QUASI MULTIPLICATION AND \boldsymbol{K}-GROUPS

TSIU-KWEN LEE and ALBERT JEU-LIANG SHEU ${ }^{\boxtimes}$

(Received 3 December 2011; accepted 8 November 2012; first published online 28 February 2013)

Communicated by D. Chan

Abstract

We give a negative answer to the question raised by Mart Abel about whether his proposed definition of K_{0} and K_{1} groups in terms of quasi multiplication is indeed equivalent to the established ones in algebraic K-theory.

2010 Mathematics subject classification: primary 16E20; secondary 18F30, 19A99, 19B99.
Keywords and phrases: K_{0}-group, K_{1}-group, quasi multiplication, quasi invertibility, Grothendieck group, Jacobson radical, algebraic K-theory, topological K-theory.

1. Introduction

In algebraic K-theory (and also in topological K-theory), both K_{0} and K_{1} groups of a nonunital ring (or algebra) are defined in terms of its unitization or any unital ring containing it as an ideal [W], since invertible matrices over a ring involved are needed in their construction. This additional unitization step makes the definition of K-groups seemingly somewhat unnatural, and sometimes a little inconvenient in discussion. On the other hand, in the noncommutative ring theory, for the general study of the Jacobson radical of a ring, the notion of quasi multiplication is successfully introduced and utilized to avoid the use of unitization of a ring [P], even though the invertibility of elements in a ring is intimately related to the notion of the Jacobson radical. In [A], Abel proposed a new definition of K_{0} and K_{1} groups, denoted as $\overline{K_{0}}$ and $\overline{K_{1}}$ groups, utilizing the notion of quasi multiplication and hence avoiding the step of unitization for the case of a nonunital ring. Abel raised the question of whether the $\overline{K_{i}}$ groups are equivalent to the K_{i} groups at ICTAA, Tartu, 2008 and also at the International Conference on Rings and Algebras in Honor of Professor P.H. Lee, Taipei, 2011.

[^0]Abel's definition of K-groups in term of quasi multiplication is interesting, and seems to have the potential to simplify the discussion and possibly some proofs involving nonunital rings in the study of K-groups. For example, the 'Bott element', an important object in expressing algebraically the Bott periodicity of topological K theory, is an element of the K_{0} group of the nonunital algebra $C_{0}\left(\mathbb{R}^{2}\right)$ of \mathbb{C}-valued continuous functions vanishing at ∞ on \mathbb{R}^{2}. Unfortunately, the authors find that Abel's new definition is not equivalent to the established definition, and give counterexamples in this paper. Some of the results might be known to experts, but they are not widely known and not noted in the literature as far as the authors know.

2. Algebraic K_{0} and K_{1} groups

In this section, we recall the established notion of K_{0} and K_{1} groups. For any ring R, we denote by $R^{+}:=\{(r, z): r \in R, z \in \mathbb{Z}\}$ with

$$
(r, z)\left(r^{\prime}, z^{\prime}\right):=\left(r r^{\prime}+z r^{\prime}+z^{\prime} r, z z^{\prime}\right)
$$

the unitization of R, by $M_{n}(R)$ the space of $n \times n$ matrices with entries in R where $n \in \mathbb{N}$, and by $a \oplus b$ the $(n+m) \times(n+m)$ matrix $\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$ for matrices $a \in M_{n}(R)$ and $b \in M_{m}(R)$. For a unital ring R, we use $\mathrm{GL}(R)$ to denote the group of invertible elements of R.

It is easy to see that the direct limit

$$
M_{\infty}(R):=\lim _{n \rightarrow \infty} M_{n}(R)
$$

of the directed system

$$
a \in M_{n}(R) \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right) \in M_{n+1}(R)
$$

of ring monomorphisms can be identified as the space of all infinite matrices $\left(a_{i j}\right)_{1 \leq i, j<\infty}$ with each $a_{i j} \in R$ such that only finitely many $a_{i j}$ are nonzero. Note that $M_{\infty}(R)$ carries canonically a nonunital ring structure inherited from the $M_{n}(R)$.

Let $\operatorname{Idem}(R)$ denote the set of all idempotents of R, that is, those elements $x \in R$ with $x^{2}=x$. Then we have a directed system

$$
p \in \operatorname{Idem}_{n}(R):=\operatorname{Idem}\left(M_{n}(R)\right) \mapsto\left(\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right) \in \operatorname{Idem}\left(M_{n+1}(R)\right)
$$

with the direct limit

$$
\operatorname{Idem}_{\infty}(R):=\underset{n \rightarrow \infty}{\lim } \operatorname{Idem}\left(M_{n}(R)\right) \subset M_{\infty}(R) .
$$

On the other hand, for a unital ring R, the group $\mathrm{GL}_{n}(R)$ of invertible $n \times n$ matrices form a direct system

$$
u \in \mathrm{GL}_{n}(R) \mapsto\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{n+1}(R)
$$

with its direct limit

$$
\mathrm{GL}_{\infty}(R):=\underset{n \rightarrow \infty}{\lim _{n \rightarrow \infty} \mathrm{GL}_{n}(R) \subset M_{\infty}(R)^{+},}
$$

where $\left(\begin{array}{cc}a & 0 \\ 0 & z I_{\infty}\end{array}\right)$ is identified with $\left(\begin{array}{cc}a-z I_{n} & 0 \\ 0 & 0_{\infty}\end{array}\right)+z \in M_{\infty}(R)^{+}$for any $a \in M_{n}(R)$ with $n \in \mathbb{N}$ and $z \in \mathbb{Z}$. We can view $M_{\infty}(R)^{+}$as consisting of $\left(\begin{array}{cc}a & 0 \\ 0 & z I_{\infty}\end{array}\right)$ and see that

$$
\mathrm{GL}_{\infty}(R)=\left(M_{\infty}(R)+1\right) \cap \mathrm{GL}\left(M_{\infty}(R)^{+}\right) .
$$

