 (T; I, A; P) is an idempotent
separating homomorphic image of such a semigroup.

Finally, since S is a locally isomorphic image of the regular Rees matrix
semigroup Z#4(T; I, A; P) and the composition of an idempotent separating
homomorphism and a local isomorphism is strictly compatible, S is a strictly
compatible homomorphic image of a regular quasi-ideal in a classical Rees matrix
semigroup over the semidirect product of a semilattice by a group.

Nambooripad [14] defines a locally inverse semigroup to be weakly E-unitary if
x > e = e? implies that x is idempotent. One can check that any classical Rees
matrix semigroup over an E-unitary inverse semigroup is weakly E-unitary and
has one-to-one structure mappings. That is, it is proper in the sense of [14]. Hence
Theorem 3.5 shows that any locally inverse semigroup has a proper cover. This
result is due to Pastijn [16]. Nambooripad and Veramony [14] have given a short
proof of this based on Nambooripad’s theory of inductive groupoids. Theorem
3.4 gives an alternative short proof based more directly on semigroup arguments.

A semigroup S is said to be an elementary rectangular band of inverse
semigroups S;,, i € I, A € A, if

OS=U{S:iel,Ae€ A}

(i) SpS), = S fori€ LA € A.

A classical Rees matrix semigroup over an inverse semigroup is easily seen to
be an elementary rectangular band of inverse semigroups. Furthermore, it is easy
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to see that any idempotent separating homomorphic image of an elementary
rectangular band of inverse semigroups is again an elementary rectangular band
of inverse semigroups. In particular, any idempotent separating homomorphic
image of an elementary rectangular band of inverse monoids is again an elemen-
tary rectangular band of inverse monoids. As such, it is, from [15; Theorem 4.1]
or [11; Corollary 4.5] isomorphic to a classical Rees matrix semigroup over an
inverse monoid.

The proof of Theorem 3.5 shows that any regular Rees matrix semigroup over
an inverse semigroup is an idempotent separating homomorphic image of a
regular quasi-ideal in a classical Rees matrix semigroup over an inverse monoid.
Hence, Proposition 2.4 gives the following theorem which supplements Theorem
3.1.

THEOREM 3.6. Let S be a regular semigroup. Then the following are equivalent:

(1) S is locally inverse;

(i) S is a locally isomorphic image of a regular quasi-ideal in a classical Rees
matrix semigroup over an inverse monoid,

(iii) S is a locally isomorphic image of a regular quasi-ideal in an elementary
rectangular band of inverse monoids;

(iv) S is a locally isomorphic image of a regular quasi-ideal in an elementary
rectangular band of inverse semigroups.

Pastijn’s main theorem in [16] gives an explicit form for the covering semigroup
of which a given locally inverse semigroup is a strictly compatible image. We can
obtain this result too by using the techniques introduced in the proofr of Theorem
3.5 if we take into account the fact that the regular Rees matrix semigroup
produced by Theorem 3.1 is somewhat special.

Let us say that a regular Rees matrix semigroup Z4(T; I, I, P) is diagonally
dominant if p,; is in a subgroup for each i € I, and p;; € p,Tp,; for each i, j € I.
In this case, (i, x, j)is in A (T; I, I; P) if and only if x € p,,Sp,;. The proof of
Theorem 3.1 shows that every locally inverse semigroup is a locally isomorphic
image of a diagonally dominant regular Rees matrix semigroup over an inverse
semigroup; indeed there each diagonal element of P is idempotent. The first part
of the proof of Theorem 3.4 then shows that every locally inverse semigroup is a
strictly compatible homomorphic image of a diagonally dominant regular Rees
matrix semigroup over an E-unitary semigroup, which is a quasi-ideal in a
semidirect product of a semilattice by a group, in which each element of the
sandwich matrix is maximal. Thus we get the following result.

THEOREM 3.7. Let S be a semidirect product of a semilattice with identity by a

group and let I be a non-empty set. Let P be an I X I matrix over the group of units
of S and for each i € I let e; be an idempotent of S. Then the set of all triples
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(i,s, j)in I X § X I such that s € e,Se; is a locally inverse semigroup under the
multiplication

(i’ S j)(u’ L, U) = (i’ spjut’ l)).