Note that

$$
\mathrm{GL}\left(M_{\infty}(R)^{+}\right)=\mathrm{GL}_{\infty}(R) \sqcup\left(-\mathrm{GL}_{\infty}(R)\right) .
$$

For a unital ring R, let \approx be the equivalence relation on $\operatorname{Idem}_{\infty}(R)$ defined as $p \approx q$ if and only if there exists $u \in \mathrm{GL}_{\infty}(R)$ (or equivalently $u \in \mathrm{GL}_{1}\left(M_{\infty}(R)^{+}\right)$) such that $p=u q u^{-1}$, where $p, q \in \operatorname{Idem}_{\infty}(R)$. We denote by $[a] \in \operatorname{Idem}_{\infty}(R) / \approx$ the equivalence class of $a \in \operatorname{Idem}_{\infty}(R)$.

Note that \oplus is not well defined on $\operatorname{Idem}_{\infty}(R)$, since $a \oplus 0_{k}=a$ in $\operatorname{Idem}_{\infty}(R)$ for any $a \in M_{n}(R)$ and $k \in \mathbb{N}$ where 0_{k} is the zero matrix in $M_{k}(R)$, but $a \oplus 0_{k} \oplus b \neq a \oplus b$ in $\operatorname{Idem}_{\infty}(R)$ for any nonzero $b \in M_{m}(R)$. However, it is easy to see that $a \oplus b \approx b \oplus a$ for any $a \in M_{n}(R)$ and $b \in M_{m}(R)$, and hence $a \oplus 0_{k} \oplus b \oplus 0_{l} \approx a \oplus b \oplus 0_{k} \oplus 0_{l}$ for any $k, l \in \mathbb{N}$. So \oplus is well defined on $\operatorname{Idem}_{\infty}(R) / \approx$, and $\left(\operatorname{Idem}_{\infty}(R) / \approx, \oplus\right)$ becomes an abelian semigroup.

For an abelian semigroup S, we use $\mathcal{G}(S)$ to denote the Grothendieck group [L] of S.

In algebraic K-theory, if R is a unital ring, then $K_{0}(R)$ is defined as the Grothendieck group $\mathcal{G}\left(\operatorname{Idem}_{\infty}(R) / \approx, \oplus\right)$. More generally, $K_{0}(R)$ is defined as the kernel of the canonical group homomorphism $\mu_{R}: K_{0}\left(R^{+}\right) \rightarrow K_{0}(\mathbb{Z})$ induced by 'modulo R '. When R is unital, this K_{0} group is isomorphic to the one that we defined first, because in this case, R^{+}is isomorphic to the ring direct sum $R \oplus \mathbb{Z}$.

Similarly, if R is a unital ring, then $K_{1}(R)$ is defined as the abelianization

$$
\mathrm{GL}_{\infty}(R) /\left[\mathrm{GL}_{\infty}(R), \mathrm{GL}_{\infty}(R)\right]
$$

of the group $\mathrm{GL}_{\infty}(R)$, where $\left[\mathrm{GL}_{\infty}(R), \mathrm{GL}_{\infty}(R)\right]$ denotes the commutator subgroup of $\mathrm{GL}_{\infty}(R)$ generated by elements of the form $a b a^{-1} b^{-1}$. More generally, $K_{1}(R)$ is defined as the kernel of the canonical group homomorphism $\mu_{R}: K_{1}\left(R^{+}\right) \rightarrow K_{1}(\mathbb{Z})$ induced by 'modulo R '. When R is unital, this K_{1} group is isomorphic to the one that we defined first.

3. Abel's K_{0} and $\boldsymbol{K}_{\mathbf{1}}$ groups

In this section, we recall the new definition of K_{0} and K_{1} groups proposed by Abel in terms of quasi multiplication.

First, recall that the quasi multiplication of a ring R is defined as $x \circ y:=x+y-x y$ for $x, y \in R$, and (R, \circ) becomes a unital semigroup with 0 as its identity element.

For a unital ring R, the map $\chi \equiv \chi_{R}: x \in(R, \cdot) \mapsto 1-x \in(R, \circ)$ is a unital semigroup isomorphism since $\chi(1)=0$ and

$$
\begin{aligned}
\chi(x) \circ \chi(y) & =(1-x) \circ(1-y)=(1-x)+(1-y)-(1-x)(1-y) \\
& =1-x y=\chi(x y)
\end{aligned}
$$

for any $x, y \in R$, where (R, \cdot) is R equipped with the original multiplication operation - as a unital semigroup. However, it should be noted that χ does not preserve the addition, but interestingly, it satisfies

$$
\chi(x)+\chi(y)-\chi(z)=\chi(x+y-z)
$$

In [A], observing that the condition for an element p in a ring R to be an idempotent, $p^{2}=p$, is equivalent to $p \circ p=p$, which is the same as the idempotent condition for p in the semigroup (R, \circ), Abel introduced the definition of a new K_{0} group $\overline{K_{0}}(R)$ as follows.

First, note that the quasi multiplication \circ on matrix rings $M_{n}(R)$ and $M_{\infty}(R)$ is compatible with the canonical inclusions between them. We denote the semigroups $\left(M_{n}(R), \circ\right)$ and $\left(M_{\infty}(R), \circ\right)$ as $M_{n}^{\circ}(R)$ and $M_{\infty}^{\circ}(R)$, respectively, and denote the set of oidempotents (that is, idempotents with respect to the operation \circ) by $\operatorname{Idem}_{n}^{\circ}(R) \subset M_{n}^{\circ}(R)$ and $\operatorname{Idem}_{\infty}^{\circ}(R) \subset M_{\infty}^{\circ}(R)$. So $\operatorname{Idem}_{\infty}^{\circ}(R)=\operatorname{Idem}_{\infty}(R)$.

Note that in a unital ring R, an element p is an idempotent, $p^{2}=p$ or equivalently $p \circ p=p$, if and only if $1-p$ is an idempotent,, $(1-p)^{2}=1-p$ or equivalently $(1-p) \circ(1-p)=1-p$. Furthermore, $p \approx q$ for two elements p, q, that is, $u p u^{-1}=q$ for some invertible element $u \in R$, if and only if $1-p \approx 1-q$, because $u(1-p) u^{-1}=$ $1-u p u^{-1}$. On the other hand, since $\chi: x \in(R, \cdot) \mapsto 1-x \in(R, \circ)$ is a semigroup isomorphism, $1-p \approx 1-q$ for two elements $p, q \in R$ if and only if $p \approx \circ q$, that is, there is a quasi invertible element $v \in(R, \circ)$, that is, $v \circ \hat{v}=0=\hat{v} \circ v$ for some $\hat{v} \in R$, such that $v \circ p \circ \hat{v}=q$, which is equivalent to $1-\hat{v}=(1-v)^{-1}$ and $(1-v)(1-p)$ $(1-\hat{v})=1-q$. We define

$$
\mathrm{GL}^{\circ}(R) \equiv \mathrm{GL}(R, \circ)
$$

to be the set of all quasi invertible elements of R, and note that

$$
\mathrm{GL}^{\circ}(R)=1-\mathrm{GL}(R) \equiv\{1-u: u \in \mathrm{GL}(R)\}
$$

Applying the above discussion, we get, for $p, q \in \operatorname{Idem}_{\infty}(R)=\operatorname{Idem}_{\infty}^{\circ}(R)$ over a unital ring R, that $p \approx q$ or equivalently $I_{\infty}-p \approx I_{\infty}-q$, if and only if $p \approx{ }_{\circ} q$, that is, there exists by definition

$$
v \in \mathrm{GL}_{\infty}^{\circ}(R):=\mathrm{GL}^{\circ}\left(M_{\infty}(R)\right) \equiv \mathrm{GL}\left(M_{\infty}(R), \circ\right)=1-\mathrm{GL}_{\infty}(R)
$$

such that $v \circ p \circ \hat{v}=q$ where $v \circ \hat{v}=0$. So

$$
[p] \in \operatorname{Idem}_{\infty}(R) / \approx \mapsto[p] \in \operatorname{Idem}_{\infty}^{\circ}(R) / \approx
$$

is a bijection that preserves the \oplus operation, and hence $K_{0}(R) \cong \mathcal{G}\left(\operatorname{Idem}_{\infty}^{\circ}(R) / \approx_{0}, \oplus\right)$ for a unital ring R.

However, the above definitions of $\mathrm{GL}_{\infty}^{\circ}(R):=\mathrm{GL}^{\circ}\left(M_{\infty}(R)\right) \equiv \mathrm{GL}\left(M_{\infty}(R), \circ\right)$, $\operatorname{Idem}_{\infty}^{\circ}(R)$, and the equivalence relation \approx are still valid for any nonunital ring R. So Abel [A] introduced the new K_{0} group defined as

$$
\overline{K_{0}}(R):=\mathcal{G}\left(\operatorname{Idem}_{\infty}^{\circ}(R) / \approx_{\circ}, \oplus\right)
$$

and raised the question whether $K_{0}(R) \cong \overline{K_{0}}(R)$ for all rings R.
Similarly, for a unital ring R, since

$$
\chi: u \in\left(\operatorname{GL}_{\infty}(R), \cdot\right) \mapsto v:=1-u \in\left(\mathrm{GL}_{\infty}^{\circ}(R), \circ\right)
$$

is a group isomorphism,

$$
K_{1}(R)=\mathrm{GL}_{\infty}(R) /\left[\mathrm{GL}_{\infty}(R), \mathrm{GL}_{\infty}(R)\right] \cong \mathrm{GL}_{\infty}^{\circ}(R) /\left[\mathrm{GL}_{\infty}^{\circ}(R), \mathrm{GL}_{\infty}^{\circ}(R)\right]
$$

where the subscript in $[\cdot, \cdot]$ 。 reminds us that the group operation is \circ and the identity element is 0 .

Since $\mathrm{GL}_{\infty}^{\circ}(R):=\mathrm{GL}\left(M_{\infty}(R), \circ\right)$ is a well-defined group for any nonunital ring R, Abel [A] introduced the new K_{1} group defined as

$$
\overline{K_{1}}(R):=\mathrm{GL}_{\infty}^{\circ}(R) /\left[\mathrm{GL}_{\infty}^{\circ}(R), \mathrm{GL}_{\infty}^{\circ}(R)\right]
$$

and raised the question whether $K_{1}(R) \cong \overline{K_{1}}(R)$ for all rings R.