Conversely, any locally inverse semigroup is a strictly compatible image of a
semigroup constructed as above.

If we write S as a set of pairs (e, g) with e in the semilattice and g in the group
then the multiplication in Theorem 3.7 becomes precisely that in Pastijn’s
theorem. Namely we have the following corollary which represents a slight
strengthening and simplification of Pastijn’s Theorem 2.16 in [16].

COROLLARY 3.8. Let X be a semilattice with identity and let G be a group which
acts on X by automorphisms, on the left. Let I be a non-empty set and let P be an
I X I matrix over G and for each i € I let e, be in X. Then he set of all quadruples
(i,a,8, j)EIXXXGXIwitha<e; N g_lejforms a locally inverse semigroup
under the multiplication

(ia a, g, j)(u’ b; h’ U) = (1, an gpjub’ gpjuh’ U).

Conversely each locally inverse semigroup is a strictly compatible homomorphic
image of a semigroup constructed as above.

Corollary 3.9 which follows is a strengthened version of [16; Theorem 2.17].
The terminology is that of [16].

COROLLARY 3.9. Every locally inverse semigroup is a strictly compatible homo-
morphic image of a regular quasi-ideal in the semidirect product of a semilattice by a
completely simple semigroup.

References

[1] S. Y. Chen and S. C. Hseih, ‘Factorizable inverse semigroups’, Semigroup Forum 8 (1974),
283-297.

[2] A. Coudron, ‘Sur les extensions de demigroupes reciproques’, Bull. Soc. Roy. Sci. Liege 37
(1968), 409-419.

[3] H. D’Alarcao, ‘Idempotent separating extensions of inverse semigroups’, J. Austral. Math. Soc.
9 (1969), 211-217.

{4] T. E. Hall, “On regular semigroups”, J. Algebra 24 (1973), 1-24.

[5] T. E. Hall, “Some properties of local subsemigroups inherited by larger subsemigroups”,
Semigroup Forum 25 (1982), 35~-48.

[6] T. E. Hall and P. R. Jones, “On the lattice of varieties of bands of groups”, Pacific J. Math. 91
(1980), 327-337.

https://doi.org/10.1017/51446788700022175 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022175

74

[7)
[8]
(9]

[10]

1

(2]

(3]

[14]

f15]
[16]

7]

D. B. McAlister {12]

D. B. McAlister, “ Groups, semilattices and inverse semigroups, I, Trans. Amer. Math. Soc. 192
(1974), 227-244.

D. B. McAlister, “Groups, semilattices and inverse semigroups, II”, Trans. Amer. Math. Soc.
196 (1974), 351-370.

D. B. McAlister, “Some covering and embedding theorems for inverse semigroups™, J. Austral.
Math. Soc. 22A (1976), 188-211.

D. B. McAlister, “Rees matrix covers for locally inverse semigroups”, Trans. Amer. Math. Soc.
277 (1983), 727-738.

D. B. McAlister and R. B. McFadden, “Regular semigroups with an inverse transversal as
matrix semigroups”, submitted to Quart. J. Math. Oxford.

K. S. S. Nambooripad, “ The structure of regular semigroups, I, Memoirs of the Amer. Math.
Soc. 224 (1979).

K. S. S. Nambooripad, “The natural partial order on a regular semigroup”, Proc. Edinburgh
Math. Soc.(2) 23 (1980), 249-260.

K. S. S. Namboorpiad and R. Veramony, “Subdirect products of regular semigroups”,
Semigroup Forum 27 (1983), 265-308.

F. Pastijn, “Rectangular bands of inverse semigroups”, Simon Stevin 56 (1982), 3-95.

F. Pastijn, “The structure of pseudo-inverse semigroups”, Trans. Amer. Math. Soc. 273 (1982),
631-655.

N. R. Reilly and W. D. Munn, “E-unitary congruences on inverse semigroups”, Glasgow Math.
J. 17 (1976), 57-175.

Department of Mathematical Sciences
Northern Illinois University

DeKalb, Illinois 60115

US.A.

https://doi.org/10.1017/51446788700022175 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022175