4. Counterexamples

In this section, we give a negative answer to both of Abel's questions by showing an example of a concrete nonunital ring R with $K_{0}(R) \not \equiv \overline{K_{0}}(R)$ and another example with the canonical natural homomorphism $\overline{K_{1}}(R) \rightarrow K_{1}(R)$ induced by the isomorphisms $v \in \mathrm{GL}_{n}^{\circ}\left(R^{+}\right) \mapsto 1-v \in \mathrm{GL}_{n}\left(R^{+}\right)$not being an isomorphism.

In the following discussion, for a \mathbb{C}-algebra \mathcal{A}, we denote by $\mathcal{A}^{\sim}=\mathcal{A}+\mathbb{C}$ the \mathbb{C} algebra unitization of \mathcal{A}, while $\mathcal{A}^{+}=\mathcal{A}+\mathbb{Z}$ still denotes the ring unitization of \mathcal{A}.
4.1. Counterexample for K_{0} group. Let $R:=C_{0}\left(\mathbb{R}^{2}\right)$ be the algebra of all \mathbb{C}-valued continuous functions f on \mathbb{R}^{2} that vanish at infinity, that is, $\lim _{\|(x, y)\| \rightarrow \infty} f(x, y)=0$.

We note that $M_{n}\left(C_{0}\left(\mathbb{R}^{2}\right)\right.$) consists of $n \times n$ matrices with entries in $C_{0}\left(\mathbb{R}^{2}\right)$, and hence can be identified with the algebra $C_{0}\left(\mathbb{R}^{2}, M_{n}(\mathbb{C})\right)$ of $M_{n}(\mathbb{C})$-valued continuous functions f on \mathbb{R}^{2} with $\lim _{\|(x, y)\| \rightarrow \infty}\|f(x, y)\|=0$ where for any matrix $A \in M_{n}(\mathbb{C}),\|A\|$ denotes the operator norm

$$
\|A\|:=\sup \left\{\|A X\|: X \in \mathbb{C}^{n} \text { with }\|X\|=1\right\}
$$

Note that if $A \in M_{n}(\mathbb{C})$ is a nonzero idempotent, that is, $A^{2}=A \neq 0$, then $\|A\| \geq 1$ since for any unit vector X in the nonzero range of A, we have $A X=X$ and hence $\|A\| \geq\|A X\|=\|X\|=1$.

We claim that $\operatorname{Idem}_{\infty}^{\circ}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)=\{0\}$, and hence

$$
\overline{K_{0}}(R)=\mathcal{G}\left(\operatorname{Idem}_{\infty}^{\circ}(R) / \approx_{\circ}, \oplus\right)=0 .
$$

Indeed, $\operatorname{Idem}_{\infty}^{\circ}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)=\operatorname{Idem}_{\infty}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)$. If

$$
p \in \operatorname{Idem}_{n}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)=\operatorname{Idem}\left(M_{n}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)\right)=\operatorname{Idem}\left(C_{0}\left(\mathbb{R}^{2}, M_{n}(\mathbb{C})\right)\right),
$$

then $p^{2}=p$ as $M_{n}(\mathbb{C})$-valued functions on \mathbb{R}^{2} imply that $p(x, y)^{2}=p(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$, and hence $p(x, y)$ is an idempotent in $M_{n}(\mathbb{C})$, which then implies that either $\|p(x, y)\|=0$, that is, $p(x, y)=0$, or $\|p(x, y)\| \geq 1$. By the continuity of $(x, y) \mapsto$ $p(x, y)$ and hence of $(x, y) \mapsto\|p(x, y)\|$, the condition $\lim _{\|(x, y)\| \rightarrow \infty}\|p(x, y)\|=0$ implies that $p(x, y)=0$ for all $(x, y) \in \mathbb{R}^{2}$, that is, $p=0$.

On the other hand, it is known that $K_{0}^{\text {top }}\left(C_{0}\left(\mathbb{R}^{2}\right)\right) \cong \mathbb{Z}$ where $K_{0}^{\text {top }}$ denotes the topological K_{0} group for Banach algebras [T]. For completeness, we sketch the proof of this fact.

First we note that $C_{0}\left(\mathbb{R}^{2}\right)^{\sim} \cong C\left(\mathbb{S}^{2}\right)$ since \mathbb{S}^{2} is the one-point compactification of \mathbb{R}^{2}.
It is well known that for a unital ring R, the maps

$$
p \in \operatorname{Idem}_{n}(R) \mapsto p\left(R^{n}\right) \in \mathcal{P}(R)
$$

induce a canonical semigroup isomorphism $\left(\operatorname{Idem}_{\infty}(R) / \approx, \oplus\right) \rightarrow(\mathcal{P}(R) / \cong, \oplus)$, where $\mathcal{P}(R)$ is the collection of all finitely generated projective modules over R [W]. So $K_{0}(R) \cong \mathcal{G}(\mathcal{P}(R) / \cong, \oplus)$.

On the other hand, for compact Hausdorff spaces X, by Swan's theorem [S], the map $E \mapsto \Gamma(E)$ induces a canonical semigroup isomorphism $(\mathcal{V B}(X) / \cong, \oplus) \rightarrow$ $(\mathcal{P}(C(X)) / \cong, \oplus)$ where $\mathcal{V} \mathcal{B}(X)$ is the collection of all complex vector bundles E over X and $\Gamma(X)$ is the $C(X)$-module of all continuous cross sections of the vector bundle E.

So

$$
K_{0}\left(C\left(\mathbb{S}^{2}\right)\right) \cong \mathcal{G}\left(\mathcal{V B}\left(\mathbb{S}^{2}\right) / \cong, \oplus\right) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

identifying each isomorphism class $[E]$ of a vector bundle E over \mathbb{S}^{2} with a corresponding $(n, r) \in \mathbb{Z} \oplus \mathbb{Z}$, where $r \geq 0$ is the complex dimension of (each fiber of) E, and $n \in \mathbb{Z}$ records the winding or twisting number along the equator of \mathbb{S}^{2} when constructing E by gluing together two trivial vector bundles over the upper and lower hemispheres along the equator $[\mathrm{H}]$. For example, the tangent bundle $T \mathbb{S}^{2}$ of \mathbb{S}^{2} is identified with $(1,1) \in \mathbb{Z} \oplus \mathbb{Z}$, and is closely related to the Bott periodicity in topological K-theory [T].

By definition, $K_{0}^{\text {top }}(\mathcal{A})$ of a Banach algebra \mathcal{A} is the kernel of the canonical homomorphism

$$
K_{0}\left(\mathcal{A}^{\sim}\right) \mapsto K_{0}(\mathbb{C}) \cong \mathbb{Z}
$$

induced by 'modulo \mathcal{A} '. In the case of $\mathcal{A}=C_{0}\left(\mathbb{R}^{2}\right)$,

$$
(n, r) \in \mathbb{Z} \oplus \mathbb{Z} \cong K_{0}\left(C\left(\mathbb{S}^{2}\right)\right) \cong K_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)^{\sim}\right) \mapsto r \in K_{0}(\mathbb{C}) \cong \mathbb{Z}
$$

and hence the kernel $K_{0}^{\text {top }}\left(C_{0}\left(\mathbb{R}^{2}\right)\right) \cong \mathbb{Z}$.

We claim that there is a surjective homomorphism from $K_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)$ to $K_{0}^{\text {top }}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)$ and hence $K_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right) \not \equiv 0$. Indeed, we have the following general result.

Proposition 4.1. Let $R^{\sim}=R+\mathbb{F}$ and $R^{+}=R+\mathbb{Z}$ be respectively the algebra unitization and the ring unitization of a nonunital algebra R over a field \mathbb{F} of characteristic 0 . In the following commuting diagram, all vertical arrows are surjective and the rows are exact:

$$
\begin{array}{ccccccccccl}
0 & \rightarrow & K_{0}(R) \equiv \operatorname{ker}\left(\mu_{*}^{+}\right) & \rightarrow & K_{0}\left(R^{+}\right) & \xrightarrow{\mu_{*}^{+}} & K_{0}(\mathbb{Z}) & = & \mathbb{Z} & \rightarrow & 0 \\
& \downarrow & \downarrow_{*_{*}} & & \downarrow_{\kappa_{*}} & & \| & & \\
0 & \rightarrow & \operatorname{ker}\left(\mu_{*}^{\sim}\right) & \rightarrow & K_{0}\left(R^{\sim}\right) & \xrightarrow{\mu_{*}^{\sim}} & K_{0}(\mathbb{F}) & = & \mathbb{Z} & \rightarrow & 0
\end{array}
$$

where the homomorphisms $\mu_{*}^{\sim}: K_{0}\left(R^{\sim}\right) \rightarrow K_{0}(\mathbb{F})$ and $\mu_{*}^{+}: K_{0}\left(R^{+}\right) \rightarrow K_{0}(\mathbb{Z})$ are canonically induced by the 'modulo R^{\prime} maps $\mu^{\sim}: R^{\sim} \rightarrow \mathbb{F}$ and $\mu^{+}: R^{+} \rightarrow \mathbb{Z}$, and ι_{*} and κ_{*} are induced by the inclusion maps $\iota: R^{+} \rightarrow R^{\sim}$ and $\kappa: \mathbb{Z} \rightarrow \mathbb{F}$ respectively.

Proof. The diagram is clearly commuting and the exactness of rows is easy to see.
We claim that the inclusion $\iota: \operatorname{Idem}_{\infty}\left(R^{+}\right) \subset \operatorname{Idem}_{\infty}\left(R^{\sim}\right)$ induces a semigroup isomorphism

$$
\phi:\left(\operatorname{Idem}_{\infty}\left(R^{+}\right) / \approx, \oplus\right) \rightarrow\left(\operatorname{Idem}_{\infty}\left(R^{\sim}\right) / \approx, \oplus\right)
$$

First, ϕ is clearly a well-defined homomorphism. Furthermore, finitely generated projective modules over either \mathbb{F} or \mathbb{Z} are well known to be classified as finitely generated free modules, or equivalently, any $n \times n$ matrix idempotent over \mathbb{F} or \mathbb{Z} can be conjugated to $I_{k} \oplus 0_{n-k}$ for some $k \leq n$ by an invertible matrix over \mathbb{F} or \mathbb{Z}. So $K_{0}(\mathbb{Z}) \cong \mathbb{Z} \cong K_{0}(\mathbb{F})$ with $\kappa_{*}=\mathrm{id}_{\mathbb{Z}}$.

Furthermore, classes in either $\operatorname{Idem}_{\infty}\left(R^{+}\right) / \approx$ or $\operatorname{Idem}_{\infty}\left(R^{\sim}\right) / \approx$ are represented by elements p in $\operatorname{Idem}_{n}\left(R^{+}\right)$or $\operatorname{Idem}_{n}\left(R^{\sim}\right)$ such that $\mu^{+}(p)=I_{k} \oplus 0_{n-k}$ or $\mu^{\sim}(p)=I_{k} \oplus 0_{n-k}$ for some k, either of which implies that $p \in \operatorname{Idem}_{\infty}\left(R^{+}\right)$and hence ϕ is surjective. Indeed, for any $q \in \operatorname{Idem}_{n}\left(R^{\sim}\right)$, since $\mu^{\sim}(q) \in \operatorname{Idem}_{n}(\mathbb{F})$, there is $u \in \mathrm{GL}_{n}(\mathbb{F}) \subset \mathrm{GL}_{n}\left(R^{\sim}\right)$ such that $u \mu^{\sim}(q) u^{-1}=I_{k} \oplus 0_{n-k}$ for some k, and hence we get $[q]=[p]$ for $p:=u q u^{-1} \in$ $\operatorname{Idem}_{n}\left(R^{\sim}\right)$ with $\mu^{\sim}(p)=u \mu^{\sim}(q) u^{-1}=I_{k} \oplus 0_{n-k}$. A similar argument can be applied to any $q \in \operatorname{Idem}_{n}\left(R^{+}\right)$.

Thus

$$
\iota_{*}: K_{0}\left(R^{+}\right)=\mathcal{G}\left(\operatorname{Idem}_{\infty}\left(R^{+}\right) / \approx, \oplus\right) \rightarrow K_{0}\left(R^{\sim}\right)=\mathcal{G}\left(\operatorname{Idem}_{\infty}\left(R^{\sim}\right) / \approx, \oplus\right)
$$

induced by ϕ is surjective, which then induces a surjective homomorphism from $K_{0}(R) \equiv \operatorname{ker}\left(\mu_{*}^{+}\right)$to $\operatorname{ker}\left(\mu_{*}^{\sim}\right)$ because κ_{*} is an isomorphism in the commuting diagram.

Thus we get that

$$
\overline{K_{0}}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)=0 \not \equiv K_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)
$$

which shows that even for commutative C^{*}-algebras \mathcal{A}, the K_{0}-groups $\overline{K_{0}}(\mathcal{A})$ and $K_{0}(\mathcal{A})$ are in general not isomorphic.

Before moving on to the case of K_{1}-groups, we would like to mention the following counterexample for the case of K_{0}-groups that the referee kindly pointed out to us. This example gives a negative answer to Abel's question for general, or even commutative, rings (but not for the more specialized class of C^{*}-algebras).

For an integer $n \geq 2$, there are clearly no nontrivial idempotents in $\operatorname{Idem}_{\infty}(n \mathbb{Z})$ for the nonunital ring $n \mathbb{Z}$ and hence $\overline{K_{0}}(n \mathbb{Z})=0$. On the other hand, $K_{0}(n \mathbb{Z})$ cannot always be 0 (for example, $n=5$), by the well-known exact sequence [W]

$$
\mathrm{GL}_{\infty}(\mathbb{Z}) \rightarrow \mathrm{GL}_{\infty}(\mathbb{Z} /(n \mathbb{Z})) \rightarrow K_{0}(n \mathbb{Z}) \rightarrow K_{0}(\mathbb{Z}) \rightarrow K_{0}(\mathbb{Z} /(n \mathbb{Z}))
$$

in algebraic K-theory associated with the short exact sequence

$$
0 \rightarrow n \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} /(n \mathbb{Z}) \rightarrow 0
$$

4.2. Counterexample for K_{1} group. Let $R \subset C_{0}(\mathbb{R}) \subset C_{0}(\mathbb{R})^{\sim} \cong C\left(\mathbb{S}^{1}\right)$ be the algebra of all smooth \mathbb{C}-valued functions f on the unit circle \mathbb{S}^{1} such that $f(1)=0$, where $1 \in \mathbb{S}^{1} \subset \mathbb{C}$, the multiplicative unit of \mathbb{C}, is viewed as the point ∞ when \mathbb{S}^{1} is viewed as the one-point compactification of \mathbb{R}, and the isomorphism $C_{0}(\mathbb{R})^{\sim} \cong C\left(\mathbb{S}^{1}\right)$ identifies each $f \in C\left(\mathbb{S}^{1}\right)$ with the element

$$
(f-f(1))+f(1) \in C_{0}(\mathbb{R})+\mathbb{C} \equiv C_{0}(\mathbb{R})^{\sim}
$$

Note that we have $R^{+} \subset C_{0}(\mathbb{R})^{\sim} \cong C\left(\mathbb{S}^{1}\right)$ identified with the subring of $C\left(\mathbb{S}^{1}\right)$ consisting of all smooth functions $f \in C^{\infty}\left(\mathbb{S}^{1}\right)$ with $f(1) \in \mathbb{Z}$.

By definition, $K_{1}(R)$ is the kernel of the canonical group homomorphism μ_{R} : $K_{1}\left(R^{+}\right) \rightarrow K_{1}(\mathbb{Z})$ induced by the 'modulo R^{\prime} map $\mu^{+}: f \in R^{+} \mapsto f(1) \in \mathbb{Z}$ which is extended canonically to a ring homomorphism $M_{n}\left(R^{+}\right) \rightarrow M_{n}(\mathbb{Z})$, still denoted as μ^{+}. More explicitly, since $\left[\mathrm{GL}_{n}(\mathbb{Z}), \mathrm{GL}_{n}(\mathbb{Z})\right]=E_{n}(\mathbb{Z})[\mathrm{W}]$,

$$
\begin{aligned}
K_{1}(R) & =\lim _{n \rightarrow \infty} \frac{\left\{u \in \mathrm{GL}_{n}\left(R^{+}\right): \mu^{+}(u) \equiv u(1) \in\left[\mathrm{GL}_{n}(\mathbb{Z}), \mathrm{GL}_{n}(\mathbb{Z})\right]\right\}}{\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right]} \\
& =\underset{\sim}{\lim _{n \rightarrow \infty}} \frac{\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)}{\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right]}
\end{aligned}
$$

where $E_{n}(\mathcal{R})$ for any unital ring \mathcal{R} denotes the subgroup of $\mathrm{GL}_{n}(\mathcal{R})$ generated by the elementary matrices $I_{n}+r e_{i j}$ with $i \neq j$ and $r \in \mathcal{R}$, and

$$
\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right) \equiv\left\{u \in \mathrm{GL}_{n}\left(R^{+}\right): \mu^{+}(u) \equiv u(1) \in E_{n}(\mathbb{Z})\right\}
$$

On the other hand, under the group isomorphism

$$
u \in \mathrm{GL}_{n}\left(R^{+}\right) \mapsto I_{n}-u \in \mathrm{GL}_{n}^{\circ}\left(R^{+}\right)
$$

we have

$$
\mathrm{GL}_{n}^{\circ}(R)=\left\{v \in \mathrm{GL}_{n}^{\circ}\left(R^{+}\right): \mu^{+}(v) \equiv v(1)=0_{n}\right\} \subset \mathrm{GL}_{n}^{\circ}\left(R^{+}\right)
$$

identified with

$$
\left(\mu^{+}\right)^{-1}\left(I_{n}\right) \equiv\left\{u \in \mathrm{GL}_{n}\left(R^{+}\right): \mu^{+}(u) \equiv u(1)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(R^{+}\right)
$$

and hence

$$
\begin{aligned}
\overline{K_{1}}(R) & =\frac{\mathrm{GL}_{\infty}^{\circ}(R)}{\left[\mathrm{GL}_{\infty}^{\circ}(R), \mathrm{GL}_{\infty}^{\circ}(R)\right]_{\circ}}=\lim _{n \rightarrow \infty} \frac{\mathrm{GL}_{n}^{\circ}(R)}{\left[\mathrm{GL}_{n}^{\circ}(R), \mathrm{GL}_{n}^{\circ}(R)\right]_{\circ}} \\
& \cong \lim _{n \rightarrow \infty} \frac{\left(\mu^{+}\right)^{-1}\left(I_{n}\right)}{\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]} .
\end{aligned}
$$

Note that obviously, $\left(\mu^{+}\right)^{-1}\left(I_{n}\right) \subset\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)$. On the other hand, since

$$
E_{n}(\mathbb{Z})=\left[\mathrm{GL}_{n}(\mathbb{Z}), \mathrm{GL}_{n}(\mathbb{Z})\right] \subset\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right],
$$

we have, for any $u \in\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)$, the well-defined $\left(\mu^{+}(u)\right)^{-1} u \in\left(\mu^{+}\right)^{-1}\left(I_{n}\right)$ such that

$$
\left[\left(\mu^{+}(u)\right)^{-1} u\right]=[u] \quad \text { in } \frac{\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)}{\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right]}
$$

Thus the canonical homomorphism

$$
\frac{\left(\mu^{+}\right)^{-1}\left(I_{n}\right)}{\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]} \rightarrow \frac{\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)}{\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right]}
$$

and, hence, the induced canonical homomorphism

$$
\overline{K_{1}}(R) \rightarrow K_{1}(R)
$$

are surjective. (This result is valid for any ring R since the above argument only utilizes the 'modulo R ' map μ^{+}and not the special property that $\mu^{+}(u)=u(1)$. Abel indicated in his talk that he also had reached this conclusion.)

Next we show that the canonical natural homomorphism $\overline{K_{1}}(R) \rightarrow K_{1}(R)$ is not injective. In the following, we fix a local coordinate system on a neighborhood of 1 in \mathbb{S}^{1} so that the notion of derivative $f^{\prime}(1)$ is well-defined without ambiguity, for any smooth function f on \mathbb{S}^{1}.

Taking any $f \in R^{+}$with $f(1)=1$ and $g \in R$ with $g(1)=0$ but $g^{\prime}(1) \neq 0$, that is, smooth functions f, g on \mathbb{S}^{1} with $f(1)=1$ and g having a simple zero at 1 , we note that

$$
U:=\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)^{-1} \in\left[\mathrm{GL}_{2}\left(R^{+}\right), \mathrm{GL}_{2}\left(R^{+}\right)\right]
$$

and also

$$
U \equiv\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)^{-1} \in\left(\mu^{+}\right)^{-1}\left(I_{2}\right)
$$

that is, $I_{2}-U \in M_{2}(R)$, since

$$
\begin{aligned}
& \mu^{+}\left(\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)^{-1}\right) \\
&=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

However, we claim that

$$
U \equiv\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1-g f & g f g \\
-f g f & 1+f g+f g f g
\end{array}\right)
$$

cannot be in $\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]$ for any n, and hence

$$
[U] \neq 0 \quad \text { in } \overline{K_{1}}(R) \cong \lim _{n \rightarrow \infty} \frac{\left(\mu^{+}\right)^{-1}\left(I_{n}\right)}{\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]}
$$

while

$$
[U]=0 \quad \text { in } K_{1}(R) \cong \lim _{n \rightarrow \infty} \frac{\left(\mu^{+}\right)^{-1}\left(E_{n}(\mathbb{Z})\right)}{\left[\mathrm{GL}_{n}\left(R^{+}\right), \mathrm{GL}_{n}\left(R^{+}\right)\right]}
$$

which shows that the canonical homomorphism $\overline{K_{1}}(R) \rightarrow K_{1}(R)$ is not injective.
Our claim is proved by the observation that the $(2,1)$ th entry $f g f$ of $I_{2}-U \in M_{2}(R)$ has a simple zero at 1 since $f(1)=1$ while g has a simple zero at 1 , and by the following lemma.
Lemma 4.2. All entries of $I_{n}-V \in M_{n}(R)$ have zeros of order at least 2 for any $V \in\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]$ and any $n \in \mathbb{N}$.
Proof. Any element of $\left(\mu^{+}\right)^{-1}\left(I_{n}\right)$ is of the form $I_{n}+A$ with $A \in M_{n}(R)$, and its inverse $\left(I_{n}+A\right)^{-1}$ also clearly belongs to $\left(\mu^{+}\right)^{-1}\left(I_{n}\right)$. Hence $\left(I_{n}+A\right)^{-1}=I_{n}-\tilde{A}$ for some $\tilde{A} \in M_{n}(R)$. Note that all entries of $A-\tilde{A}$ have a zero at 1 of order at least 2 , because

$$
I_{n}=\left(I_{n}+A\right)\left(I_{n}-\tilde{A}\right)=I_{n}+(A-\tilde{A})-A \tilde{A}
$$

that is, $A-\tilde{A}=A \tilde{A}$, where all entries of $A \tilde{A}$ are sums of products of smooth functions having a zero at 1 and hence have a zero of order at least 2 at 1 .

So for any $I_{n}+A, I_{n}+B \in\left(\mu^{+}\right)^{-1}\left(I_{n}\right)$,

$$
\begin{aligned}
\left(I_{n}+\right. & A)\left(I_{n}+B\right)\left(I_{n}+A\right)^{-1}\left(I_{n}+B\right)^{-1} \\
& =\left(I_{n}+A\right)\left(I_{n}+B\right)\left(I_{n}-\tilde{A}\right)\left(I_{n}-\tilde{B}\right) \\
& =I_{n}+A+B-\tilde{A}-\tilde{B}+A B-A \tilde{A}-A \tilde{B}-B \tilde{A}-\cdots \\
& =I_{n}+(A-\tilde{A})+(B-\tilde{B})+A B-A \tilde{A}-A \tilde{B}-B \tilde{A}-\cdots
\end{aligned}
$$

where all summands except I_{n} are matrices with all entries having a zero of order at least 2 at 1 , that is,

$$
\left(I_{n}+A\right)\left(I_{n}+B\right)\left(I_{n}+A\right)^{-1}\left(I_{n}+B\right)^{-1}=I_{n}+C
$$

for some $C \in M_{n}(R)$ with all entries having a zero of order at least 2 at 1 .

Now any element V of the commutator subgroup $\left[\left(\mu^{+}\right)^{-1}\left(I_{n}\right),\left(\mu^{+}\right)^{-1}\left(I_{n}\right)\right]$ is of the form

$$
\begin{aligned}
V & =\prod_{i=1}^{m}\left(I_{n}+A_{i}\right)\left(I_{n}+B_{i}\right)\left(I_{n}+A_{i}\right)^{-1}\left(I_{n}+B_{i}\right)^{-1}=\prod_{i=1}^{m}\left(I_{n}+C_{i}\right) \\
& =I_{n}+\sum_{i=1}^{m} C_{i}+\sum_{1 \leq i<j \leq m} C_{i} C_{j}+\cdots
\end{aligned}
$$

for some $I_{n}+A_{i}, I_{n}+B_{i} \in\left(\mu^{+}\right)^{-1}\left(I_{n}\right), 1 \leq i \leq m$, where all summands except I_{n} are matrices with all entries having a zero of order at least 2 at 1 . Thus $I_{n}-V$ is as described in the statement.

Acknowledgement

The second author would like to thank the National Center for Theoretical Sciences for its support and hospitality during his summer visit in 2011.

References

[A] M. Abel, 'On algebraic K-theory', International Conference on Topological Algebras and their Applications (ICTAA) Tartu, 24-27 January 2008, Mathematics Studies, 4 (Estonian Mathematical Society, Tartu, Estonia, 2008), pp. 7-12.
[H] D. Husemoller, Fibre Bundles (McGraw-Hill, New York, 1966).
[L] S. Lang, Algebra (Addison-Wesley, Reading, MA, 1965).
[P] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I (Cambridge University Press, Cambridge, 1994).
[S] R. W. Swan, 'Vector bundles and projective modules', Trans. Amer. Math. Soc. 705 (1962), 264-277.
[T] J. Taylor, 'Banach algebras and topology', in: Algebras in Analysis (Academic Press, New York, 1975).
[W] C. A. Weibel, The K-book: An Introduction to Algebraic K-theory, 2012, http://www.math.rutgers.edu/~weibel/Kbook.html.

TSIU-KWEN LEE, Department of Mathematics, National Taiwan University, Taipei, Taiwan e-mail: tklee@math.ntu.edu.tw

ALBERT JEU-LIANG SHEU, Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA
e-mail: sheu@math.ku.edu

[^0]: The research of the first author was supported by NSC of Taiwan and by the National Center for Theoretical Sciences of Taipei. The research of the second author was partially supported by the National Center for Theoretical Sciences of Taipei.
 (C) 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

